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A microscopic theory of the correlation operator, directed toward conduction electrons in
a metal, is developed. The off-diagonal matrix elements, between electron states % and k+q,
that arise when the electron density has a modulation of wave vector j, determine the corre-
lation contribution to band structure. These are computed explicitly. They depend dramati-
cally on k (i.e. , nonlocal behavior) and on q. The sum of exchange and correlation operators
is also nonlocal, but is less singular than either individually. An alternative division of ex-
change plus correlation into screened-exchange plus Coulomb-hole operators is made. It is
shown that the (often ignored) Coulomb-hole operator is usually much larger than the screened-
exchange operator.

I. INTRODUCTION

The contribution of exchange and correlation to
one-electron Hamiltonians is a widely debated and
important problem. Our attention here is focused
on energy-band problems for crystalline solids.
The periodic potential that appears in a (one-elec-
tron) Schrodinger equation must have contributions
from exchange and correlation as well as from
the Hartree term.

The exchange operator A is often replaced by
the Slater p' ' approximation, '

As = —3e (Sp/av)

where p(r) is the local electron density. It has
been shown that As is a very poor approximation
to A . For band calculations the off-diagonal ma-
trix elements of A arising from a spatial modula-
tion of p (having, say, wave vector q) are the most
relevant quantities. Not only does (k+q IA" I k)
depend markedly on k, which shows that Ax is
severely nonlocal, but it also depends on q. For
some combinations of k and q it is singular. In
contrast Eq. (1.1) leads to off-diagonal matrix
elements that are independent of k and q.

Arguments which suggest approximations such
as (1.1), or variants' of it, are supposedly most
reliable for small q. It was therefore surprising
to find that the relevant off-diagonal elements
of A become infinitely large in comparison with
those obtained from the approximation (1.1) as
q 0.

The sum of exchange and correlation operators,

Axc Ax+Ac js of paramount physical interest.
If A is to be well behaved for q 0, then
(k +q I A I k) must become infinite (and have nega-
tive sign) relative to (1.1). This surmise con-
trasts sharply with a very small and positive value
suggested by prior work.

The purpose of this study is to develop a micro-
scoPic theory of the correlation potential so that
the explicit dependence of (k+qIAcIk) on k and q
can be calculated. By combining this with the
known behavior of Ax, we determine the q depen-
dence and nonlocal behavior of A c. This is carried
out in Secs. II and III. The plasmon model for
treating dynamic correlations of electrons is em-
ployed. The off-diagonal behavior of A and Ax
in the q 0 limit is treated in Sec. IV.

The exchange and correlation operator can be
subdivided into screened-exchange and Coulomb-
hole opez ators, Axe Asx +Ace This alternative
subdivision is displayed in Sec. V. We show that
screened exchange is generally much less impor-
tant than the Coulomb-hole potential. This de.-
serves emphasis because the Coulomb-hole poten-
tial is often completely ignored. In some calcula-
tions its neglect can lead (and has led) to grossly
incorrect conclusions.

II. FORMULATION OF CORRELATION OPERATOR

A microscopic theory of the correlation operator
depends primarily on the excitation spectrum of the
electron system. For a degenerate electron gas,
this spectrum consists of plasma and single-particle
excitations. The simplifying feature of the plasmon
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H=H„F+ (H —H„r), (2. l)

where H» is the Hartree-Fock Hamiltonian, and

we proceed to apply the plasmon model to the term
in parentheses. This term must take account of
all interactions associated with charge-density fluc-
tuations from the HF mean. We follow the original
development of the model in I but omit much of the
detail.

The charge-density operator of the electron sys-
tem with N electrons in volume 0 is

p(r) = e n ' Z c;„- c-„e"' .
~gP

(2. 2)

The expectation value ( p(r)) of the charge density
has Fourier components associated with the band
structure:

(2. 3)

model is the replacement of the entire excitation
spectrum by a single effective plasmon frequency
spectrum &u(q) for al/ q. This is accurate for
small q, since the plasma mode exhausts the f -sum
rule. ' For large q, e(q)-Kq /2m, the center of
gravity of the single-particle excitations. The ac-
curacy of the model is assured by requiring the
electron-plasmon interaction to exhaust the f -sum
rule (for all tl), and by determining v(q) so that the
model reproduces the correct electron-gas dielec-
tric function.

The model is suitable for calculating quasiparticle
energy spectra of states near the Fermi energy.
On the other hand, the model would break down for
calculations that depend critically on the spectral
width of the excitations. The practical utility of
the model has been shown in Ref. 4 (hereafter re-
ferred to as I) for the case of a uniform electron
gas. It will become apparent in what follows that
treatment of the nonuniform case would be intrac-
table without the simplified excitation spectrum
employed.

