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Optical and Thermal Effective Masses of Copper
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The optical and thermal masses of copper have been calculated from a phase-shift model of
the Fermi surface and Fermi velocity. The total area of the Fermi surface is also determined.
The results yield a Fermi-surface average of the renormalization of the band velocity in cop-
per by the electron-phonon interaction, and suggest that the quasiparticle current in copper is
reduced by quasiparticle interactions.

I. INTRODUCTION

The free-electron model is frequently used to
describe experimental observations concerning the
conduction electrons in metals. The deviations of
the measured values of various properties from
the free-electron values are described by defining
an "effective" mass to replace the bare-electron
mass that enters in free-electron theory.

The thermal effective mass is a measure of the
low-temperature heat capacity of the conduction
electrons in a metal, and can be calculated from a
knowledge of the density of states at the Fermi en-
ergy. For a metal of arbitrary Fermi surface,
the thermal mass is given by'

where S~ is the surface area of the Fermi surface,
Vz is the quasiparticle velocity which is renormal-
ized by the electron-electron and electron-phonon
interactions, the superscript zero denotes quantities
calculated from the free-electron model, and the
angular brackets indicate a Fermi-surface average
of the argument.

The optical effective mass is a measure of the
contribution of the conduction-band electrons to the
real part e, (&u) of the dielectric constant of a metal.
The dielectric constant can be written as2

e, (~) =1 —(4v Ne')/m„, (~'+~ )+e„(~), (2)

where, for a metal with an arbitrary Fermi surface,
the optical mass m„, is given by'

mopt S~ V~0 0

m s,(v,'/(1+ ~))

where Vz' is the band-structure Fermi velocity
which is renormalized by the electron-electron,
but not by the electron-phonon, interaction, and v

is a parameter which describes the influence of
quasiparticle interactions on the current associated
with a quasiparticle state. In the spherical approxi-
mation, v is equal to the Landau parameter A.', . The
second term in Eq. (2), which is the dominant term
in the near-infrared region of the spectrum, rep-
resents the contribution of intraband transitions to

the dielectric constant. The third term represents
the contribution of interband transitions. The
quasiparticle and band velocities are related by

v„'= v; (1+~), (4)

The Fermi surface of a metal such as copper is
distorted by the electron-ion interaction, which in
a phase-shift analysis is represented by a short-
range potential of muffin-tin form. The electronic
energy levels E„(k) are roots of the secular equa-
tion

det([(k+ g)~ -E]sll. + I'Nr. (k, E, rl, (E)))=0, (5)

where g, g are reciproacl-lattice vectors, and the
augmented-plane-wave (APW) pseudopotential I' is
a function of the phase shifts rl, (E). The explicit
form of 1" has been discussed elsewhere. 3

where A. (k) is an anisotropic parameter which mea-
sures the renormalization of the one-electron en-
ergy bands by the electron-phonon interaction.

In this paper we present a calculation of the
thermal and optical masses of copper, using a
phase-shift model of the Fermi surface. The sur-
face area of the Fermi surface is also calculated.
The thermal mass is calculated by direct evalua-
tion of Eq. (1), which yields a result in good agree-
ment with the experimental value derived from spe-
cific-heat data. Our calculation also yields a Fer-
mi-surface average of the electron-phonon renor-
malization parameter X. A comparison between
our calculation of the optical mass and the experi-
mental data yields an estimate of the Landau pa-
rameter A', .

The electronic phase shifts at the Fermi surface
of copper have been discussed elsewhere. 3 Recent
high-precision measurements of the de Haas-van
Alphen frequencies4 cal.l for some slight revision
of the earlier results, which we discuss in Sec. II.
In Sec. III we describe the way in which the effective
masses were calculated, and in Sec. IV we present
the results of our calculations and discuss their
significance.

II. PHASE-SHIFT MODEL
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Orbit Notation Experimental Phase-shift model

Belly
Belly
Neck
Rosette
Dog's bone
Turning point
near goo) in (110)

&fpp

~&oo
L &to

J3r

5 ~ 9955 (1)
5. sov3 (1)
0. 21736 (1)
2. 4604 (1)
2, 5O95 (1)
5, 9558 (1)

5. 9954 (1)
5. 8073 (1)
o. 21v3v (1)
2. 4602 (1)
2. 5095 (1)
5. 9558 (1)

TABLE I. Comparison of de Haas-van Alphen fre-
quencies computed from the phase-shift model with ex-
perimental data of Coleridge et al. {units 108 G).
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The phase shifts rj, (Ez) that describe the electron-
ion interaction at the Fermi surface of copper have
been determined by fitting the surface of constant
energy E(k) = E~ computed from Eq. (5) to experi-
mental Fermi-surface data. In addition, a nonlocal
modification of the one-electron potential due to
Chodorow' was constructed to yield phase shifts
fully in agreement with those determined from the
Fermi-surface data. The experimental data on
which these calculations were based yield Fermi-
surface areas accurate to about 1 part in 10, and

were analyzed in a 30-APW calculation. More re-
cent data' yield Fermi-surface areas (reproduced
in Table I) accurate to better than 1 part in 10',
and justify a more accurate calculation of the phase
shifts.

