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A detailed theoretical study has been made of the magnetoelastic perturbation of the spectra
of elementary spin and lattice excitations in Tb and Dy metals. The theory was formulated on
the basis of an interaction formed from bilinear products of local spin and strain functions.
Previous ad hoc models appear in certain limits of the theory, giving a coherence to the the-
oretical picture of magnetoelastic coupling. It is found that uniform magnetostriction causes
a smooth transition from "free-lattice" to "frozen-lattice" perturbation of the magnon spec-
trum depending on the wave vector of the state. The microwave absorption versus magnetic
field applied along the hard planar axis of Tb and Dy is calculated. It is found that free-
lattice magnons are primarily responsible for low-frequency absorption in Tb below 140 K,
and for both low- and high-frequency absorption in Dy below the Curie temperature of that
metal. It is shown that the transition from free- to frozen-lattice behavior of the magnon
spectrum is essential to the explanation of existing data on the temperature dependence of ab-
sorption-peak positions in Tb. The dynamic interaction between spin and lattice waves is de-
rived and used to calculate the mixed-mode splittings in regions of the Brillouin zone of Tb
where phonon and magnon dispersion curves cross. The theory predicts well the splitting
which occurs where the acoustical-magnon and phonon branches touch, but fails to account
for the splitting between the acoustical-magnon and optical-phonon branches. A different cou-
pling mechanism is proposed which may account for the mixing of these branches.

I. EFFECTS OF UNIFORM STRAIN ON MAGNON
SPECTRUM

A. Introduction

In the recent past there has been much theoretical
and experimental work done to determine the effect
of equilibrium strain on the magnon spectrum of
the rare-earth metals. Turov and Shavrov' in a
pioneering paper proposed that in the presence of
spin waves the strain tensor may be taken as that
of the ground state. They showed, using the equa-
tions-of-motion method, that a sizable magneto-
elastic contribution to the uniform-mode spectrum
is made in this case. Cooper calculated the ef-
fects of magnetic anisotropy and elasticity on the
magnon spectrum using a Holstein-Primakoff
transformation of the spin Hamiltonian. Under the
assumption of a "frozen lattice, " he obtains a sig-
nificant magnetoelastic effect. On the other hand,
for a free lattice the energy of a uniform-spin os-
cillation in the basal plane is insensitive to the
magnetoelastic effect.

Much experimental work has been done to check
the validity of the frozen-lattice approximation.
One method is to measure the temperature depen-
dence of the spin-wave energy gap E(0). Callen
and Callen' have calculated the temperature depen-
dence of the magnetoelastic constants of the
"one-ion" type. Coupling constants of importance
in Tb and Dy are of this type, with the exception
of X ', which is small. Since the temperature re-

normalization of the crystal anisotropy is well
known, one can measure the temperature depen-
dence of the uniform-mode frequency, subtract the
effects of magnetic anisotropy, and deduce the ef-
fect, if any, of the magnetoelastic terms. This was
done by Marsh and Sievers, who found that both
the free- and frozen-lattice models fit their data
well, although the frozen-lattice model fits slight-
ly better.

The application of a large dc magnetic field in
the magnetically "hard" planar direction of the
crystal has the effect of reducing the spin-wave
energy gap at q = 0 to a minimum at an applied field
equal in magnitude to the effective field of the pla-
nar anisotropy, which tends to align the spins along
the "easy" direction. Above this applied field, the
uniform-mode frequency increases monotonically.
If there is no magnetoelastic coupling, the gap is
reduced to zero; whereas, if there is coupling, the
minimum in E(0) is considerably greater than zero
(-10K for Dy at 80K and where Boltzmann's con-
stant is unity). Nielson et al. , in a neutron-dif-
fraction study„report that the energy gap at q =0
could not be reduced to zero upon application of a
strong field in the hard basal direction of Tb metal.
This observation seems to substantiate the "frozen-
lattice" assumption.

Other groups, using resonance techniques, have
studied this same effect. A variable dc field is ap-
plied in the hard planar direction and a fixed-
microwave-frequency photon beam is incident
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normal to the surface of the metal. As the applied
field is increased, the uniform-mode spin wave
dips and then increases. Strong coupling of the
photons to the spin waves occurs when the frequen-
cies are equal. Microwave energies far below the
zero-field spin-wave gap are used so that if E(0)
dips to zero, then strong on-resonance absorption
of the photons should occur at an applied field near
the planar anisotropy field, whereas, if the mag-
netoelastic coupling is important, one should see
only broad off-resonance absorption over a con-
siderable range of the applied field.