For the purpose of developing a suitable perturba-
tion theory, we write the total electron Hamiltonian
as

hvyQ A.y=NI P /'2m (2. 6)

We have used the well-known matrix elements, 0
and 1, of ey and a;, respectively. In the present
context (2. 6) applies to all p except the reciprocal-
lattice vectors q. For the latter, p~ is macro-
scopic, so the value of X~ is smaller than that given
by (2. 6) by a factor -N.

The Coulomb potential experienced by an electron
in the electrostatic field of the charge fluctuation
(2. 4) is determined by a simple application of Pois-
son's equation. This would be the entire electron-
plasmon interaction were it not for exchange and
correlation potentials. As shown in I, the latter
potentials may be incorporated in the matrix ele-
ments M~ of the electron-plasmon interaction. The
correction term (H —H») of (2. l) must additionally
contain the self-energy of the plasmon excitations.
Accordingly,

(H Hsv)=Z 5(usa-~tayi~P M~c~, &tc„(a,+a &t)
5 yak

(2. 7)
with

(2. 6)

G ~ is the exchange and correlation contribution to
the self -consistent potential. Modern treatments
of the electron-gas dielectric function can usually
be interpreted as attempts to determine the be-
havior of G . The dielectric function is

where

e(~i». )
l —G c(P/2a, )q(P/2a, )

(2. 9)

are determined from the requirement that the model
satisfy the f-sum rule. The sum rule is

(2. 6)

where h ur„o is the energy difference between the
zero-order state and the excited state n. Since the
plasmon model assumes only one excitable mode
for each p, Eq. (2. 5) reduces to

p(r) —p~~(r) =Q Xg(age'~'"+ alt e 'I'~), (2. 4)

where ay and a-~ are the plasmon annihilation and
creation operators. As in I, the coefficients X,

where Qq are the reciprocal-lattice vectors and

p~ ar e the Fourier coefficients of the gr ound-state
charge density.

The dynamical response of an electron to the in-
stantaneous fluctuations of p(r) from its mean
(2.3) is the origin of the correlation energy. The
fundamental simplification of the plasmon model
is the representation of these fluctuations by plas-
mon operators only:

1-x

In the calculations that follow we shall use the ap-
proximate G -- employed in I.

Since the band-electron wave functions are not
plane waves, the perturbation (2. 7) is not yet in the
most useful form. We now assume that the one-
electron wave functions of the zero-order state are
known. They are linear combinations of plane
waves with the wave vectors of the components dif-
fering by vectors of the reciprocal lattice. Thus
we write the creation and annihilation operators for
the band states as
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bx'= &~ Ux~ &~ bg=& Um'&l
k k

(2. 11)

(Throughout this paper capital letters will be used
to designate positions in the Brillouin zone, and
lower case letters will designate the wave vectors
of plane-wave components. ) U is a unitary matrix,
so, using an extended zone scheme, we have

t gU tbt
K

c), =Q Ux)) bx
K

(2. 12)

+ E My U)-„a,x. Uggbx. bx(ay+a rt)
g,k, K, K'

(2. 13)
The second-order energy due to this perturbation

is, for this model, the system correlation energy

E = ~+ (Mrj U)o I) g U)-, )) ge Uxs ).Ug)
gyktkr rKrKr

a
&& nx(1 —nx. )

6K —6'Kr —5+~
(2. 14)

The energies zK occurring in the denominator of
(2. 14) are the energy eigenvalues of the band state
for which the creation operator is bgt (see Appendix
A). That is, the band wave functions (2. 11) and
energies to be used in (2. 14) are those which are
found self-consistently (in a manner analogous to
the Hartree-Fock approach) from any of the usually
successful band-theory methods, but with the
Hartree-Fock Hamiltonian augmented with the one-
electron correlation Hamiltonian to be derived be-
low (2. 16).

The one-electron correlation energy is
eZC

I ~f)l Ut) y, x U)),f),x. Ux. ,f'Ux)
K rktkr, K

On substituting (2. 12) and (2. 7), the perturbation
term is found to be

(JI HaF) =-P~ @via;ta;

ergy expression derived in I.
The exact matrix elements of the exchange op-

erator Ag are also of interest, since a quantity of
considerable theoretical interest is the sum of ex-
change and correlation terms:

4me 2

Z Z-„, U„&,q. U„;„;,,
K ~ IKrg6~

(2. IV)
Standard procedures may be used to convert the

summations in (2. 16) and (2. 17) to integrals.

