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Inelastic differential cross sections for low-energy (10 & E & 103 eV) electrons scattered from
the (111) and (100) surfaces of aluminum are analyzed using a quantum field theory of inelastic
processes. The analysis permits the determination of the dispersion relation and damping of
excitations created by the electrons. For nominally clean Al(111), the surface-plasmon dis-
persion relation is found to be Su~(p, )) =10.1 —0.7P„+10p„, 10" & p~) & 1 A, for momenta mea-
sured in reciprocal angstroms and energies measured in electron volts. With this choice of
the dispersion relation, the predictions of the theory also are in fairly good agreement with
experimental inelastic scattering data from A1.(100) surfaces. The accuracy of the method of
analysis and possible improvements on it are discussed.

I. INTRODUCTION

Since the work of Ritchie' and Stern and Ferrell
establishing the existence of surface plasmons,
their dispersion relation has interested both the-
orists and experimentalists. Surface plasmons
are elementary excitations of a bounded electron
gas. A study of their dispersion relation is use-
ful for understanding the electronic properties of
metal surfaces. For example, a knowledge of both
the surface-plasmon dispersion relation and the
electron-surface-plasmon coupling vertex is a
necessary prerequisite to the construction of a
theory of the electron-metal interaction near the
metal surface. The dispersion relation also may
be important in a detailed theory of the processes
of chemisorption and catalysis.

The surface-plasmon dispersion relation has
been studied by Kanazawa using an approximate

quantum-mechanical theory, and by Ritchie and
Marusak' in the hydrodynamic model. Microscopic
derivations of this quantity have been given by
Fedders and Feibelman who also studied surface-
plasmon damping in the random-phase approxima-
tion (RPA). The full RPA integral equation for a
surface-charge fluctuation recently has been
solved" numerically to obtain the dispersion and
damping of surface plasmons. Most theories pre-
dict a linear dependence of the surface-plasmon
energy on its momentum p„parallel to the surface,
for small values of this quantity. (This result is
valid in the limit that the effect of retardation,
which is important for P„~ 10 A ', can be ignored. )
If we retain terms to second order in the momen-
tum, then the energy and damping of surface plas-
mons may be written as

a+g(PII) @+g+~2PB+ ~2PII
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I".(P ) = I'.+ DgP i+ D2P i
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Beck's HPA calculation' gives C, -4 and I', =0.
Bennett' developed a hydrodynamic model of sur-
face-plasmon dispersion in which the coefficient of
the linear term C, depends, both in magnitude and
in sign, upon the electron-density profile near the
surface.

Despite numerous measurements of electron en-
ergy-loss spectra associated with the excitation
of surface plasmons, the dispersion relation of
these plasmons is poorly known experimentally.
Powell and Swan"'" originally detected surface
plasmons by studying the energy-loss spectra of
keV electrons reflected from surfaces of simple
metals. Subsequently, surface -plasmon-induced
losses have been measured by keV electron trans-
mission, ' optical techniques, '3 "and low-energy-
electron reflection. ' However, the only reported
measurement of the dispersion relation in the mo-
mentum range large compared to 10 ' A ' is that
of Kunz" in magnesium. He finds for C, a small
and negative value —a fact which can be rationalized
using a hydrodynamic model, as shown by Bennett. '

Our objective in this paper is the determination
of the dispersion relation of surface plasmons in
aluminum in the region of p)) large compared to
10 A '. Then we can neglect retardation effects
and obtain information about the coefficients of the
linear and the quadratic terms in Eq. (1). We ex-
tract this information from an analysis of exper-
imental data on the diffraction of low-energy elec-
trons accompanied by energy loss. Several au-
thors" ' have emphasized the importance of inelastic
low-energy-electron diffra, ction (ILEED) as a tool
for investigating surface modes in a solid. The
work of Duke and Laramore' is the most useful
for our purpose because it exploits the diffraction
nature of ILEED by introducing a two-step mech-
anism for scattering. Therefore their model per-
mits us to identify the interesting ranges of en-
ergy for which we can utilize the measured inelas-
tic scattering cross sections to determine the dis-
persion relation of surface plasmons. This fea-
ture is absent in single-step models of scattering
because they do not permit the correlation of reso-
nance maxima in the elastic and inelastic channels.
The semiclassical theory of Lucas and Sunjic, ' for
example, says nothing about the fact that resonant
elastic reflection makes inelastic processes appear
prominent at certain energies which are simply
related to the energies of maxima in the elastic
scattering intensities. Also their model describes
only the "total" inelastic cross section integrated
over angles. Therefore, it is not directly useful
for studying the surface-plasmon dispersion rela-
tion because the angular dependence of the intensity
of the inelastically scattered electrons is the quan-

tity which provides information about the dispersion
of surface plasmons.

We proceed by analyzing experimental ILEED
intensities for Al(111)~ '~3 and Al(100). In Sec.
II we describe some refinements of the original
theory of Duke and Laramore' ' used in our cal-
culations. Our model predictions are compared
with experimental data in Sec. III, in which we ob-
tain values for the parameters of surface-plasmon
dispersion and damping. In Sec. IV we summarize
our results, indicate the limitations of the theory,
and suggest possible ways of eliminating these
limitations.

II. THEORY

The quantum field theory"' of ILEED has been
used to construct a model of two-step inelastic dif-
fraction in which the diffraction of an electron by
the lattice is followed by its energy loss to the solid
or vice versa. The two-step mechanism for in-
elastic diffraction is well established experimental-
ly, and the amplitudes of the two processes
should add coherently in accordance with the quan-
tum theory of scattering. ' Elastic diffraction of
the electron by the lattice is described by the in-
elastic-collision model which has been discussed
elsewhere. ' For purposes of numerical calcula-
tion, we use the s-wave version of this model in
which the electron-ion-core scattering is described
by an angle-independent scattering amplitude,

in which 5(E) is the s-wave phase shift of the pre-
sumed-identical aluminum ion-core scatterers.
Both it and the other parameters"'" (i. e., an inner
potential Vo and inelastic-collision penetration depth
X„)associated with elastic electron-solid scatter-
ing are chosen to describe the measured elastic
low-energy-electron diffraction intensities.