A 60-APW calculation was carried out to deter-
mine the s, p, and d phase shifts that give an exact
fit to the experimental areas BfQQ, B»» and N»»
for several values of the f phase shift and the
Fermi-energy parameter E~. The computed areas
of the orbits Dff0 BfQQ and B~ were then compared
with the experimental areas. Agreement was found
to depend rather sensitively on the assumed value
of the f phase shift, but only weakly on values of
E~ in the range we investigated. Even though E~
is essentially a free parameter in our fit to the
Fermi-surface data, our best estimates of the
phase shifts depend sensitively on the assumed
value of E~, as plotted in Fig. 1. The phase shifts
presented here are consistent with, but somewhat
more accurate than, those obtained from the ear-
lier data. The uncertainties attached to the phase
shifts indicate the accuracy with which the phase
shifts can be determined from the data for any
assumed value of E~. These uncertainties are
dominated by the fact that the fit to the data deter-
mines the f phase shift within only a rather broad
range of values, and an order-of-magnitude im-
provement in the absolute accuracy of the areas
yields only a rather slight improvement in the ac-
curacy with which the phase shifts can be deter-
mined.

In constructing a nonlocal modification of the

Chodorow potential to reproduce the revised phase
shifts, it is convenient to choose the same value
of the Fermi-energy parameter (E~ =0. 55 Ry) as
was assumed in the earlier calculations. We find
the set of phase shifts listed in Table II. The
angular-momentum-dependent corrections to the
Chodorow potential required to reproduce these
phase shifts are set out in Table III. In Fig. 2 we
display the energy dependence of the phase shifts
for copper calculated from the modified Chodorow
potential. Comparable curves for the Chodorow
potential have been given by Cooper, Kreiger, and

Segall. The accuracy of the extrapolation of the
phase shifts away from the Fermi energy (where
they are determined by the Fermi-surface data)
depends largely on the accuracy of the Chodorow
potential. Several authors have found that this
potential gives satisfactory predictions of inter-
band-transition frequencies in copper, and we
take this as evidence that the modified Chodorow
potential yields accurate energy bands in the vi-
cinity of the Fermi level.

The revisions discussed here do not significantly
alter the results for the anisotropic band velocity
of copper presented in a previous paper. 7 How-

ever, the experimental value of the cyclotron mass
fromwhich the quasiparticle velocity on the neck

TABLE II. Phase shifts {in radians) derived from
Fermi-surface data for copper for several values of Ez,
and comparison with earlier calculations {Ref. 3) for Fz
=0, 55 Ry.

EF (Ry)
1)p

'n2

'l3

0. 50
0. 1549
0. 1600

—0.0952
0. 000 75

P resent work

0.55
0, 0638
0, 1261

—0. 1168
0, 00075

0, 60
—0. 0232 (30)

o. oss2 (9)
—0. 1399 (5)

0. 000 75 (20)

Ref. (3)

0, 55
0, 0574 (42)
0. 1234 (14)

—0 1157 (9)
0, 00135 (30)

E, (Rydbergs j

FIG. 1. Phase shifts derived by fitting experimental
Fermi-surface data, plotted as a function of the assumed
value of the Fermi-energy parameter Ez. The corre-
sponding value of the f phase shift is F3=0.00075rad, and

is assumed to be independent of E~.
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TABLE III. Angular-momentum-dependent correction
to the Chodorow potential required to bring the phase shifts
at energy E&=0.55 Ry into agreement with those derived
from the Fermi-surface data. The correction is a con-
stant V($) within the muffin-tin spheres, and zero outside.

t (E)

l (Ry)

0 —0. 0164 + 0, 0021
1 —0. 0396 + 0. 0014
2 —0. 0074 +0. 0013
3 + 0. 0514 +0. 0650
4 0

was derived is now known to be too large. A recent
experiment' yields the value

(m, /m) = 0.455 +0.006 (on neck)

leading to a quasiparticle velocity

(V~/V~o) = 0.416 + 0. 006 (on neck).