III. APPLICATION TO PERIODICALLY MODULATED
ELECTRON GAS

To explicitly display some of the properties of
the correlation operator (2. 16), we choose to study
a special simple system, an electron gas (with the
usual rigid neutralizing ba. ckground charge) to
which has been applied a potential of the form
Vcosq ~ r. As emphasized in Sec. II, the electron
wave functions should be found self-consistently
using the Hartree-Fock Hamiltonian together with
the correlation Hamiltonian; self-consistency is
usually obtained by iteration. Since it is not our
purpose to obtain precision, but rather to display
the qualitative behavior of the matrix elements,
we make no attempt to achieve self-consistency.
Instead, we derive our wave functions from the
ansatz that the sum of all potentials (imposed,
Coulomb, exchange, and correlation) is itself a
local (state-independent) potential G cosq r. A
Posteriori, this ansatz is found to be unjustified,
so the results displayed must be regarded as only
the first step in the iterative march to self-con-
sistency.

With the above ansatz, the Hamiltonian in a basis
of plane-wave states takes the infinite tridiagonal
form

1 —nor
X

CK —6'gr —A (d ~

«) C= Z Ua. ,x~Ux, )", (k')Ax ik)
k, kr

SKr
6'gr —6g —)I (dy

(2. 16)

/2 ~ (k -q) G/2
G/2 2 k G/2

G/2 —,
' (k+q)' G/2

G/2 —,
' (k+2')' G/2

This defines the one-particle correlation operator
A„" for the band state K. Its matrix elements in a
basis of plane-wave states are

Uw ~ ~ ~U~
(k'i ~'i k&= 2

K &6Kr 06y y Cg —CKr —5 COy

(2. 16)
For the special case of the uniform electron gas

Up, K = 5k K and the correlation operator is diagonal.
In this case (2. 16) reduces to the correlation en-

(3.1)
Provided there is no degeneracy, the Hamiltonian
is easily diagonalized by first-order perturbation
theory. When a degeneracy exists, all but a 2 x 2
matrix can be diagonalized similarly; this small
matrix can subsequently be diagonalized exactly.
The eigenfunctions of (3.1) found using this pre-
scription are

„p
W2 (a' ~ ).")"' K' —g* )' )
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with

$ (K+24) '8
$ (K+/) ~ 8

(Kv i( —(Rv 2'( )
0& )E, I & —,'q

A=-,'If'- -,'(K~q)' . (3. 2)

These are the usual perturbation wave functions,
and in any case they should be used outside of the
range of E, specified in (3. 2).

One further assumption reduces (2. 16) to quad-
rature: The plasmon spectrum to be used is the
same as that utilized in I to fit the correlation en-
ergy for the uniform electron gas:

(og = (o~pe, /(e~ —1) (3. 6)

(d~ is the classical plasma frequency 4m¹ /mQ,
and e~ is the static dielectric function (2.9). The
choice used in I of G (x) in (2. 9) is

G c(x) = l. 1x /(1+ 10x + l. 5x )'i (3. 6)

The diagonal elements of (2. 16) are the correla-
tion corrections to the quasiparticle energy,
which to first order in G B.re the same as those
studied in I. Here we are concerned only with the
off-diagonal elements (It+q[Ax~(K), together with
the corresponding exchange matrix elements. A
useful datum is the off-diagonal matrix element
which would be computed if the Slater potential
(l. 1) is used for exchange and correlation. If the
wave functions (3.4) are used, the charge density
p ls

p(r) = p, (1 —p'cosq. r) (3. 'f)

p, =k' /3v' (3.8)

and the fractional charge-density modulation is

p '= (3G/2e~) f (q/2k~),

f(x) =-'+I(1-xa)/4x]»I(1+x)/(I-x)l (3 9)

The corresponding energy eigenvalues are

e;=-,'[SC'+q'+(A/i ~i)(d,'+G')'"-(A" +G')"'],
(3.3)

where

A'= ,E ——,(—K+q)

The upper (lower) signs should be taken in (3. 2)
and (3.3) when IC, is positive (negative). If G is
vanishingly small, the wave functions (3. 2) simplify
to

Then the off-diagonal matrix element of A~ is'

(K+q)A~~ )K) =e'k„p'/4v (3.10)

Since the right-hand side of (3. 10) is independent
of both K and q (for fixed fractional charge mod-
ulation), it is a convenient unit by which to measure
the computed correlation and exchange matrix
elements, and we term in a, "Slater" unit.

By using first-order perturbation theory to derive
the wave functions (3.2) and (3.6), we have im-.
plicitly supposed an interest only in terms linear
in G. Accordingly, it is unnecessary to consider
for integration purposes the deviations of the
Fermi surface from the spherical shape, since
such distortions introduce corrections of order
G and higher only.