Bagguley and Liesegang measured strong ab-
sorption of 1.8K and 0. 45K microwaves in Tb and
Dy. The absorption is characterized by a sharp
increase which might be expected in the case of
on-resonance absorption, followed by a long tail
spanning many kOe of field. The tail is charac-
teristic of broad off-resonance absorption. Hossol
did a very detailed investigation of Dy with 1.8K
microwaves. Wagner and Stanford' " studied
both Tb Bnd Dy using 0.45K and 4. 5K radiation.
Very recently, Hart and Stanford" made a careful
study of Tb using 1.OK radiation. The observations
of these workers agreed essentially with those of
Bagguley and Liesegang. The strong Bnd sudden
absorption of 0.45K and 1.8K photons cannot be
understood under the assumption of a frozen lattice.
Such a frozen-lattice model directly implies off-
resonance absorption at these low-driving frequen-
cies. The profile of such absorption would be very
broad and flat with no sudden changes in slope, quite
unlike the observed profile. ' Thus, low-frequency
ferromagnetic-resonance (PMR) results seem to
argue against the applicability of a frozen lattice.
Other microwave experiments ~

' at higher fre-
quencies (4. 5K) show a temperature dependence of
the resonance field in agreement with the frozen-
lattice model. At these higher frequencies, how-
ever, on-resonance absorption is possible even if
the lattice is frozen, and so the shape of the ab-
sorption is not inconsistent with the model in this
case.

Thus, one is confronted with experimental ob-
servations which appear to be contradictory. Neu-
tron-diffraction results clearly conclude that the
lattice is frozen. High-frequency resonance ab-
sorption also indicates a frozen lattice, but low-
frequency resonance absorption cannot be explained
unless the lattice is free. It is unreasonable to
believe that a crystal can respond totally to a fre-
quency of 40 6Hz (l. 8Ã), but not at all to a fre-
quency twice as great.

In a previous paper' the spin-wave spectrum
was studied, assuming that spins are coupled
locally to their strain environments. Thus, no
a Priori assumption was made Bs to whether the
macroscopic strains are free or frozen. The re-

suiting spectrum was shown to vary continuously
from free- to frozen-lattice behavior, depending
on the wave vector of the magnon.

An elaboration of the results obtained previously
is made in Sec. IB. In Sec. IC a detailed calcula-
tion of microwave absorption is made. It is shown
that the wave-vector dependence of the long-wave-
length gap has a profound influence on, and is es-
sential to, the correct interpretation of FMH ab-
sorption data. On the basis of the locally coupled
magnetoelastic theory, a consistent understanding
of all existing long-wavelength magnon data obtained
through microwave-absorption or neutron-diffrac-
tion techniques is attained.

B, Derivation of Spectrum

We begin with the generalized magnetoelastic
spin Hamiltonian, ' which may be separated into
a "one-ion" part H& and a "two-ion" part II2:

a, =- ZZ Z Df,'(f, g)X. ~ (f, g)S' (f, g)
f,z ~ f2'

Here f, g are position indices, I' defines the ir-
reducible representations of the crystal point
group, i specifies the basis set of the representa-
tion, j and j are used if more than one basis set
carries the representation, S(f) and S(f, g) are the
usual one- and two-ion spin functions defined by
Callen and Callen, ' and B(f) and D( f, g) are the
one- and two-ion coupling coefficients. The local
strains are defined as follows:

$„„(f,g) =(X~-Xg)(x~-x,),
@„,(f g) = 2[(&g-&)(y, -y, )+(&g- &)(x,-x,)],

(3)
and similarly for the other Cartesian components.
Here Rz —-(Xz, Yz, Zz) is the position vector of the

fth ionin the unstrained crystal; r& = (x&, yf, zz) is
the displacement of the fth ion from its unstrained
equilibrium position. The z axis of the Cartesian
coordinates is taken along the crystal c axis, and
the x axis is taken along the easy planar direction.
The one-ion strains are defined simply by a summa-
tion over nearest-neighbor distances 5:

(4)

The displacements r& which appear in the local
strain functions consist of two parts. One gives
rise to magnetostriction produced by the spin or-
der; the other gives rise to normal modes of vibra-
tion about the strained equilibrium positions. In
this section we treat the effect of the magneto-
striction, which shifts the magnon energy spec-
trum. In a later section we treat the coupling of
spin and lattice vibrational modes in the production
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of mixed-mode states. In treating the effects of
magnetostriction we initially assume that the lattice
is infinite, and that the crystal is capable of re-
sponding so as to produce macroscopic strains that
minimize the elastic energy. Later we refine the
theory so as to account for finite crystal dimensions
and a limited response time.

For applications to Dy and Tb, three irreducible
representations of the hcp point group are impor-
tant. In E(I. (1) H, is applied to y, e, and a2, and

H, is applied to &1. ' '" The sum on g is taken
over nearest neighbors only, and the coefficients
B and D are assumed to be independent of atomic
site. In the ferromagnetic phase a uniform strain
exists and may be coupled to the local spin func-
tions. For a uniform strain the local strain func-
tions reduce to ordinary strain components and the
coefficients B and D reduce to the coefficients
of Callen and Callen, ' denoted by B and IF.
Treating the spins as classical quantities and min-
imizing the total elastic Hamiltonian with respect
to the strain components, we obtain an effective
spin Hamiltonian. This spin Hamiltonian is then
transformed to spin-wave operators by a Holstein-
Primakoff transformation. For terms in E(I. (1)
of the y representation, the result of this labor
is"

H = „Q(S--,)(Gaga;-aga g
—aug~)

(B")NS'