This revised result is in better agreement with the
result of a direct measurement of the neck velocity
by Doezema and Koch,

(V„/V~o) = 0.427+ 0.006 (on neck).

III. METHOD OF CALCULATION

The phase-shift model of the Fermi surface of
copper yields three quantities that are used in the
present calculations: the Fermi radius k~ with an
absolute accuracy of better than 0. Ol%%up, the quasi-
particle velocity Vg with an absolute accuracy of
about 2'%%uo, and the band velocity Vz with a computa-
tional accuracy of about 0. 2'%%uo.

The quasiparticle velocity in copper was deter-
mined by constructing a surface of constant energy
enclosing the Fermi surface, such that the differ-
ences between the areas of extremal orbits on the
two surfaces are proportional to the experimental
cyclotron masses. Then the local velocity at any
point on the Fermi surface can be computed from
the normal distance between the two surfaces of
constant energy. Band velocities for copper were
determined from the energy bands calculated from

the modified Chodorow potential. Since band gaps
predicted by this potential have been shown to be in
satisfactory agreement with experimental measure-
ments of certain optical transition frequencies, we
believe that the dominant effects of the electron-
electron interaction are folded into the band veloc-
ities determined in this way.

In the present analysis the phase-shift model
was used to calculate the radii of the Fermi surface
as a function of the radial coordinates 8 and P.
The Fermi surface of copper has 48-fold symme-
try, so the calculations were confined to a sector
encompassing 4, th of the Brillouin zone, within
which the radii were calculated at 150 evenly dis-
tributed points. The Fermi-surface averages in
Eqs. (1) and (3) were calculated by dividing the
Fermi surface into triangular elements whose ver-
tices are three nearest-neighbor radii, as in Fig.
3. Each surface element is approximated by a
spherical triangle, of radius R = —,'(R, + R~+ RB),
centered on the origin of the Brillouin zone and
encompassing the same solid angle as the surface
element. In this approximation the area of a single
surface element is given by

ES= R~(8, + 8&+ 8~ - m)/cos g,
where the vertex angles 8» 8» and 6, of the equiv-
alent spherical triangle are calculated by standard
techniques in analytical geometry. g is the angle
between the unit vector normal to the surface and
the mean-radius vector, and corrects for the tilt
of the surface element. Close to the necks, the
contributions to the Fermi-surface integrals were
conveniently evaluated by dividing the surface into
cylindrical, rather than triangular, elements. The
Fermi-surface averages of the Fermi velocity and
the inverse Fermi velocity, which enter in Eqs.
(1) and (3), were evaluated by summing the ap-
propriate integrands over all surface elements.
The Fermi-surface area was evaluated by summing
the area of the individual elements. The conver-
gence of the calculation was checked by performing
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FIG. 2. Phase shifts calculated as a function of energy
E from the modified Chodorow potential.

FIG. 3. Illustration of spherical triangle with pertinent
variables.
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the calculation with distribution of 5Q and 15Q

points, and the results agreed within the limit of
error of the calculation.

TABLE V. Comparison of first-principles calculations
of the Landau parameter A& for g~=2. 66, with the result
derived from the optical mass of copper.

IV. RESULTS AND DISCUSSION

The total surface area of the Fermi surface of
copper was found to be

S~/Sg = 0. 982 + 0. 002 .

Nozieres @ Pines approx.
Hubbard approx.
Screened exchange
Rice
Expansion method
Lee and Nowak

+0, 03
0. 00

—0. 045
+0. 020
—0. 031
(- 0. 07 +0. 05)

It is reduced below the surface area of the free-
electron sphere (S~= 23. 345 A 2) by the presence
of the necks.

By evaluating the expression in Eq. (1), we find
for the thermal mass of copper

m, „/m = 1.41 + 0. 03 . (8)

This result is consistent with the results of experi-
mental specific-heat measurements, '0 "as given
in Table IV, from which we derive the best esti-
mate

m,„/m = 1.385 + 0.005 (experimental). (9)

It is also consistent with independent calculations
from the quasiparticle velocities, and this agree-
ment serves as a check on our calculational pro-
cedure.

We have also evaluated the expression in Eq. (1),
replacing the quasiparticle velocity by the band
velocity and neglecting the anisotropy of X. We find

~Reference 18. Reference 19. 'Reference 17.