In Figs. 1(a)-l(h) are displa. yed the computed
off-diagonal matrix elements of correlation, ex-
change, and their total as a function of the mag-
nitude of the wave vector of the charge-density
modulation, for electrons at the following positions
in the Fermi sphere; the points I' and Q where the

q axis intersects the Fermi surface, the Fermi-
sphere center C, the equatorial position E, two
additional axial positions A and I3 with ) K& I

=-
t K~)

=9.5k~, and the points G and H where the q axis
intersects the gap planes, IR;~ ) = tK~ t = —,'q. The
exchange curves for the points P, Q, C, and E
have been published previously. To facilitate
comparison of the curves for the total of exchange
and correlation, and to emphasize that for con-
sideration of the importance of features of this total
the appropriate scale is a tenth of a Slater unit,
the curves for the points P, Q, C, and E are
replotted on an expanded scale in Fig. 1(i). In
Figs. 2(a)-2(c) the wave vector of the modulation
is fixed and the matrix elements for axial electron
states are plotted as a function of position on the

axis. For the matrix elements of Figs. 1 and 2,
the electron density [po in (3.8)] was assumed to
be that of sodium. The exchange curves of Figs.
1 and 2 are universal functions of density, but the
correlation curves are not. (This emphasizes the
fact that exchange and correlation have different
physical origins —exchange results from a kine-
matic restriction on the wave functions, correlation
derives from dynamic interactions. ) Accordingly,
in Figs. 3(a)-3(c), the density dependence of the
curves for the total of exchange and cor r elation are
displayed for the points P, Q, and C.

Figures 1-3 afford the following general remark
about the relationship between the off-diagonal be-
havior of the exchange and correlation operators.
For any feature of an exchange curve, a correspond-
ing feature (with opposite sign) exists in the corre-
sponding correlation curve. For example, if we
examine the sequence of curves, Figs. 1(a)-1(e),
for the points Q, B, C, A, and P, we note that for
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FIG. 2. Off-diagonal matrix elements of exchange
(dashed curve), correlation (dotted curve), and the total
of exchange and correlation (solid curve) as a function of
position along the Fermi-sphere axis, with the wave vector
q of the periodic charge modulation fixed. The matrix
elements are measured in Slater units, which are defined
in Eq. (3.10). The additional curve (dot-dashed curve)
shown in Fig. 2(a) is the volume integral contribution
IEq. (4.4b) j to the total of exchange and correlation.
The magnitudes of q considered are (a) the limit q-0,
(b) q=kz, (c) q=1. 88k+.

I I I I-3
I I )

Q
-75 8 -25 C .25 A .75 P

4me
exchange:

Qp

(3.11)

both exchange and correlation there is a notable
feature which starts out as a divergence at q/kz = 2

for the point Q, then becomes a hump located at
a smaller value of q at B, and continues to move
towards smaller values of q as the point of interest
moves along the Fermi-sphere axis, finally be-
coming the divergence at q-0 on reaching the
Fermi surface at P.

The reason for the similarity of the exchange and
correlation curves is that for small and medium
plasmon wave vectors, the kernels of the correla-
tion and exchange integrals [(2. 16) and (2. 17),
respectively] are very similar. For P =0, the
kernels are

27Te ~~ &K —EK~
2 2 -l

correlation:, — + 1
+P (dp Cdp

The plus (minus) sign is to be taken for that part
of the correlation integral which is inside (outside)
the Fermi surface. The similarity of kernels fol-
lows from that facts that ~p/v~= 1 and for a sig-
nificant volume of integration (ez —eg. )/8+J «1.
Note that the exchange and correlation curves for
points on the Fermi surface have (logarithmic)
divergences, but that the sum of these does not.
The divergent contributions to the integrals come
from those regions where P =0, eK= eK. . Observ-
ing that for a small region around the point of di-
vergence there are equal contributions to the cor-
relation integral from the interior and exterior of
the Fermi surface, it is clear that the mutual can-
cellation of the divergences has occurred only be-
cause the plasmon frequency v~ is, for P 0, pre-
cisely equal to ~~, the classical plasma frequency.

Notwithstanding the over-all similarities of the
exchange and correlation curves, the presence of
the recoil energy in the denominators for correla-
tion does affect both the magnitude and the posi-
tioning of extrema, so that the curves for the sum
are not smooth but have structure of significant
amplitude, typically 0.4 Slater units peak to peak
for sodium. Deviations from the Slater value are
as much as a factor of 2. Moreover, the curves
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a significant range of wave vectors. In particular,
the exchange and correlation curves would have
similar features, with any divergences canceling
in the total, and considerable structure represent-
ing nonlocal effects would occur in the total. It
therefore appears that any local approximation to
exchange and correlation is unjustified for the cal-
culation of properties dependent on the off-diagonal
matrix elements, e. g. , band wave functions.

IV. q~0 LIMIT

FIG. 3. Off-diagonal matrix elements of the sum of
exchange md correlation as a function of the wave vector
q of a periodic charge modulation, for electron gases with
average densities equal to those of the conduction electrons
in Al, Na, and Cs. The matrix elements are measured
in Slater units, which are defined in Eq. (3.10). The
electron states for which matrix elements are depicted
are (a) Q, on the negative q axis at the Fermi surface;
(b) C, the Fermi-sphere center; (c) P, on the positive q
axis at the Fermi surface.

are highly state dependent. Thus the off-diagonal
behavior of the sum of exchange and correlation
remains highly nonlocal. The structure of the
curves, and thus the influence of nonlocality, is
more pronounced at the higher densities.