The electron's energy loss results from its in-
teraction with boson fields which may represent
either surface or bulk plasmons. We can speak of
the loss processes as independent because the vari-
ous normal modes of a metal obey an orthogonality
condition, ' thus permitting us to add up their sep-
arate contributions to the scattering cross section.

The loss processes can be specified by the loss-
mode dispersion relations and their coupling ver-
tices to the electrons. It is convenient' to display
this information in the form of the loss-mode spec-
tral density A (n, m, &) defined in Eq. (2. 9) in the
first of Hefs. 18. Here n designates the type of
boson field, whereas m and n are indices labeling
the scattering planes. For the case of surface
plasmons the spectral density can be written as

A, (n, m, ~) = —P t,* (p„) t, (p„)e-"n' m n
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x«"" ' ''"""'&(-~)2iimD, (p„, ~), (4)

t,(p„)= [(7/e'Nu), /p„) 0']'/'8(p„- p„) ~ (6)

in which t, (p„) is the vertex function, D,(p» (0) the
plasmon propagator, 5 and EF, the location of scat-
tering centers, and N(&u) the Bose distribution func-
tion,

~(~) (e» 4I/k r 1)

The vertex function that we use is '

of an electron losing energy to the boson field. We
therefore allow the sum over va to go from zero to
infinity. Secondly, we include the interaction of
the incoming electron with the surface-plasmon
field outside as well as inside the metal. As was
pointed out in Refs. 18, this interaction is needed
to recover the mell-known results of Stern and
Ferrell from the vertex of Eq. (6). The precise
statement of this extension of Duke and Laramore's
model is obtained by altering Eq. (Al) in the first
of Refs. 18 to read

Here 0 is the volume of a unit cell and p„ the mo-
Inentum above which surface plasmons are not de-
fined. The boson propagator is given by

oo 00

eA&dvy g Q~dv»-&d ad (»dl v&-v~ I

1
Id aoo v~~ 0

(13)

D,(p„, (u) = [h(u —h(u, (p„) +i r, (p„)] '

—[k(g+It(u, (p„) +i r,(p„)]

where hv, (p„) and I", (p„) are given by Eqs. (1) and
(2).

For the excitation of bulk plasmons we use the
coherent coupling vertex in semi-infinite jelliurg
as given by Gersten. ' The loss-mode spectral
density is

A»(n, m, (u) = -Q t»»(p) t, ( p) e '"'

x 2 sin(p, R,) sin(p, R„,) ti( —~) 2i ImD„(p, up),

(6)

where the solid is assumed to occupy all space for
z & 0 and the vertex function is

t, ( p ) = i [(we'n(u»/p—') &']"' 8(p,»
—p), (9)

with p,~ denoting a cutoff in momentum. The bulk-
plasmon propagator is

D,(p, m) = [If(u —e(u»(p) +ir, (p)] '

—[a&a+ tf(u, (p) + ir, (p)] ', (I&)

and the plasmon dispersion relation is, to O(p ),

8(d»(p) = If(0»+ Ap

while its damping is given by

r, (p) =r, +a,p'+s, p'. (12)

The original theory"' of electron-solid scatter-
ing has been modified in three important ways.
First, we eliminate the restriction, imposed previ-
ously on sums over atomic layers, that the layer
at which electronic loss processes occur lies closer
to the surface than the layer where elastic diffrac-
tion takes place. In the double sum over layers
performed in Appendix A of the first of Refs. 18,
the elastic vertex sites (labeled by v») are assumed
to lie deeper into the solid than the loss vertex sites
(labeled by v, ). The restriction is unphysical be-
cause it ignores the possibility of backscattering

The details of the way in which the scattering cross
section is modified are shown in the Appendix. We
encounter a theoretical problem here with regard
to the inelastic-collision damping of the electron
wave field. The theory of inelastic scattering"
is set up for plane-wave electrons, and they are
not the eigenstates of a half-space, complex Hartree
potential which describes a metal. This causes no
problem so long as the electron is either wholly in-
side or wholly outside the metal. All that is in-
volved then is the shifting of the zero level of en-
ergy. The situation is more complicated when the
same electron interacts with a boson field both in-
side and outside the solid. We resolve the difficulty
by taking the electronic momentum to be real out-
side the metal and complex inside. No such prob-
lem exists for the interaction of electrons with bulk
plasmons because, for the sharp-junction jellium
model that we are considering, the bulk-plasmon
field does not extend outside the metal.

The final change that we make in Duke and Lara-
more's model is the inclusion of a momentum-in-
dependent term in the damping of both surface and
bulk plasmons. The existence of a finite, constant
term 1"~ in bulk-plasmon damping is well known

experimentally. Our analysis of ILEED data leads
us to conclude that I', is also finite. The straight-
forward introduction of a finite, momentum-inde-
pendent term in I'„(p) or r, (p„) leads to unphysical
divergences of electronic cross section in the Duke-
Laramore theory when p (or p„) goes to zero. In
the absence of a microscopic scattering theory for
dissipative media, we take p„- [p„+(I',/C, ) ]'/ and
p- (pd+ r»/A)'/» in Eqs. (6) and (9) to estimate the
effects of electron damping. This avoids unphysical
divergences in line shapes while preserving the in-
teresting features of the model predictions.