(m, „/m„,) & (S~/S~a) (1+ &+ v). (13)

Our best estimate of the experimental optical mass
of copper" is

(m.„/m) = 1.39+ O. O6. (14)

Inserting Eqs. (I), (10), (11),and (14) into Eq. (13)
yields an upper limit for the parameter

is apparently far from negligible and our value of

1.10 is consistent with Grimvall's result.
From Eqs. (1), (3), and (4) it follows that, ne-

glecting the anisotropy of A. and v, the thermal and

optical masses are related by

(m,„/m.„)= (S,/Se)'( V,') (I/V,') (1+~+ v). (12)

Schwartz' s inequality for the Fermi-surface av-
erages yields

m, „/m= (l. 26 +0.01)(1+ A), (lo) v ~ -0.02.

and by comparing Eqs. (9) and (10) we deduce that
the Fermi-surface average of the electron-phonon
renormalization parameter is

(1+ X) = 1.10 + 0. 01 .
Grimvall'6 has estimated lower and upper bounds
on the electron-phonon enhancement of the thermal
mass. From electrical resistivity and supercon-
ductivity data he finds that (1+ X) must lie between
1.Q7 and 1.24. The electron-phonon enhancement

Specific heat

1.383 + 0. 002
1.389 + 0. 006
1.392 + 0. 006
1.382+ 0. 006

Cyclotron mass

Martin
Osborne
Manchester'
Grj ffel~

TABLE IV. Comparison of experimental specific-heat
masses with masses calculated by inversion of cyclotron-
mass data.

In deriving this upper limit, we have allowed for
the substantial uncertainty in our best estimate of
the optical mass. This upper limit is consistent
with the value of v, previously estimated by the
authors to be 7

v= —0. 07+ Q. 05.

We have pointed out above that in the spherical ap-
proximation v reduces to the Landau parameter A,'.
A comparison between this result and first-prin-
ciples calculations"' of A; is set out in Table V.
The first-principles calculations vary substantially
among themselves, but are qualitatively consistent
with our result. The microscopic calculations as-
sume an electron fluid in equilibrium with a uniform
background of positive charge, thereby neglecting
band-structure effects. Thus the results of the
microscopic calculation are not strictly comparable
with our result, and the most one can expect is
qualitative agreement.

V. CONCLUSIONS
Halse
Stark and Auluckf
Present work

Reference 10.
Reference 11.

'Reference 12.

l. 40 + 0. 03
1.40+0. 01
l.41+0.03

Reference 13.
'Reference 14.
Reference 15.

A phase-shift analysis of the most recent experi-
mental Fermi-surface data for copper calls for a
slight revision of earlier results. The principal
change is a reduction in our best estimate of the f
phase shift. For a given value of the Fermi-energy
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parameter Ez, the revised phase shifts are numer-
ically closer to the results of the Kox ringa-Kchn-
Rostoker (KKR) calculation of Cooke, Davis, and

%food, 0' ~ which suggests that the changes are in

part a consequence of the more complete conver-
gence of the present calculations.

A substantial increase in the accuracy of the
experimental data yieMs only a slight increase in
the accuracy of the phase shifts. This is because
the f phase shift is rather poorly determined by
fitting the Fermi-surface data, and uncertainty in
the f phase shift is reflected in our best estimates
of the other phase shifts. A least-squares fit to
all the area data mould yield more accurate phase
shifts, but with present techniques such a calcula-
tion would be prohibitively costly.

The results presented in Table I suggest that a
four-phase-shift model is capable of reproducing
the area data with an accuracy of about 1 part in
lo4. Even though an analysis of more complete
experimental data would be needed to substantiate
this claim, phase-shift analysis is evidently a
rather accurate technique for the inversion of
Fermi-surf aee data.

Oux calculation of the thermal and optical masses
of copper was undertaken to test the velocity distri-
butions reported in a previous paper. ' The con-
sistency between our calculated thermal mass and
the specific-heat data provides a check on the quasi-
particle velocities, although the cheek is perhaps
less convincing in viem of a discrepancy for divalent
metals noted recently by Stark and Auluck. " The
Fermi-surface average of X is consistent with in-
dependent estimates by Grimvall. -6 This provides
scme evidence for the correctness of the band ve-
locities, although the range of values of X that is
consistent mith Grimvall's resul. ts is unfortunately
rather mide.

In the calculations described here we have as-
sumed that the electronic energy bands calculated
from the modified Chodorom potential are fully re-
normalized by the Coulomb (i. e. , electron-elec-
tron) interaction. Several arguments may be ad-
vanced to support this assumption:

(i) The Chodorow potential was constructed to fit
the empirical spectrum of the free copper ion, and
presumably includes the dominant effects of ex-
change and correlation within the ion core.

(ii) The modified potential has been adjusted to
fit Fermi-surface data exactly, and it is known that
in principle the Coulomb renormalization of the
conduction bands can be folded into a nonlocal ef-
fective potential.