Although we have treated only a simplified sys-
tem, similar conclusions would obtain for a real
metal, since the plasmon frequency would again be
expected to be close to the plasma frequency for

(4. 1)

In order that first-order perturbation theory ap-
ply to the calculation of the wave functions (3.2),
we see from (3. 1) that we must have

I-,'(k- j)'--,'-a'I » lcj2l
and thus we must have G/qkz «1. Thus, in taking
the limit q -0, we must also have G 0, so that
the appropriate wave functions to use are (3.4).
For this situation, (2. 16) becomes

U" " U" U "tU"
(K+q la„-l K), ,=z

gr fg —

/gal

+NCOgs g 6' g —fg +S(dg g g

After some simple standard manipulations, (4. 2) becomes

U- 'U-- U" "t U"g (surface» IMK, „-P " ' "'."" -2 {
K'

-K,
Qg gg +g~g g g~ &g - &g' +@+g'-g

(4. 2)
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+~ lsurface 2r MZ, K'
~

+K ~, K ~K',K'+%[(~K ~K' +II~K'-K) '- (&x eK ~ +I+II~K'-K) 1
K'

(4. 3)

0|
(2v)' „~

1
dP

~

m„-,.x
~

'
&g —E'~ +A (dKi„K

1
(4. 4a)

&z &z @+K'-K

K' in (4. 4a) is restricted to the Fermi surface.
To consider the remaining summation in (4. 3),

we write the energy denominator as

&K —&K' +@K'-K = D (4. 5)

Then

EK —CKe~g k SCOKe K = D —QKy~g + QKa (4. 6)

1 1 1 1 K' K~+5

D D+ E'K. —eK.„D D

~ (terms of higher order)

(4. 7)
So to first order in 6 the required term is

G
(Fermi surfacej

~

Mx. x~ 2
R'

Writing

~ pK —K =R

and for this integral choosing the z axis to be
parallel to K, we have

(4. 8)

(4. 9)

D = (,'R'+h&u~—+XR cos8)' (4. 10)

where 8 is the angle between K and R. Then the
required term is

(4. 4b)
Again the notation is that the upper (lower) sign

is to be taken in the denominator for that part of

The mea, ning of the notation used in (4. 3) is:
For that part of the summation which applies to the
interior (exterior) of the surface indicated, the
upper (lower) sign should be taken in the denom-
inator. Surface 1 is the Fermi sphere, and surface
2 is an identical surface shifted by —q.

The summands of the first two summations in
(4. 3) are identical, so together they represent a
single summation over a thin shell at the Fermi
surface. With a choice of axes such that K is in

the plane cp =0, and the usual conversion of the
sums into integrals, these two terms become

the integration which is interior (exterior) to the
Fermi surface. Two of the three integrations in
(4. 4b) can be performed analytically. Note that
because the z axis is chosen to be parallel to K,
this term is isotropic as a function of the direction
of K.

The exchange integral corresponding to (4. 4) is
p kp

(K+q~Ax[K), = 2,
~

dK,
,

~

dp
~

K' —K(

(4. 11)
Equation (4. 11) can be integrated analytically.

We notice immediately a further distinction be-
tween exchange and correlation. Whereas for ex-
change, the off-diagonal matrix element in the
limit q 0 depends only on the states at the Fermi
surface, by virtue of the term (4. 4b), for correla-
tion all states contribute. This should be com-
pared with the free-electron gas where the dynamic
interactions among electrons produce momentum
distributions which differ significantly from the
Fermi-Dirac distribution both above and below
the Fermi surface, whereas exchange interactions
do not. These observations again underscore the
inadequacy of a local approximation to exchange
and correlation.

In Fig. 2(a) the off-diagonal matrix elements for
axial states are displayed. In Appendix B we prove
that the q 0 matrix elements of exchange and cor-
relation for any state K depend only on the mag-
nitudes of K and k~. That is, the curves for the
line CP may be used to find the matrix elements
for any point in the Fermi volume in the limit q- 0.
The volume term (4. 4b) is also plotted in Fig.
2(a), and it is seen to be a significant contribution
for all states.