—23(2a,'a, —,','-,a,)), (3)

where only the quadratic terms in magnon operators
are retained. In an exactly similar manner we ob-
tain for the e and n representations

(B') NS tH' =—,(2aoa, +aoa, +aoao ),2c

Here
~ sa

Q = —/3' 811 — + 8C„" 2v"3 C22
21 213

+AS 811 2B11 +

I

a Bs —
2 ~3

(3Bs 2g3 2 )1—aas —)„,C22

g3 ~$3 12 B 12 + 22 B 22

C11
" 2 V~ C22

" 2V3

where c is the hcp lattice parameter, and the sub-
scripted c's refer to the elastic constants of the n
representation. Here we have assumed q=qc, and
will consider only magnon propagation in this direc-
tion throughout the remainder of this manuscript.
The cosine-dependent term is a direct consequence
of the two-ion nature of the &1 representation. It

arises from the fully symmetric magnetoelastic
term, and so contributes a term in the total Hamil-
tonian identical in form to the Heisenberg exchange
term. We have calculated the numerical value of
the term using the data of Rhyne and Legvold,
and find that it accounts for less than 10% of the
magnitude of (J, -Zo) deduced from the spin-wave
data in the region of small q. Here J, refers to
the Fourier transform of the exchange energy. In-
sufficient magnetostriction data were available for
Dy metal to do a similar analysis, but one would
expect a result similar to that of Tb. Thus, it
seems safe to neglect the "two-ion" magnetoelastic
interaction in the extraction of J, from the spin-
wave spectrum of these metals.

The magnetoelastic terms H', H', and H are
added to the exchange and anisotropy terms derived
by Cooper, and the total Hamiltonian is diagonalized.
The result for the magnon energy at zero tempera-
ture and field is

E((I) = [(Al +BC + nt, )(A2 —BI+ n2) 1'~' .
For (I in the c direction ((I=qc), we have

A, = 2S(JO —42) —P2S —21 P()S

B,= —P2$+ 15P6$

c'(~")' K3 (X»)'
2NS NS 213

(X„)' c'()).')'
+C22

&, = (1 - 5,0) c (X ) /NS .

The symbols J
y P2p P6 p Xj are the Fourier trans-

form of the exchange interaction, the twofold and
sixfold anisotropy constants, and the magnetostric-
tion, respectively. A discontinuity in the spin-
wave spectrum appears at q =0 due to the terms

The physical origin of the discontinuity may be
understood as follows: When a spin precesses
about its equilibrium position, it tends to drag the
lattice distortion with it. For a spin wave of in-
finite wavelength, the lattice distortions of all unit
cells must move in phase, so that they add up to a
macroscopic strain which follows the precession of
the magnetization. Clearly, the strain configura-
tion relative to the magnetization direction is iden-
tical at each instant of time to that of the ground-
state ferromagnet. That is to say, it costs no mag-
netoelastic energy to excite the spin system, and
the energy gap at zero wave vector is due solely to
the magnetic anisotropy produced by the crystal
field. This situation corresponds to a free-lattice
model for the magnetoelastic coupling. In the event
that a spin wave of finite wavelength is excited, the
periodic spin component induces only a periodic dis-
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TABLE I. Energy gapa for Tb at T = 0 K and Dy at
T= 78 K.

Tb
Dy

E(0)

14.OE
6. SK

19.4E
10.2E

tortion at the surface of the crystal. For a wave-
length equal to the thickness of the crystal, the
penetration of the distortion is complete. For some
shorter wavelength, however, the distortion is suf-
ficiently confined to the surface of the crystal so
that the bulk strain is induced by the ferromagnetic
spin component. This volume strain is essentially
the same as that produced by the ground-state mag-
netization, ~~d is constant in time. The spins now
oscillate about this fixed strain axis, creating mag-
netoelastic free energy and giving rise to a magneto-
elastic contribution to the energy gap. This situa-
tion corresponds to the frozen-lattice model. Thus,
the lattice behavior varies from free to frozen lat-
tice within a very small range of q, where q is the
wave vector of the magnons. Under the assumption
of an infinitely large specimen, this rapid variation
results in a discontinuity in the magnon spectrum
from q = 0 to q = 0', where q = 0' is taken to mean
the shortest finite magnon wave vector as determined
by the inverse dimensions of the specimen.

The energy of the q =0 mode agrees with the free-
lattice theory, and that of the q = 0' mode agrees
with the frozen-lattice theory. Both come out
naturally as consequences of the local spin-lattice
interaction. In Table I we give the estimated sizes
of the spin-wave gaps for Tb and Dy at zero field.
In calculating these values, the data of Fisher and
Dever" wereused for the elastic constants, and
the data of DeSavage and Clark" and Rhyne and
Legvold'6 were used for the magnetostriction con-
stants of Tb. The Dy magnetostriction constants
were taken from the data of Clark et al. ' Note that
the free-lattice gap is always smaller than the
frozen-lattice gap, as expected.