Once these changes have been incorporated in the
theory, it is still. straightforward' to work out in-
elastic cross sections for a single plasmon emis-
sion. Let (E, 8, P) be the energy, polar angle,
and azimuthal angle of the incident electron and
(E', O', P') the same quantities for the scattered
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y,(g, E) = {8~[E—Z (E)]/a'-(k„+g)'P", (14)

where Z(E) is the complex electronic self-energy
inside the metal. The form of Z(E) that we use is
the same as in Hefs. 18, viz. ,

Z(E) = —V, —fi"(E), (15a)

electron. I et k and k' denote the electron momenta
before and after scattexing, their components par-
allel to the surface being given by R„and k'„, re-
spectively. %e define the normal component of
electron momentum inside the metal after diffrac-
tion as

(Isb)

where Vo is the inner potential and ~« is, by defini-
tion, twice the inelastic-collision mean free path
of an electron. The reciprocal-lattice vector g
defines the order of the diffracted beam. The nor-
mal component of electron momentum outside the
metal, k,(g, E), is defined similarly to k,(g, E) in
Eq. (14), but with Z(E) set equal to zero. If we
write w (-=E E') a-s the energy loss, then the dif-
ferential scattering cross section for the two-step
inelastic scattering of electrons by the surface-
plasmon field is given by [cf. Eqs. (4. 16) of the
first of Refs. 18 and the Appendix]

E-~ "' 2~m m&e'a~, n'

21".(p„)~ [p~ (q/g)a)i~ [ g (p))~, [p(p)]I l»(g E)+Ac(g E-n')I, (16)

(IV)

A,'(g, E)= —
3 -

)
(1 —exp{i(k,[O„E]+k,[g, E])d-ig a}) '~

@Ak~ g, E

X
1

(18)
1

p„a+3()![O,z-w]-%. [)(,z])u (-exp[I(a![o,z-M]+a. [o, z])a-)„a-()( R]) '

A,'(g, E —w)= — -, , - (I -exp{i(u',[0, E —n)] +0', [-g, E —w]) d-gg a})-'

X
1 1

) „d+(()],[0, E] —),', [ —g, E —w] d) ) —exp[((k,[0, E]+A/0, E —M])d-p„d —ig a])+ — . „.. (18)

In Eqs. (16)-(19), A is the area of a unit cell, (f the
spacing between atomic layers, and 3. the vector
displacement of a unit cell from one layer to the next.

The differential scattering cross section for the
two-step inelastic scattering of electrons by the
bulk-plasmon field is given by a formula very simi-

lar to Eq. (4. 1Va) of the first of Refs. 18. That
equation must be multiplied by a factor of 2 to cor-
rect for a normalization error in going from plane-
wave to sine-wave basis functions. The singular
vertex has to be modified also before we can intro-
duce a finite I'~. The final result is

(QKGQ Ip E 1l A
g 7p P))+Ps+I y/A [ 8&y(P))) Px)] + [I y(P()) Pd]

x.)]f [k,(0, E), k',(0, E —s)), P„g ] ~A„(g, E) + A.,( g, E —av) [ (20)

where p„ is given by Eq. (1V), A]) and A, are defined
by Eqs. (4. 16c) and (4. 16e) in the first of Refs.
18, and we use, for the M function, the formula for
coherent coupling, viz. , Eq. (4. 1Vc) of the first of
Befs. 18. The complete differential cross section
of an electron losing an energy gg is given by a
simple superposition of the contributions of Eqs.
(16) and (20). In Sec. III we compare the predic-

I

'tions of our model with experimental ILEED
intensities from AI(III)~~'~' and Al(100) ~ surfaces.

III, COMPARISON %PITH EXPERIMENT

The principal conclusion of the analysis which
we present below is that if the electron-plasmon
vertex functions are known, a comparison between
our model predictions and experimental data can
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be utilized to determine the parameters in Eqs.
(1) and (2) for the dispersion and damping of sur-
face plasmons. It is convenient for this purpose
to study the specular (00) beam on which II,RED
measurements have been done ' for electrons in-
cident on Al(111) surface at an angle of 15'. Our
analysis of the data has already been briefly re-
ported elsewhere. ' The various coefficients ap-
pearing in Eqs. (1), (2), (11), and (12) are regarded
as parameters in the theory, to be obtained via a
comparison with experiments. In principle, we
can evaluate the parameters for bulk-plasmon dis-
persion relation and damping. However, the broad
ILEED profiles give less reliable values for these
numbers than those obtained from high-energy
transmission experiments. Accordingly, we take
the parameters describing the bulk-plasmon dis-
persion and damping from keV electron transmis-
sion data. ' ' We use A=3. 048 eVA, I"b=0. 53
eV, B,=O. 103 eVA, and 8 =1.052 eVA. For the
bulk-plasmon threshold, however, the ILEED data
require the use of h~b=14. 2+0. 2 eV and not the
value of 15 eV found in most high-energy experi-
ments. ' We cannot explain this discrepancy.
However, it seems relevant to observe that Kunz'
has reported 14-eV thresholds for certain thin films
in his transmission experiments.