The present case of q 0 is useful for illustra-
tion of the changes to be expected in further itera-
tions. We initially supposed a total state-indepen-
dent potential G(K) = G(0) for the purpose of gen-
erating the wave functions. The output G(K) for
q-0 is found [Fig. 2(a)] to be a monotonically de-
creasing function of E, and the necessity of itera-
tion is thereby manifest. Recognizing that for a
local potential, the total polarization is produced
solely by G(K„), let us fix G(Ãz ) so that the itera, —

tions all refer to the same fractional polarization.
If now we use as input a G(K) profile somewhat like
Fig. 2(a), since G(ICz) is fixed, there will be no
change in the integrals (4. 4a) or (4. 11), since these
are restricted to the Fermi surface. For E on the
Fermi surface, the denominator in (4. 4b) has its
largest value and hence smallest contribution from
the region of enhanced G, so although there is
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some change in the output G(Ãz), it will be small.
However, it appears that an output curve can easily
be obtained which point by point has the same slope
as the input curve. Then writing

Goutrut(K) = Gtmtoasa(+ +Gsartrss(@+ Gsa aaa oorr ( )

Since the removal of the divergences due to the
exchange potential is one of the more dramatic
functions of correlation interactions, approximate
incorporation of the correlation potential has often
been sought through the use of a screened-exchange
potential. Formally we may write the sum of the
(exact) exchange and correlation operators as the
sum of a screened-exchange operator A~x and a
further operator termed the "Coulomb hole, "~ A~":

A A =A A (5. 1)

The seyara, tion of terms indicated by the right-
hand side of (5. 1) is accomplished by a realloca-
tion of terms between (2. 16) and (2. 1'I). Again
following the discussion in I, the required matrix

thus demanding self-consistency, we are able to
compute an output dielectric constant, and from
(3.5) a new plasmon spectrum. The choice (3.6)
corresponds to an input G,„~a „, (Ez) =0. 72
Slater units, which is, as was discussed in I, the
Kohn-Sham value. Our output value is (for the
electron density of sodium) 0. 96 Slater units,
somewhat higher than the Kohn-Sham value. [Note,
however, that the volume contribution (4. 4b),
which cannot be present for a local potential model
such as that of Kohn and Sham, contributes 50% of
this t«ai. 1 As described above, the ploce~~ «
iteration with a fixed dielectric function may raise
this value to, say, 1.0. In this case, the output
plasmon spectrum starts out l.ike [1+0. 04
&&(p/2')']Ha, which is to be compared with
the input spectrum which started out like
[1+0.46(P/2k+) ]etta. Thus the new plasmon spec-
trum lies below the old one, , and this lowers the
total of exchange and correlation on the next cycle
of iteration. Eventually we would arrive at a self-
consistent plasmon spectrum, dielectric function,
and matrix element, with the latter somewhere
near the value quoted without the iterations.

Our results for Ax~ in the q 0 limit are some-
what larger than one would obtain from the work
of Kohn and Sham. However, it is apparent that
the latter work is not a theory of a one-electron ex-
change and correlation operator. This can be seen
from the fact that the off-diagonal matrix element
of the Kohn-Sham exchange term differs from that
of the exact exchange operator by an infinite factor
(as q-0).

V. SCREENED-EXCHANGE AND COULOMB-HOLE
POTENTIALS

elements are

(II'~ &K~ ~k) = — & ~& ~a.S.K '~K, a .y
K yeK8~6~ $

X 3 +
4~e' l ~~t' i~pl'
QP gg —ggs —@~g gg —6g» +5 {dy

(k'~x'„-" ~k) =2
(5.2)

~ ~p~
~a

asN. K' K'. IY~sa (5
y K K
~0 8 —A (dy

If, in (5. 2), the recoil energies sg —eg. are
arbitrarily deleted and the factor 1-G of (2. 6) is
omitted, then the right-hand side of (5. 2) ceases
to be a dynamically screened-exchange interaction
but becomes equal to the exchange interaction
screened by the static dielectric function. One
further approximation has proved popular, the use
of a wave-number-independent screening constant,
usually the Thomas-Fermi value. The operator
for such an exchange interaction is then

(k'~x„- ~k) =- Z Z v;„-,„-.'
K

y SKAG
'(Sg $

4me
K', a's$ II(pa a) (5.4)

where the Thomas-Fermi screening constant is

ot =6IINe /08~

Equations (5. 1)-(5.5) 11ave been applied to the
system described in Sec. III for the points Q, C,
and P, and the off-diagonal matrix elements are
plotted in Figs. 4(a)-4(c). It is seen that screened
exchange alone is a very poor approximation to
the total of exchange and correlation for the pur-
pose of the calculation of the off-diagonal matrix
elements. The matrix elements of A~x, the dy-
namically screened-exchange operator, typically
underestimate the matrix elements of A +A~ by
a factor of 2-6. Thus the (usually neglected)
Coulomb-hole term is, for most q and K, a better
approximation to the total than is screened ex-
change. Static screened exchange is at best a
plausible approximation to dynamic screened ex-
change, but for the particular value of f2 used
[EII. (5. 5)], it represents a further deterioration
in the quality of approximation to A +A . If the
approximations made in deriving (5. 4) from (5.2)
are used in (5.3), then (5.3) becomes a constant
(independent of K, but dependent on II). It should
be noted that for a given value of q, the curves for
Ax TF are not separated from those for A~+A by
an amount independent of R, so that even the con-
sitent use of a static approximation in both
Coulomb-hole and screened-exchange terms leaves
something to be desired.