The temperature renormalization of the spin-wave
gaps is easily accomplished using the "one-ion"
theory of Callen and Callen described above. The
magnetoelastic terms are renormalized according
to (I»z), where the function I, /z is a. reduced hy-
perbolic Bessel function, whose argument is the
inverse Langevin function of the relative magnetiza-
tion. This renormalization is not quite correct
since the &1 representation should be renormalized
according to a "two-ion" scheme. However, the
&1 representation contributes only a small term to
the factor in Eq. (7) containing the large axial
anisotropy term —2P2S, so that the result is neg-
ligibly affected by this error. The temperature re-
normalization of the planar anisotropy depends on

the origin of this anisotropy. Recent neutron-dif-
fraction work by Nielsen and co-workers'& '
showed that virtually all the planar anisotropy of
Tb metal arises from hexagonally symmetric sec-
ond-order magnetostriction. Thus the renormaliza-
tion should be I,&~I, &~.

&' In Dy metal, however,
one might expect that the crystal field is more im-
portant in producing the anisotropy, since Dy ions
have a higher orbital angular momentum than Tb
ions, and hence are capable of stronger interaction
with the crystal field. Ne assume that the planar
anisotropy of Dy arises solely from the crystal
field interaction, and use the renormalization
I j 3/ Q Then, using an oblate spheroid geometry
for the samples, we can generalize Eq. (7) to the
case of finite field and temperature'.

E(q-0) =( [-2PzSI5/z o ' —6P, 'S'(cos68) I/3/z(T

+gpa (H + 425M —D„M ) CO 8 (2 /6 —0 )

+&OI5/z cr ] I
—36Prr S (cos66)I~3/acr

+gprr Hcos(r/6 —8)+/30Ig/z o ]) . (8)

The equation is written for Dy metal. In the case
of Tb we make the replacement I»&2-I, &~I,&, in
Eq. (8) and all related formulas. D„ is a demag-
netization factor, M is the net magnetization, 0 is
the relative magnetization, and 0 is the angle be-
tween M and the easy axis in the basal plane. The
angle 0 is implicitly a function of the applied field,
and is given as a solution to the transcendental
Eq. (7):

sino' g p. ~H
6sin(v/6 —e) 36P,'S'I&, /acr

'

The H that appears here and in Eq. (8) is the external
field. The relevant hyperbolic Bessel functions
were evaluated in closed form using the recursion
formulas found in the N. B. S. Table of Eunctr'ons.
The final expressions used were

I,/, (z) = l —3cr/z,

45 105 10 105I,/, (z) = l+ —,+; — —(cothz) —+

210 4225 10395
)13/zz + 2+ 4 + 6

Z Z z

21 1250 10395)—cothz —+ 2 +
z z'

Here Z(z) =cr, where 2 is the Langevin function.
The values of cr(H, T) were taken from tne iso-

thermal magnetization curves of Behrendt and
Legvold for Dy, and of Hegland et a/. for Tb.
These curves were plotted against the internal field,
so care was taken to convert to the external field,
using the demagnetizing factors of an oblate spheroid.

The spin-wave gaps are plotted against the ex-
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ternal field in Figs. 1 and 2 for Dy and Tb, re-
spectively. The curves are drawn for fields above
the domain-alignment field only. A strong dip in
the free-lattice mode E(0) occurs when the external
field approaches the effective planar anisotropy
field. This effective field arises from magneto-
elastic and crystal field anisotropy in the basal
plane, and is represented by the applied-field-in-
dependent terms in the second factor under the
radical sign in Eq. (8). As the temperature in-
creases, this effective field decreases until it falls
below the domain-alignment field of the sample.
This occurs at 110 K for Dy, and at 140 K for Tb.
The frozen-lattice mode E(0') is rather flat over

most of the field sweep in the low-temperature fer-
romagnetic regimes of these metals. Also, this
mode lies far above the applied microwave energies,
which are indicated by horizontal lines inthe figures,
with the exception of a sharp drop near the domain-
alignment field in Tb. Thus, at low temperatures
one expects frozen-lattice excitations to cause a
broad off-resonance absorption spanning most of
the field range with no sharp increase at the effec-
tive planar anisotropy field. On the other hand,
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free-lattice modes to the microwaves near the pla-
nar anisotropy field. Hossol observes strong ab-
sorption of 37-0Hz radiation at 78, 86, and 91 K
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H dc

H f 8
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FIG. 3 . Geometry of a typical F MH experiment. The
crystal is cut so that the basal plane lies para 1le 1 to the
metal surface.

near the planar anisotropy field in Dy metal . In a
recent microwave study at 24 GH z, Ha rt and Stan-
ford ' observe sharp absorption peaks near the
planar anisotropy field between 70 and 140 K in Tb
metal . These experiments suggest strongly that the
free -lattice magnons are responsible for low -fre-
quency ferromagnetic resonance absorption . In

Sec . I C, a detailed calculation of microwave ab-
sorption is made for Dy and Tb, and the relative
importance of the free - and frozen -lattice magnons
to this process at various frequencies, tempera-
tures, and applied fields is determined .