Our procedure for analyzing the experimental
data is the following. The energy, polar angle, and
azimuthal angle of the incident (E, 8, g) and the
scattered (E', 8', t)1') beams are the six independent
variables available in the experiments. It is con-
venient' '" in the theory to discuss either experi-
ments which keep the angle of emergence (8', t)t')

fixed and study the intensity of scattered electrons
as a function of the loss energy so =E —E' (the "loss
profile" ), or those which keep the loss energy w

fixed and study the intensity as a function of the
angle 8' (the "angular profile" ). We analyze the
experimental data in the range 10 & E & 200 eV of the
primary beam energy and consider losses occurring
in the range 5& u & 20 eV. The elastic electron-
lattice scattering is described by the s-wave limit
of the inelastic -collision model. '~ Detailed
studies ' ' of ILEED from alum, inurn indicate
that within this model the analysis of elastic scat-
tering in the first Born approximation (kinematic
model) gives an adequate qualitative description
of experiments. Therefore, as implied by Eqs.
(18)-(20), we ignore multiple scattering processes
and use the kinematical approximation to describe
the elastic scattering vertices. The electron-ion-
core scattering is specified by an energy-indepen-
dent s-wave shift 5(E) = —,

'
v, in Eq. (2), mainly to

facilitate numer ical computation. Within the con-
text of the kinematical approximation for the elastic
electron-solid scattering vertex, we repeated our
analysis of the Al(ill) data using a four-phase-shift

APW model of the elastic electron-aluminum ion-
core scattering. The three-phase-shift version of
this model has been employed by Laramore
e] al. ' in their detailed analysis of elastic low-
energy-electron diffraction from the (100), (110),
and (ill) faces of a,luminum. The sole effect of this
extension of the analysis was a nearly uniform in-
crease in all of the inelastic cross sections by a
factor of about 4. The calculated line shapes and

plasmon-dispersion relations were unaltered.
Therefore, the s-wave approximation to the elec-
tron-ion-core elastic scattering vertex, used in

constructing the figures and tables given herein,
does not generate any additional uncertainties in
the values of the parameters in Eqs. (1) and (2) ex-
tracted from the experimental data. All of our cal-
culations have been carried out for identical ion-
core scatterers at zero temperature.

Turning now to the experimental data of Porteus
and Faith~ ' ' on Al(ill), we note that they find a
large maximum near the energy of the kinematical.
primary Bragg peak in the (00) beam at E= 51 + 1

eV. Therefore, we concentrate on the primary
beam energies near 50 eV for comparing the cal-
culations with experiment in order to obtain num-
bers for the dispersion relation and damping of sur-
face plasmons. Our analysis proceeds in three
steps. First, for a given primary beam energy
(E= 50 eV) and angle (8= 15') the angular profiles
(for fixed m) are analyzed to estimate C2. Both ini-
tial and final azimuths are taken to be along the
1110)direction in the surface. At this stage of the
calculation, we merely use reasonable numbers for
the various surface-plasmon parameters, which can
be obtained, for example, from Beck's RPA cal-
culation. The angular profile for M) =14.4 eV is the
most influential in determining C2. The second
step is to choose a value of C~ and calculate the loss
profiles for various 8' as functions of k&„C, , and
I',. These calculations are repeated until the "best-
fit" loss profile and the probable uncertainties in

C, , and X', are determined. This analysis
gives the best values of the parameters 5(d„C, ,
and 1", consistent with a particular value of C~.
Finally, the angular profiles are again calculated
for the best dispersion relation and damping con-
sistent with a given C„and are then compared with
experiments. Bounds on the value of C~ are ob-
tained on the basis of a satisfactory description of
the I) = 12. 4 and 14.4 eV angular profiles. The final
selection of the optimum Cz is made from a com-
parison of the angles of the predicted and observed
subspecular (8'& 15') maxima in the angular pro-
files.

The first step of the analysis leads to the range
of values 6 & Cz & 10 eV A . We show in Tables I-III
the details of the second step where the best values
of the coefficients in the dispersion relation and
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g
I

(deg) I&~(eV) Expt. C1 = 4.0 C f 2 ~ 5

10 10.8 12.0 11.4
15 9.8 10.2 10.1 9.9
20 10.3 10.5 10.2

(ev)
Theory

C& =1.0
10.8
9.8

10.0

C, =0.5 C,

10.6
9.8
9.9

=0.25

10.5
9.8

10.0

10
15
20

10
15
20

10.8 12.4 11.7
10.1 10.2 10.4 10.25

10.3 10.8 10.6

10.8 12.8 12.0
10.4 10.2 10.7 10.6

10.3 11.1 11.0

11.1
10.1
10.3

11.4
10.4
10.6

10.9
10.1
10.25

11.3
10.4
10.6

10.9
10.15
10.3

11.3
10.5
10.6

damping are found, for a given C2, by comparing
the location of the peaks in the experimental and
the calculated loss profiles for three exit angles.
As mentioned already, these calculations are done
for E= 50 eV. If we accept the value of C2=10 eVA,
then the best-fit parameters indicate a negative val-
ue of C,. The dispersion relation and damping of
surface plasmons are found to be

R(o (p () = 10 1 0 I p()+ lop ( (21)

r, (p„)=o. 9+o. 74p„. (22)

On the other hand, with the choice of C2=6 eVA,
the best-fit parameters are

h~o, (p„)= 10.1+0.5p„+ 6 pa„,

r, (p„)=o. 8+o. 74p„.

(23)

(24)

In all these formulas [Eqs. (21)-(24)], energy is
measured in eV and p„ in A '. In Fig. 1 we show a
comparison of the calculated and measured loss
profiles for three values of the exit angle. The cal-
culated intensities associated with both dispersion
relations [i.e. , Eqs. (21)-(22) and (23)-(24)] are
shown. The angular profiles also have been cal-

TABLE I. Peaks in the loss profiles (E= 50 eV) obtained
using the surface-plasmon dispersion relation h&., (p„)
=. h(u~ + C p(( + 6p)).

culated for five loss energies m, with the two sets
of dispersion and damping. They are compared
with the experimental curves. in Fig. 2. Table IV
presents the angular location of the subspecular
peaks in the two theories and the experiment. From
Fig. 2 and Table IV, we see that the resu'. .ts obtained
using the formulas of Eqs. (21) and (22) with C, & 0
seem preferable to those obtained using the other
set.