We have here considered only the off-diagonal
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FIG. 4. Off-diagonal matrix elements of static screened
exchange [Eq. (5.4), long-dashed curve], dynamic
screened exchange [Eq. (5.2), short-dashed curve], Cou-
lomb hole [Eq. (5.3), dotted curve], and the total of ex-
change and correlation (solid curve), as a function of the
wave vector q of a periodic charge modulation, for elec-
trons at three positions in the Fermi sphere. The matrix
elements are measured in Slater units which are defined
in Eq. (3.10). The electron states for which matrix ele-
ments are depicted are (a) Q, on the negative q axis at the
Fermi surface; {b) C, the Fermi-sphere center; (c) P, on
the positive q axis on the Fermi surface.
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VI. SUMMARY

The new information gained by this study is as

matrix element. However, the central conclusion
reached here coincides with that reached in I by
consideration of the diagonal matrix element: In
no sense is the use of screened exchange alone an
adequate approximation to the sum of exchange and
corr elation.

follows.
(a) A model has been formulated for the one-

electron correlation operator. The model has been
constrained to satisfy certain physical criteria.
It ha, s been found to incorporate the important fea-
ture known to exist for the correlation potential-
the mutual cancellation between exchange and cor-
relation of divergent matrix elements caused by the
long-range components of the Coulomb potential.
Note that this means that, in contrast to the com-
mon interpretation of previous theory, certain off-
diagonal correlation matrix elements for small
wave-vector potentials are large and negative (as
opposed to small and positive), but this is required
to cancel divergent behavior of the exact excha, nge
operator.

(b) The properties of the correlation operator
have been illuminated by the explicit display of the
off-diagonal matrix elements for a simple illustra-
tive system.

(c) As was expected, correlation has been found
to be highly nonlocal. The sum of exchange and
correlation has also been found to be quite nonlocal,
but significantly less singular than either individu-
ally. The departures from the traditional Slater
value typically range between. a factor of —,

' and a
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factor of 2.
(d) The distinctly different origins of exchange

and correlation have again been underscored by
the calculation of the off-diagonal matrix elements
in the limit q 0. A volume integral appears for
correlation which has no counterpart in the ex-
change integral. Its origin is the existence for
correlation of energies of recoil due to the dynamic
interactions. Thus exchange is of kinematic origin,
while correlation is a dynamic in.eraction.

(e) It has been demonstrated that screened ex-
change alone is a very inadequate substitute for
the sum of the exchange and correlation potentials.

There are many situations in solid-state physics
where the off-diagonal matrix elements have de-
termining influence on the properties of interest.
For static properties, band structures and energy
gaps play a major role, and these are necessarily
related to the coefficients of admixture of differ-
ent plane-wave components. The incorporation of
exchange in band-structure calculations has most
frequently been attempted by the use of some var-
iant of the Slater p' ' approximation. A few cal-
culations have been reported in which extraordinary
care has been taken to isolate the effects of the
p' approximation so that its applicability may be
appraised. For example, orthogonalized-plane-
wave (OPW) calculations for Si, Ge, and ZnSe
employing up to 230 plane waves produced well-
converged energies and charge densities which
were in qualitative, but not quantitative agreement
with experiment. Since the only approximate fea-
ture in an otherwise high-precision calculation
was the (local) exchange potential, the authors
concluded that it was the cause of the deficiency.
Also the calculated x-ray scattering form factors
for ferromagnetic iron came into closer agree-
ment with experiment when the local exchange po-
tential was replaced' by a more realistic incor-
poration of exchange and correlation. More re-
cently, Kane" has shown that in silicon, it is not
possible to simultaneously fit cyclotron effective
masses and principal energy gaps using the local
exchange approximation. Again the care exercised
in the calculations allowed the author to point to
the local exchange potential as the deficiency.
While the materials treated in these papers do not
necessarily fall in the purview of the present meth-
od, they do constitute an experimental verification
of the conclusion reached here, that the approxi-
mation of exchange with a local density model is
not soundly based. The present work indicates
that the nonlocal exchange and correlation potential
can and should be used.