C. interpretation of Experiments

In ana 1yzing the da ta, of neutron diffraction and
ferromagnetic res onanc e, it is important to see
whi ch way the lattice behaves in the presence of the
magnetic disturbance created by the neutron or pho-
ton probes . An important consideration is over
what macroscopic distance the uniform magneto-
striction, which minimizes the instantaneous elastic
energy, can be realized by the crystal . Since strain
is a differential quantity, the deformation at any
interior point r depends on the deformation of the
surface atoms and its distance from the surface .
Such information is carried from the surface with
a velocity of 100 cm/sec in Tb (the speed of sound) .
Microwave and neutron -diffraction experiments
typically excite magnons of frequency 10' cps, so
that only atoms within a distance of 1O' A of the
surface can receive this information and can dis-
tort in accordance with the equilibrium strains .
Thus, if the probe which creates the spin distur-
bance penetrate s deeply into the crystal, as in the
cas e of neutron diffraction, the bulk of the lattice
cannot respond and remains frozen . Thus, one ex-

citess

frozen -lattice magnons in a neutron -diff rac-
tion experiment . In ferromagnetic resonance on
metal s, however, the photo ns can only penetrate
the surface a distance d, called the radiation skin

depth. In Tb and Dy this is about 10 A for 10 -GHz
radiation, so that macroscopic strains are easily
formed in the region where the microwave s coup le
to the spin system, making free -lattice behavior
possible .

In this section we calculate in detail the micro-
wave absorption expected in resonance experiments
in which a large dc magnetic field is applied along
the hard axis in the basal plane of ahcp metal.
Typica 1ly, these are the above -mentioned experi-
ments of Bagguley, Ros so1, Wagner, and Hart.

The experimental configuration is as shown in
Fig . 3 . The crystal is cut so that the e direction
is perpendicular to the metal surface . The photon
beam is incident along this direction . The radiation
is linear ly polarized in the plane of the metal sur-
face, and the amplitude of the wave is damped out
in a skin depth d . A dc magnetic field is applied
along the hard -crystal direction in the basal plane,
in a directionperpendicular to the polarization of
the photon beam (which is taken to be in the x direc-
tion for this ca.lculation) . The spin system is as-
sumed to be aligned fully along the applied field in
the ground state .

Let W00. = probability/time of transition from
state P to P', where P and P

' are states of the spin
system . Then

W„, = (2-. /e)
~

(P
~

V
~
P)

~

'~(E, E,, + e&), -
as is given by Fermi's Golden Rule for theabsorp-
tion of quantum A~ from a time -dependent electro-
magnetic pe rturbation field . We calculate W'~~. for
the photon -magnon interaction in an optical pumping
experiment. The microwave magnetic field inten-
sity inside the metal is

H = (a, e-'""'"e'" + c. c.) x

and the pe rturbation potential is

( V)=tgq f-fH (H„ t )

-Zf(1+i) 0

tent

+ C C )

Here p, f is the magnetic moment on the fth site.
We assume that other processes are more favorab le
to magnon decay than the photon -magnon interaction,
so we only consider absorption processes . There-
fore we omit the complex conjugate term and obtain

~f ((1fxIf0 e

Now w e have

Sf (l1f /gee ) 0 (Sf + Sf ) (ZS) (af +a/ ) .

Here g is gyromagneti c ratio, p, & is Bohr magn eton,
and a& is a boson spin -annihilation operator on the

fth site . Substitution of spin -deviation operators
for pg „yields

p' ()S)1/ Ztxlt Q Q e Zf(1+ )/0 t( + t)
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Now Fourier transform the boson operators:
vr rr ~) ~» -Z (1+))I d I -$q' RV=Hp ~y ~pe ~ ~a~e

+a ', e"-~) (S/2N)"'gp,

Summing first over the Xz and Yz components of

Q, then over q, and q„we obtain

1
+(u —v ) q+ — n

d d

Using Eqs. (11) and (12), the square of the matrix
element for the absorption of one photon and the
creation of one magnon of wave number q is

x(a, e " f +a,'e" &) —~

Here N, is the number of unit cells in the z direction
and N = N„N, N, . The suppressed notation q, = q and

aq ap 0 &
1s also Used

Now the damping distance d «L„ the thickness of
the crystal. So one may take the upper limit of the
sum on Zz as ~ with negligible error, and convert
the sum to an integral:

f dE"
p

e being the hcp lattice parameter. Then using
N, c =L„we can write

(n. + 1)
[(1/d- q)'+1/d'](A, +H, )

'

Here n, = (e8 "' —1), and E(q) = (E~. —EB) is the
magnon energy with wave vector q. We assume
that n, = kT/E(q)» 1 in all regions of temperature
and wave vector of interest. Then the transition
probability W„(q) is given by

jg I, 0 g +H (1/d — ) +1/d
(13)

Neutron-diffraction studies show that the magnon
spectrum is broadened somewhat at q = 0, so we
will assume a Lorentzian broadening of the energy
at fixed wave vector. To account for this in Eq.
(13) we make the replacement

aq=uq &q -Vq Q

Here u, and v, are c numbers and satisfy

(10)

(q + 1/d —i/d) (1/d —q i /d)—
Now we make a Bogoliubov transformation from the
boson operators a, to the magnon operators n, :