Beck's HPA calculation' predicts C&-4 eVA,
C,=-3 eV A', r, =-o, D, =-0. 1 eVA, and D2=-0. 1 eVA
for a background charge density comparable to that
of aluminum. A detailed analysis of ILEED data on
both Al(111) and Al(100) using these parameters may
be found elsewhere. ' Our present analysis indi-
cates a serious deficiency in the existing microscop-
ic-model calculations of the parameters character-
izing surface plasmons. Equations (23)-(24) ex-
hibit a positive C, which is in accord with most the-
oretical predictions. However, the coefficient of
the quadratic term is unacceptably small, being
responsible for the rapid movement of the surface-
plasmon peak to smaller angles as M) increases.
The reason that we focus attention on the subspecu-
lar peak in the angular profile is that the super-
specular peak often is absent in the experiments.
This suggests that we should go beyond the kinemat-
ical two-step model in describing the elastic elec-
tron-solid scattering.

By using the above procedure we have tried to
assess the uncertainty in the values of the various
parameters which we derive from ILEED data. %e
assume in the theoretical calculation that Da= 0 and
use D, mainly for fine corrections. Our method
does not give a reliable estimate of D,. The coef-
ficient C2 of the quadratic term can be estimated to
an accuracy of about 20%. For the other surface-
plasmon parameters, we think that the following
ranges are representative: 5(d, = 10. 1 + 0. 1 eV, C&

= —O. 7+0. 3 eVA, and I', =0. 9+0. 3 eV. It is not
surprising that RPA model calculations with an ideal

TABLE g. Peaks in the loss profiles (E= 50 eV) obtained using the surface-plasmon dispersion relation 5e Q„) = js&

+ Cy, )+8p 2

gl

(deg)

10
15
20

1~,(eV)

9.8

Expt.

10.8
10.2
10.3

C(=0.5

11.1
9.9

10.15

Cg =-0. 2

11.0
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10.2
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10.2
10.35
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TABLE III. Peaks in the loss profiles I=50 eV) obtained using the surface-plasmon dispersion relation S~~Q„)=See,
CQ )/ 10P() ~

2

el
(deg)

10
15
20

10
15
20

10
15
20

10.1

10.4

10.7

Expt.

10.8
10.2
10.3

10.8
10.2
10.3

10.8
10.2
10.3

Cg =0.25

11.6
10.2
10.4

12.0
10.5
10.7

12.3
10.8
11.0

~y „(ev)

g
——0, 0

11.5
10.2

10.4

11.8
10.4
10.7

12.2
10.8
11.0

Theory
Cg = -0.25

ll. 4
10.15
10.4

ll. 8
10.45
10.6

12.1
10.8
10.95

C)= —0.5

11.3
10.1
10.3

11.6
10.4
10.6

12.0
10.7
10.85

C, =-1.0
11.1
10.05
10.2

11.4
10.4
10.6

11.8
10.7
10.8

surface show I', =-0. The fact that our analysis re-
quires a finite 1", suggests the presence of imper-
fections at the surface, the importance of interband
transitions, or both. Our value for I', should be
treated with some caution because it probably de-
pends sensitively on the model for the electron-
plasmon interaction vertex. An intrinsic limitation
of our method of analysis is its lack of sensitivity
to the behavior of the surface-plasmon dispersion
relation for p„& 0. 2 A '. This means that we deter-
mine C& with greater confidence than the coefficient
of the linear term C&. We note that even though
there is a substantial discrepancy between our val-
ue for C& and that calculated using the microscopic
model, our result is not inconsistent with electron-
transmission experiments on other materials. ' '

For the case in which the surface-plasmon dis-
persion relation and damping are given by Eqs.
(21) and (22), we have compared our model predic-
tions with the experimental data for incident elec-
tron energies away from the energy of the peak in
the elastic intensity. Figures 2 and 4 illustrate the
comparison of the experimental loss and angular
profiles with the theoretical curves for 8= 60 eV,
where processes involving (surface-plasmon) loss
before diffraction should dominate diffraction-be-
fore-loss processes. The s-wave model is less
accurate in this region of energies. As Figs. 3

and 4 demonstrate, the agreement between theory
and experiment is still reasonable at E= 60 eV, al-
though it is perhaps less satisfactory than at E= 50
eV. Finally, Fig. 5 illustrates the comparison of
calculated and experimental angular profiles for a
number of primary beam energies E and a fixed
loss energy zan=14. 4 eV.

We turn next to our analysis of the experimental
results of Burkstrand and Propst, who have studied
the (10) and (11) diffracted beams of electrons inci-
dent normally on an Al(100) surface. Their results
often are quite complex, especially for low incident
energies, with multiple scattering effects obscuring
the predictions of a simple two-step kinematical
model. Consequently, we have not tried to derive
parameters for the surface-plasmon dispersion and
damping from these experiments. Rather, we at-
tempted to isolate interesting qualitative features of
the data which can be interpreted by the two-step
model. In comparing the model predictions with the
experimental data, we have used the best-fit sur-
face-plasmon parameters obtained from an analysis
of Porteus's experiments, viz. , Eqs. (21) and (22).
We discuss below two interesting complexities evi-
dent in the data which admit an elementary inter-
pretation in terms of the two-step model.

In Burkstrand's experiments on the loss pro-
files for the (11) beam, the relative heights of the

TABLE IV. Peaks in the angular profile for 8' &15'.

8.4
10.4
12.4
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Expt.