APPENDIX A

In the paragraph following (2. 14) it is asserted
the the band wave functions and energies to be used

in the calculation of the second-order energy (2. 14)
are those determined in the presence of the pertur-
bation itself. This follows from an application of
a variant of Brillouin-signer perturbation theory.
In the present context this form of perturbation
theory requires that we modify (2. 1) so that it has
the form

H = H„F + H~ + (H —H„F —Hg) (Al)

H2 ~@+i 5 $+Hcorr = Hp~ + Hcorr
5

(A2)

II„„will be found to be the effective correlation
operator. In the usual fashion we apply a canonical
transformation to (Al) and carry out the expansion
to second order.

e 'He' = H + (H, S]+ —,
'

[[H, S],S]+ (A3)

= H„r + Hq + [Hs r +Ha, S]+ q [[H„v+ H2, S],S]+ ~ ~ ~

+H —Hsr —Hp(+ [H —Her —Hp, ,S]+ '

—H,.„" . (A4)

Following the standard procedure, S is deter-
mined by requiring that the first-order terms of
(A4) vanish identically:

[H„F + Ha, S]+H —Hsr —Hp, ——0

From (A5), (A2), and (2. 13), we find

S= Z MrUr, p x. Ux „
Pr. p P p K p

Ke

(A6)

b K bg&S bK bK&-S
~ + 5 Q) y CK —6KP

—8 (d y

(A6)
In deriving (A6) we have assumed that the states
for which the creation operators are bK~, are eigen-
states of H„~+II3 with one-electron energy eigen-
values ex. On substituting (A5) into (A4), the
right-hand side of (A4) becomes

Hap +Hq+ ~ [ H H„F —Hp, ,S]—H„-„ (AV)

Clearly, our goal of finding a suitable Ha (or H„„)
would be reached if we could set

—,'[H H„, H„,S]-H„„=O . (AS)

However, this condition is too strong. H„„would
contain operators which are nondiagonal in the

bK, bg representation:

The parenthesized expression in (A1) is regarded
as a perturbation on the assumption that the eigen-
functions of H„~+Ha are known. H~ in turn is de-
termined by requiring that the second-order energy
of the perturbation vanish. Then the second-order
energy of H-Har is given simply by the expectation
value of the operator Ha.

It is clear from (2. 13) that we can write
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2Z (Mf( Uf,. ; x3 U„.,f x~ Ux, f Uxfbxa
yak~ k ')Ky Kgy K ~ I73

1 1 1
X bK bK +

1 2 qK3 Eg2 8 (dy 6K 6K S(dy

(A9)

This would contradict our requirement that the band
states be eigenstates of H„~+II2. However, all we

require is that the expectation value of the left-hand
side of (A6) vanish, since this gives the second-
order energy, so we simply delete the nondiagonal
terms from (A9). We also delete the terms for
which K, =K, K3=K2, because for these the only
allowed values of p are the reciporocal-lattice vec-
tors, and by the comment following (2. 6) the square
matrix element is smaller by a factor I/N than it
is for the terms retained. Thus

2
+carr ~ I ~/I UpT& f,x~Uf~y, xt Uxr p Ux, y

poky ke
g Kg Ke

bK bK.bK. bK

6K —EKr —5 (d

The expectation value of (A10) with respect to
the zero-order state gives the correlation energy
(2. 14), and the energies and wave functions in
(2. 14) have the meaning claimed for them.

APPENDIX B

Consider a sphere of radius r symmetrically
placed inside a cylinder of unit radius. I et ds be
any small segment of the surface of the sphere and
let dS be the projection of ds on the surface of the
cylinder by lines orthogonal to the axis of the
cylinder. Then each of the integrals (4. 4a) and

(4. 11) is of the form

f(K) = J dSf(iK'-Ri),

bs, = (pbbs)(bz/sin8) =rbpbz =rbS, , (B2)

where 5S, is the area on the cylinder of the projec-
tion of bs, . Since bs, /M, is independent of 8 and

y, the desired result is proven.

where the point K' is contained in ds; the integral
extends over all K' on the sphere. The locus on

the sphere of constant values of the integrand is
a circle, the radius of which is independent of the
orientation of K. lt follows that the appropriate
elemental area ds (a thin circular strip) for fixed

f does not depend on the direction of K. It is also
true that the projected area dS is independent of
orientation of K, so that the value of (B1) is depen-
dent only on the magnitudes of K and k~. This
suffices to prove that the q-0 off-diagonal matrix
elements of exchange (4. 11) are independent of
orientation of K. To prove that the corresponding
correlation matrix elements have the same prop-
erty, we only have to note additionally that by the
comment following (4. 4b), the volume term (4. 4b)
is also isotropic.

The proof that the projected area dS is indepen-
dent of the orientation of K is elementary. Let the
origins of spherical and cylindrical coordinate
axis coincide with the center of the sphere and let
the two coordinate systems have a common z axis
parallel to the cylinder axis. Consider the four
planes z =z&, z =zq+&z, +=pal, a«p =pq+&(I('.
The area on the sphere enclosed by these four
planes ls
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