(iii) Energy gaps calculated from the modified
potential are in good agreement with the corre-

sponding optical. -transition frequencies, mhich
depend only on the difference between the Coulomb-
renormalized energies in the initial and final states.

%'e cannot rule out the possibility that the energy
bands calculated from the modified Chodorom po-
tential may be less than fully renormalized by the
Coulomb interaction, a possibility that has been
stressed by Christiensen. ~ If this mere so, then
our value of A. could not be interpreted as deter-
mined by the electron-phonon interaction alone,
and our value of v would represent only a fraction
of the full Coulomb renormalization. The true X

mould necessarily be more positive, and the true v
mox'e negative than me found, in such a may that
the sum of A. and v should remain unchanged.
Nevertheless, our optical-mass calculation attests
to the consistency of our assumption that the en-
ergy bands derived from the modified Chodorom
potential are fully renormalized by the Coul. omb
interaction, and appears to rule out the possibil. ity
that they ean be regarded as the "bare" band struc-
ture.

The thermal and optical masses are related by
an inequality that depends on parameters of the
Fermi surface. It has been suggested that informa-
tion about (SzjSro), and hence the topology of the
Fermi surface, can be deduced from the ratio of
these masses. Unfortunately the many-body cor-
rections X and v confuse the interpretation, as is
evident from Eq. (13). Several authors have noted
inconsistencies in applying this inequality to the
data for copper. Our calculations show that if the
integrals are evaluated carefully, taking into ac-
count the anisotropies of the Fermi surface and the
velocity distributions, then one obtains estimates
of the total surface area and many-body corrections
that are consistent with the inequality.

In summary the energy bands derived from the
modified Chodorom potential, when interpreted as
being largely or fully renormalized by the Coulomb
interaction, are consistent mith the Fermi-surface
data and optical-transition frequencies, with the
thermal and optical masses, and with what is known
about many-body corrections to the one-electron
energy bands of metallic copper.
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Thermal and Electrical Conductivity of Pure Tin from 4.5 to 77'K
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The thermal and electrical conductivities of two pure single crystals of tin have been mea-
sured. The samples were oriented at 72' and 6' with respect to the tetragonal axis of tin. The
thermal conductivity values for the two samples were fit to the relation (&T"+p/T) from 4 to
12 K with n approximately 3.2 for both samples. This large value is attributed to dispersion
in the phonon spectrum which causes an approximate 4. 2-power dependence with temperature
of the specific heat over the same temperature range. The electrical-resistivity value of the
two pure samples was found to obey the Bloch-Gruneisen expression over a wide range with a
Debye temperature of 125'K and with a small additional residual resistivity. The anisotropy
of the thermal conductivity exhibits a slight maximum at 10 K, attributable to the relative ef-
fect of impurity scattering and an anisotropic band structure. The anisotropy of the electrical
conductivities exhibits a more pronounced maximum around 20 K because of an additional ef-
fect of area differences of Brillouin-zone segments on the Fermi surface when small-angle
scattering dominates. The ratio of electrical anisotropy to thermal anisotropy at the maxi-
mum was found to be approximately 1.27, which compares well with the theoretically predicted
value of 1.26 from the area differences at the zone segments in the 90' and 0 orientations.

I. INTRODUCTION

This paper reports the results of thermal and
electrical-conductivity measurements on two pure
single crystals of tin from 4. 5 to 77 K. These
two samples had different crystallographic orien-
tations with respect to the tetragonal axis of tin,
one being nearly parallel (6 ) and the other nearly
perpendicular (I2'). A variable-temperature cry-
ostat consisting basically of a thermally isolated
Swenson-type heat exchanger' cooled by circulating
helium vapor was employed for the measurements.
The thermal conductivity of the samples was mea-
sured by the longitudinal-heat-flow method. The
temperature gradient was determined by calibrated
germanium resistors. The electrical resistivity

of both samples was measured potentiometrically
along the identical length as for the thermal-con-
ductivity measurements. An evaluation of the elec-
trical-resistivity anisotropy defined by aa ——p(ll)/p(i)
could then be obtained from the measured resistivity
of the two samples. Previous measurements on the
anisotropy of the electrical resistivity for pure
tin ' have indicated that a maximum occurs in the
vicinity of 20 K, and it was of interest to observe
the behavior of the thermal anisotropy ar = z(&)jv(tl)
given by the ratio of thermal conductivities of the
two samples. A comparison of the electrical and

thermal anisotropies for two pure samples of tin
above 4. 2 'K has not been previously reported be-
cause of the lack of thermal-conductivity measure-
ments on pure oriented crystals in this temperature