Il
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surface- and bulk-plasmon peaks vary with both the
primary electron energy and the angle of observa-
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FIG. 1. Comparison of the experimental (dashed lines)
and two sets of theoretical (marked I and II) loss profiles
for the (00) beam of electrons on Al(111). The primary
beam energy is 50 eU, the angle of incidence is 15', the
exit angles are noted by 8&, and both initial and final beam
lie along a {110}direction in the surface plane. Elastic
electron-ion-core scattering is described by the s-wave
inelastic-collision model with g, = 6 A, Vo = 14.7 eV, and

Curve I refers to calculations performed using
the surface-plasmon dispersion relation and damping of
K(U~(Pg) = 10, 1 0 7P~~ + 10Pp I g(P[[) 0.9 +0.74p„. Curve
II ref ers to hue(pl)) = 10~ 1+0.5p~) + 6pti I g (p)l) = 0 ~ 8+ 0 ~ 74p ~).

The error bars on the experimental curves indicate typical
uncertainties. The dashed line is a computer-averaged value.

where d is the spacing between atomic layers and

p, is determined from

@+5(Ptl 1 Pl) 1 (26)

then the bulk-plasmon peak in the angular profile
may be split into two peaks. Sideband diffraction
is displayed clearly in Fig. V, which shows a com-
parison of the theoretical and experimental angular
profiles for the (11)beam for a number of primary
electron energies. The loss energy is fixed at 16
eV. The peak on the left in the theoretical curves
is caused by surface plasmon. As the primary
beam energy is increased, one of the sideband peaks
gains in intensity relative to the other, and this
shows up in the movement of the bulk-plasmon peak
across the direction of elastic diffraction which is
denoted in the figure by dots. It seems appropriate
to emphasize the facts that the two-step model en-
ables us to understand the origin of the prominent
structures in the experimental data even though it
cannot explain the data in detail, and that the ab-
solute values of the experimental collector angles
exhibit a large (+4') uncertainty.

In Fig. 8 we show theoretical and experimental
angular profiles for the (11) beam for a number of

tion. This effect is induced by the elastic electron-
solid diffraction, and its qualitative features are
successfully reproduced by our model. Figure 6
shows theoretical and experimental loss profiles
for the (11) beam for three primary energies and
three exit angles. The experimental data are taken
in the direction of elastic diffraction 8~, and at
2- on either side of this direction. Theoretical
curves have been computed for exit angles of 8~
—1-,", 8~+1', and 8~+3-,"because the particular
loss-profile characteristics are best displayed the-
oretically for angles shifted through 1' relative to
the experimental angles (which are themselves un-
certain to within this amount). As indicated in the
figure, the bulk-plasmon peak is higher than the
surface-plasmon peak for larger angles of emer-
gence and greater electron incident beam energies.
This effect is observed in both the experimental and
the theoretical curves, even though they do not
agree too well in detail. Thus the apparently com-
plicated dependence of the loss profiles on the beam
parameters is an immediate consequence of two-
step inelastic diffraction.

A second interesting aspect of inelastic diff rac-
tion involving bulk plasmons is the phenomenon of
"sideband diffraction, "' ' whereby the single bulk-
plasmon peak in the angular profile is split into two.
This is caused by vestiges of momentum conserva-
tion in the direction normal to the metal surface.
If, simultaneously with Eq. (17), the electron mo-
menta satisfy the condition (for an fcc crystal)

Re[k', (0, E —t0) + k~(0, E)]= xP, + (2n+ 1)w/d, (25)
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loss energies se, when the incident electron has the
energy of a primary Bragg peak (Es = 86 eV). Pro-
cesses involving diffraction before loss dominate
the scattering cross section at this energy. The
theory is qualitatively successful in describing the
variation of the intensity of scattered electrons as
a function of the energy loss. It also can explain
the observed structures in the experimental curves
at se = 12-16 eV. The theory is perhaps less suc-
cessful describing the experimental data for the in-
cident electron energy of 96 eV when loss-before-
diffraction processes are predominant. The theory
and the experiment at this energy a,re compared in
Fig. 9. The qualitative features of the data are
described adequately for 10 ~I ~14 eV.

We have analyzed Burkstrand's experimental
lLEED data for the (10) diffracted beam from an
Al(100) surface in the same way as for the (ll)
beam. Again we find general agreement between
theory and experiment, although in detail the
agreement is poor. In Fig. 10 we show a compari-
son of the theoretical and experimental angular pro-
files for the (10) beam for a number of incident en-
ergies of the electron when the loss energy is kept
fixed at &@=16 eV. Finally, we recall that although
the curves shown in the figures have been calculated

with an s-wave model for the electron-ion-core
scattering, we have carried out calculations with
a more exact, angle-dependent APW scattering
cross section ' ' and found no significant change in
the theoretical predictions.

IV. SUMMARY AND CONCLUSIONS

The main result of the analysis that we have pre-
sented in this paper is that inelastic low-energy-
electron diffraction may be used to determine,
quantitatively, plasmon dispersion relations which
characterize the electronic structure of a surface.
That is, we argue that the two-step model describes
the basic processes of ILEED sufficiently well that
we may use it to analyze II EED data for extracting
quantitative information about the elementary exci-
tation spectra of simple metals. We have substan-
tiated this claim by describing the application of the
two-step model of inelastic diffraction to determine
the surface-plasmon dispersion relation and damp-
ing on Al(ill) for 10 p„ l A '. The use of the
microscopic two-step model (as opposed to semi-
classical "single-step" models ') is essential to the
analysis in order to identify the dynamical origin
of the various resonant peaks in the loss andangular
profiles. A significant aspect of Eqs. (16) and (20)
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beams of electrons incident on Al(111) for a number of
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od of analysis should give reliable values of the pa-
rameters in the dispersion relation of surface
plasmons. The damping, however, is determined
much less accurately because it depends on the ex-
act form of the electron-surface-plasmon vertex
function, which is poorly known.