Here y is the width of the magnon spectrum.
Since H is parallel to the metal surface, it is con-
tinuous across it. Thus Hp is the amplitude of the
incident radiation, and l Hp I is related to the ele-
ment of area under the intensity distribution of the
photons in the following way:

S„=f((u) d(u = (co/8m) Re(E x B*)= (co/8m) I Hol
' .

uq =u„q=uq~ Vcf =V„q=Vz .
Substitution of Eq. (10) into the commutation rela-
tion [a„a,t]= 1, and requirement that n, satisfy
the boson commutation rules, gives the relation

u u"-v v*=& .c c a e

The requirement that the Hamiltonian of Eq. (7) be
diagonal in n„

H = ~,Z(q) n, 'n, ,

with

&(q) = [4,)'- (H,)']"',
gives further relations among the c numbers:

u, u,"+v,v,"=A, /&(q),
(12)

2uv, = ,HZ/( )q.

Then, under the transformation of Eq. (10), Eq.
(9) becomes

SN gp~ 1 i
V=iH —

~& (u ~ -v ) -q+ ———
0 2 L a -a

Here S,„is the time-averaged Poynting vector at
the metal surface and f.-p is the speed of light. Thus
we have

I H, l

' = (8v/c, ) f((u) d(u .
Now assume a Lorentzian shape for the photon
spectrum:

1(~)= (r,h/v) [(~ ~,&)'+ l r', h—]
' .

Here y» is the width of the spectrum and ~„ is the
center frequency of the incident radiation. Making
the above replacements and substitutions in Eq.
(13) and integrating over all photon frequencies we
obtain

E(q) (r.h+ r )'
rf

@
+

4

The photon beam is usually generated in a klystron
tube and has a narrow linewidth. So we assume
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Here

N, = SNSg' g, my /c, L, 8

X —+ ——q

and is independent of L, by virtue of N in the nu-
merator.

The transition rate to the q=0 state is then

( )
NOATd y — E(0)

( 4)
(A, + J3,)L, 4 " e

The total transition rate to the states q& 0 is given
by

dq W(q) = I„,Noh& (15)

where
t~ic - p

I =' ~+"J A+8, 4
E(q) '

2- -1

X 2 + ——q

Equation (15) represents the total absorption by
frozen-lattice magnons, whereas Eq. (14) is only

proportional to the absorption by free-lattice mag-
nons. To obtain the total contribution one must
multiply Eq. (14) by the number of free-lattice
states. Using the formula for the skin depth of
periodic crystal distortion derived by Evenson and

y~» y». . Then the transition rate from a state with

n, magnons to (n, +1) magnons becomes

No kT y — E(q)
L(A+8) 4 ' 8'

I.iu, '3 one can estimate the number of such states.
Taking the radiation skin depth of the metal to be
10 A, clamping is found to be ineffective within
this skin depth for magnons of wave number less
than 10 A '. This corresponds to about 10 mag-
non states along the hexagonal axis of the Brillouin
zone of Tb or Dy metal (using sample dimensions
typical of published FMR work). The total absorp-
tion by free-lattice magnons is then Wr = 10' W(0).
The integral I~ was computed numerically, and

E(q) = E(0')+ Cq was assumed in the integration.
The microwave absorption versus external field
is plotted for a variety of temperatures in Figs.
4-8 for Dy and Tb. These absorption curves were
normalized by taking the maximum absorption at
each temperature equal to unity. The curves are
drawn only for field values above the domain-
alignment field (i. e. , that field necessary to align
all the magnetic moments ferromagnetically).
Such a domain-alignment field is finite even below
the Curie temperature, since ferromagnetically
aligned domains tend to align in a random fashion
along the three easy axes in the-basal plane.

The absorption of 10-GHz microwives is shown
in Fig. 4 for Dy metal. The absorption profile be-
low the Curie point (85 K) is characterized by a
sharp rise, followed by a long asymmetric tail
which persists to very high-field values. Virtually
all the absorption in the peak region is due to free-
lattice-magnon processes. The ratio Wr jWr is
less than 0. 2 near the peak at the three tempera-
tures shown. Absorption profiles above the Curie
temperature have the same characteristics as the
90-K curve shown in the figure. In this curve the
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80K

0.5 0.5—
O

cn l I I I

l6 18 20 22 24 26

IO—

4J
lK

I
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1.0—
FIG. 4. Microwave absorp-

tion vs external field in Dy met-
al at 10 GHz.
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strongest microwave absorption occurs at the
"critical field, " that field at which the antiferro-
magnetically aligned domains flip into a fan or
ferromagnetic configuration. Thus in the high-
temperature region, the spin-wave absorption is
masked by strong domain-alignment effects. The
long tail in the observed absorption is due to off-
resonance absorption by both free- and frozen-lat-
tice states, the frozen-lattice states contributing
most strongly. At 150 K, for example, the ratio
Wr/Wr, is 4. 5 over the whole field sweep. One

should note a tendency for the linewidth of the ab-
sorption to narrow with increasing temperature
below the Curie point. This tendency was observed
by Bagguley and Liesegang, g and later by Rossol. 7