Two "technical" limitations of our analysis are
. the use of an s-wave model for the electron-ion-
core scattering and that of the first Born approxi-
mation (kinematical model) to describe the elastic
scattering of electrons by the lattice. Although the
s-wave model gives a poor description of electronic
scattering by aluminum ions, as noted in Sec. III
we found that within our two-step model the pre-
dictions of the theory were not significantly modi-
fied when the angular dependence of the electron-

FIG. 6. Comparison of theoretical (full lines) and ex-
perimental (dashed lines) loss profiles of electrons incident
normally on Al(100) and scattered inelastically in the (11)
beam. The primary beam energy is denoted by E, which
also labels the zero levels on the right-hand side of the
graph. The notation T(E) designates the theoretical (ex-
perimental) curve. The exit angles in the experiment
are denoted by e&, while Hz defines the direction of the
elastically diffracted beam. The theoretical curves in
each vertical panel are computed for an emergence angle
1' above the measured exit angle (see text; the absolute
value of this angle may be in error by as much as + 4').
The parameters for the surface-plasmon dispersion and
damping used in the theory are given in Eqs. (21) and (22)
of the text. Elastic electron —ioncore scattering is de-
scribed by the s-wave inelastic-collision model with &~
=6 A, V0=16.7 eV, and 6=stt. For these parameters,
the kinematically calculated (11) beam intensities exhibit
a primary Bragg peak at E&= 86 eV. A large peak occurs
in the experimental (11) intensity profile at this energy.

ion-core scattering was included in the calculation.
Therefore, the s-wave model appears quite ac-
ceptable, although the consequences of the kinemat-
ical approximation probably are more serious. In
this paper we have described the elastic electron-
lattice scattering simply by the ion-core scattering
amplitude i(E). A complete calculation of the
single-plasmon-emission cross sections requires
that we evaluate the elastic scattering amplitudes
T„of the electrons from the vth atomic layer by
an appropriate matrix-inversion method and use
these T„ to compute the inelastic intensities.
Such an inclusion of multiple scattering may de-
press the superspecular peak due to surface plas-
mons and make the theoretical angular profiles
agree more closely with the existing experimental
data.

Another problem with our version of the theory
is that it does not take into account properly the
electron-solid force law when the electron is out-
side the metal. At long distances from the surface
the electron moves "as if" it were affected by the
familiar image potential, although in fact it is under
the influence of a nonlocal potential. The non-
locality of the potential comes principally from the
lack of translational invariance in the direction
normal to the metal surface. The electron-solid
potential has been calculated in the random-phase
approximation for certain models of the half-space
electron gas. Any precise theory of both elastic
and inelastic LEED must start with electron waves
distorted by this nonlocal optical potential prior to
the electron's scattering by the short-range ion-
core potentials. Work is now in progress incor-
porating this aspect cf the electron-solid force law
into the theory.

In spite of its limitations, we believe that our
semiphenomenological model of two-step inelastic
diffraction gives reliable numbers for the disper-
sion relation of surface plasmons on Al(ill). Our
analysis leads us to conclude that microscopic
models ' for studying the surface-plasmon disper-
sion are seriously in error. A similar conclusion
had been reached previously" on the basis of a
hydrodynamic-model analysis of keV electron scat-
tering data for Mg. ' This suggests that the form
of the electron-density profile near a surface may
have a more profound influence on the dispersion
of surface plasmons than has been realized so far.

Note Added in Proof The origina. l computer
program used to construct the figures and dis-
persion relations Eqs. (21)-(24) contained an er-
ror in that the bulk-plasmon contributions to the
intensity were too large by a factor of 2. Line
shapes comparable to those shown in the figures
are obtained from the corrected program by in-
creasing r, [see Etl. (2) ] by about VO%. Therefore
Eqs. (22) and (24) become
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I', (P„)= 1.6+ 0. V4 P„,
I &(PI)= 1.5+0. V4 Pp
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(24a)

J. O. Porteus, Professor F. M. Propst, and J. M.
Burkstrand for copies of their unpublished data and
for permission to reproduce them here.

respectively. The range of values for I', is I',
= 1.5 +0. 3 eV. Other parameters in the dispersion
relations are unchanged.
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APPENDIX

In this appendix we derive an expression I
of. Eq.

(16)] for the inelastic scattering cross section of an
electron exciting a surface plasmon i.n the two-step
inelastic diffraction model. The starting formula
is Eqs. (4. 14) in the first of Refs. 18, which can be
written for the case of surface plasmons as
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The quantities N(w) and D,(p„, w) are given by Eqs.
(5) and (7), respectively, while the electron-ion-
core scattering amplitude t(E) is given by Eq. (3).
G(k, , E) denotes the electron propagator in the in-
termediate state. It is straightforward to carry out
the sum over atomic sites parallel to the surface
and the integral over the intermediate momentum
variable u, . We obtain

2(( t(E) e I, , 'i 2((

p'i)

lo—
8— 8L m~
0 20 40 60 20 40

8 {degrees) 8 (degrees)
60

FIG. 8. Theoretical and experimental angular profiles
for electrons incident normally on Al(100) with a primary
energy of 86 eV and diffracted elastically in the (11) direc-
tion. The loss energy gg is varied. Dots denote the direc-
tion of emergence of the elastically diffracted beam.
Elastic scattering parameters and the surface-plasmon
dispersi. on and damping that are used in the theory are
the same as for Fig. 6. The experimental exit angle is
uncertain to within + 4' because of uncertainties in target
arid beam alignment and the angular spread of the incident
beam.
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where A is the area of the unit cell whose volume
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FIG. 9. Theoretical and experimental angular profiles
for the inelastically diffracted (11) beam of electrons in-
cident normally on Al(100) with a primary energy E of
96 eV. The loss energy gg is the variable and dots indicate
the direction of the elastically diffracted (11) beam.
Elastic scattering parameters and the damping and dis-
persion relation of surface pl. asmons entering the theory
are the same as for Fig. 6. The experimental exit angle
is uncertain to within + 4 because of uncertainties in the
target and beam alignment and the angular spread of the
incident beam.
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momentum variable in the intermediate state.
Therefore we consider only S,( g, E) (i. e., loss be-
fore diffraction). The sums in Eq. (AV) may be
decomposed into three distinct contributions. When
v&0 and p, &0, the contribution comes from elec-
trons outside the metal interacting with surface
plasmons. For p, & v & 0 we have the situation when

the energy-loss process occurs closer to the metal
surface than elastic diffraction. This is the contri-
bution retained by Duke and I aramore. ' Finally,
v & p, & 0 describes the situation when the loss pro-
cess occurs deeper into the metal than elastic dif-
fraction. We evaluated the amplitude for this last
process and found it to be small compared to the
other two. In what follows we neglect this contri-
bution. We can then write