The absorption of 20-GHz microwaves is shown

in Fig. 5 for Tb metal. The general characteristics
of the absorption are the same as for Dy. At low

temperatures there is a rather sharp high-field
peak. The position of this peak shifts to lower

5elds as temperature increases, until it falls be-
low the domain-alignment field at 140 K. The
maximum in the absorption is again masked at high
temperatures by domain-alignment effects, but the
long tail should still be observable, and is due
primarily to off-resonance absorption by the frozen-
lattice states. The absorption below 120 K is due
mainly to free-lattice-magnon processes, Wr /Wr
being less than 0. 2 in the peak region. This ratio
increases to about 1.0 at 140 K, and frozen-lattice-
magnon processes dominate the absorption above
160 K. The characteristics of the absorption pro-
files shown in Figs. 4 and 5 (i. e. , general shape
and peak positions) are observed experimental-
ly g 9) 11

The absorption of 40-GHz radiation below the
Curie temperature is shown versus field in Fig.
6. A barely resolvable double peak occurs below
85 K. Experimentally the double peak is not ob-
served, a fact which is not surprising because the
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K
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FIG. 6. Microwave absorption vs external field in Dy metal at 40 GHz.
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FIG. 7. Microwave absorption vs external field in Tb metal at 100 GHz.

peaks are so close, overlapping almost entirely.
A strong single peak is observed, however, and
occurs near the center of the calculated double
peak. The ratio Wr/Wr is about 0. 2 in the peak
region, so that on-resonance absorption by free-
lattice states is the important absorption mecha-
nism in the production of the peak.

The absorption of 100-GHz radiation in ferro-

magnetic Tb is shown in Fig. 7. Below 200 K, the
primary absorption occurs at the domain-alignment
field due to the sharp low-field dip in the frozen-
lattice-magnon gap (see Fig. 2), which makes the
off-resonance absorption by frozen-lattice states
quite strong. At higher fields in the low-tempera-
ture region weak structure appears due to on-reso-
nance absorption by free-lattice magnons. This

1.0— I.O— I.O—

hJ)
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K
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z 0.5—
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FIG. 8. Microwave absorption vs external field in Dy metal at 100 GHz.
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structure, however, is not resolvable experimental-
ly, probably because of the especially low sensi-
tivity of high-frequency microwave experiments.
This weak absorption structure is also masked

by the very strong absorption near domain align-
ment. Above 200 K, on-resonance absorption by

the frozen-lattice states becomes possible. The
field at which this resonance occurs increases with

increasing temperature, shifting the peak to higher
fields.

The absorption of 100-GHz radiation for Dy met-
al is shown in Fig. 8. A strong double peak appears
below 80 K, and is due almost entirely to on-reso-
nance absorption by free-lattice states. Above

85 K, the low-field peak is lost below the domain-
alignment field, and at 110 K the high-field peak is
lost. The curve shown at 110 K is representative
of curves at higher temperatures. In this curve
maximum absorption occurs at the critical field,
and is followed by a long absorption tail. Off-
resonance frozen-lattice processes are responsible
for most of this absorption. The profiles shown in

Fig. 8 have been observed in Dy for temperatures
above the Curie temperature. ' According to our
calculation, the double peak should be clearly ob-
servable at 70 K, although no accurate study of
ferromagnetic Dy has been made to date. Future
observation of this double peak would substantiate
further the evidence that free-lattice magnons play
an important role in low-temperature microwave
absorption.

The resonance field is defined as that field at
which maximum absorption occurs. The resonance
field versus temperature for Dy metal is shown in

Fig. 9 for microwave frequencies of 40 and 100
GHz, along with experimental points. ' ' The the-
oretical curves are obtained by taking the field
values at which the calculated microwave absorption
is a maximum. The average position is taken in

the case of barely resolvable double peaks. At 40
GHz the resonance field increases dramatically as
temperature is reduced in the ferromagnetic re-
gime. This is due to the on-resonance absorption
by free-lattice magnons, which occurs most strong-
ly near the planar anisotropy field where E(0) dips
to zero (see Fig. l). The planar anisotropy field
increases with decreasing temperature, producing
the sharp rise in the resonance field. The data of
Bossol verify this predicted rise quite conclusively.
Above the Curie temperature the 100-GHz absorp-
tion peaks occur at the critical field, so that the
data of Wagner follow the critical-field curve quite
well, except for a small deviation toward higher
fields above 140 K.

Below the Curie temperature of Dy free-lattice-
magnon absorption is the dominant process at both
40 and 100 GHz. Above the Curie temperature,
frozen-lattice absorption is the dominant process
at both 40 and 100 GHz. Thus, one expects the
temperature dependence of the resonance field to be
similar at both 40 and 100 GHz over the complete
ordered regime of Dy. In ferromagnetic Tb, below