S,( g, E) = S,"'(g, E) + S,'d)( g, E), (A10)

where S„"'(g,E) is the part coming from losses oc-
curring outside the solid and S)i. '(g, E) comes from
losses occurring inside. In the jellium model, the
surface-plasmon field is continuous rather than
cell periodic, so that the sum over v in Eqs. (AV)

and (A9) should be converted to an integral. ' Ac-
cordingly, we find

«0

Sil)( E) dv P eiÃ)dv dade eiidzd-d a&v
a F»

4 «oo &=0

& q(g, )d~ -A~(g, S~d1

(1 i third), ides&)d-g al)-1

1
p„d+i[5', —k,(g, E)) d (A11)

For evaluating S,' '(g, E) we may ignore the "cen-
tral-cell" corrections discussed in Refs. 18 be-
cause the inelastic scattering vertex describes
forward scattering. This point has been discussed
in detail by I aramore and Duke, ' who find that

Sg)i E) y P ii&qdv Wddv i (dgd-s 4) s
a

v=0 P =v

+ efk&(g, S)dw -fk~(g, E)dv

j t.kid+kg(gy&)d-g'aj

1
i Oh).+Sf )d d((d )-%-

lmD, (p„, )i)) = I',(p„)/([)i& -S&d,(p„)]'+[r,(p„)]'}.

~hen Eq. (A6) is combined with Eqs. (A10)-(A12),
we arrive at A), (g, E) of Eq. (18). A', (g, E —)i&) of

Eq. (19) is derived similarly. Equation (16) for the

scattering cross section is obtained trivially if we

-assume that zo» xT and take
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Correlation Potentials in a Nonuniform Electron Gas
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A microscopic theory of the correlation operator, directed toward conduction electrons in
a metal, is developed. The off-diagonal matrix elements, between electron states % and k+q,
that arise when the electron density has a modulation of wave vector j, determine the corre-
lation contribution to band structure. These are computed explicitly. They depend dramati-
cally on k (i.e. , nonlocal behavior) and on q. The sum of exchange and correlation operators
is also nonlocal, but is less singular than either individually. An alternative division of ex-
change plus correlation into screened-exchange plus Coulomb-hole operators is made. It is
shown that the (often ignored) Coulomb-hole operator is usually much larger than the screened-
exchange operator.

I. INTRODUCTION

The contribution of exchange and correlation to
one-electron Hamiltonians is a widely debated and
important problem. Our attention here is focused
on energy-band problems for crystalline solids.
The periodic potential that appears in a (one-elec-
tron) Schrodinger equation must have contributions
from exchange and correlation as well as from
the Hartree term.

The exchange operator A is often replaced by
the Slater p' ' approximation, '

As = —3e (Sp/av)

where p(r) is the local electron density. It has
been shown that As is a very poor approximation
to A . For band calculations the off-diagonal ma-
trix elements of A arising from a spatial modula-
tion of p (having, say, wave vector q) are the most
relevant quantities. Not only does (k+q IA" I k)
depend markedly on k, which shows that Ax is
severely nonlocal, but it also depends on q. For
some combinations of k and q it is singular. In
contrast Eq. (1.1) leads to off-diagonal matrix
elements that are independent of k and q.

Arguments which suggest approximations such
as (1.1), or variants' of it, are supposedly most
reliable for small q. It was therefore surprising
to find that the relevant off-diagonal elements
of A become infinitely large in comparison with
those obtained from the approximation (1.1) as
q 0.

The sum of exchange and correlation operators,

Axc Ax+Ac js of paramount physical interest.
If A is to be well behaved for q 0, then
(k +q I A I k) must become infinite (and have nega-
tive sign) relative to (1.1). This surmise con-
trasts sharply with a very small and positive value
suggested by prior work.

The purpose of this study is to develop a micro-
scoPic theory of the correlation potential so that
the explicit dependence of (k+qIAcIk) on k and q
can be calculated. By combining this with the
known behavior of Ax, we determine the q depen-
dence and nonlocal behavior of A c. This is carried
out in Secs. II and III. The plasmon model for
treating dynamic correlations of electrons is em-
ployed. The off-diagonal behavior of A and Ax
in the q 0 limit is treated in Sec. IV.

The exchange and correlation operator can be
subdivided into screened-exchange and Coulomb-
hole opez ators, Axe Asx +Ace This alternative
subdivision is displayed in Sec. V. We show that
screened exchange is generally much less impor-
tant than the Coulomb-hole potential. This de.-
serves emphasis because the Coulomb-hole poten-
tial is often completely ignored. In some calcula-
tions its neglect can lead (and has led) to grossly
incorrect conclusions.

II. FORMULATION OF CORRELATION OPERATOR

A microscopic theory of the correlation operator
depends primarily on the excitation spectrum of the
electron system. For a degenerate electron gas,
this spectrum consists of plasma and single-particle
excitations. The simplifying feature of the plasmon