140 K, frozen-lattice-magnon processes dominate
100-GHz absorption, producing a peak at the do-
main-alignment field; whereas free-lattice-magnon
processes dominate 20-GHz absorption, producing
a peak at the effective planar anisotropy field.
Therefore, the theory predicts a striking difference
in the behavior of the resonance-field curves at the
two frequencies. The resonance field versus tem-
perature for Tb metal at 20 and 100 GHz is shown

in Fig. 10, along with the experimental points at
24 GHz. '" There is a dramatic increase of
8 kOe in the 20-GHz curve between 140 and 100 K.
Over the same temperature interval, the 100-GHz
curve changes less than 1 kOe. The experimental
points fall almost exactly on the theoretical curves,
providing an extremely strong confirmation of the
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theory.
One notes that good experimental agreement is

attained in both metals using the statica. lly mea-
sured planar anisotropy constants ' with a tempera-
ture renormalization of I»/p for Dy and I9&2I,&2

for Tb. This result differs somewhat from the
earlier results of Cooper, presumably because of
the inclusion of the field dependence of the mag-
netization in the calculation of the spin-wave gaps.
A neutron-diffraction study of Tb' has verified
that the planar anisotropy of that metal is of mag-
netoelastic origin, so that the temperature renor-
malization I9&2 I,&~ is well justified. The renor-
malization I»&, for Dy assumes that the planar
anisotropy arises from crystal field symmetry
in this metal. Such an assumption seems to be
mell justified by the excellent agreement of the
theory with microwave-absorption data. A neu-
tron-diffraction study of Dy, similar to that done
for Tb, seems appropriate at this time to see if
there is indeed a difference in the origin of the
planar anisotropy in these metals. The micromave
experiments point very strongly to this conclusion.

is a measure of the coupling strength.
Neutron-diffraction studies of excitation spectra

in Tb and Tb alloys show a large splitting between
acoustical-magnon (MA) and transverse-optical-
phonon (TO) branches in the region of the Brillouin
zone where the energies of the unperturbed modes
are equal. '

~ Very recent measurements also
show a smaller splitting between MA and transverse
acoustical (TA) branches. ~3 These experimental
results are shown in Fig. 11. In Sec. II 8 we
calculate the latter splitting using the local spin-
strain interaction, and good agreement with ex-
periment is attained. This interaction fails to
couple acoustical to optical modes, however, and
therefore does not account for the observed MA-To
splitting. In Sec. II C a possible mechanism
for the coupling of these modes is proposed.

B. Calculation of Splitting

First we compute the &-representation terms of
the magnetoelastic interaction. The local strain
functions for this representation are

&gg = z&s I~. (~y —&g.a)+ &,(~y —~g.6)1,

II. MAGNON-PHONON INTERACTION
gf 2K/ ['5y(vf lfyQ) + 5g(Yf Yfyg) I

(16)

A. Introduction

In Sec. I me computed the effects of uniform
magnetostriction on the spin-wave energies. In
this section, we calculate the effect of arbitrary
vibrations of the crystal ions about the uniformly
strained configuration produced by the spin order.
In general, the vibrations produce nonuniform
strains which couple locally to the spin system
through the local magnetoelastic interaction of
Evenson and I iu. '3 Normal modes of lattice and

spin vibrations couple strongly when vibrational
frequencies are nearly equal, producing mixed
spin-lattice modes. The magnetoelastic coupling
removes the degeneracy of the unperturbed spin
and lattice modes at the point where the dispersion
curves cross, and the size of the branch splitting

Here f= (l, s) labels the position of the f th atom in
the crystal, and & labels the positions of its 12
neares t neighbors.

From lattice-vibration theory the second quan-
tized form of the components of displacement from
the unstrained equilibrium positions is given by

(17)

Here i = (x, y, z) and s = (0, —,'c) label the two atoms
of the unit cell, p labels the mode of vibration, and
/ labels the unit cell. The quantity R„"=(I/Nnzu, g)
where N is the number of unit cells, m is the mass
of an ion, and co„" is the frequency of a normal mode
of crystal vibration. The quantities v&', are the
components of the polarization vector of the lattice
wave, and 8 and P' are the annihilation and creation
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operators for the phonons. The components of the
polarization vector must satisfy the following ortho-
normality condition:

(18)
lyS

In order to compare the results of the calculation
with measurements on Tb, we assume the lattice
modes to be propagating along the c axis of a hcp
crystal, and to be transverse polarized along the
a axis in the basal plane. The Cartesian coordinates
appearing in Eqs. (16) are defined with x along a
and z along c. For such lattice waves, the solution
to Eq. (18) for the polarization vectors is

v„o=~ a
Ci

Brillouin zone in the single-zone scheme. The hcp
structure is considered to be made of two identical
interpenetrating hexagonal sublattices. Two kinds
of spin deviation operators af and bf are introduced
corresponding to each of the two sublattices. +
Then the spin functions of the e representation are
transf ormed to spin-deviation opera, tors as fol-
lows:

Sfi= —(-,'S')' (ai +ay),

= —(-,'S')'i s (bi'+ bi),

Using Eqs. (20) and (21) in the local magnetoelastic
Hamiltonian and summing over lattice sites we ob-
tain

Ql

elec�/2

g
1

vxcia =
v'2

—1
vs is =

v",, =v",,=0 (s = 0, —,'c; p=1, 2) .

(19)
where

2 2c

x[a, +a, +X, (b, t+ b,)], (22)

if p=1

Then, using Eqs. (19) in Eq. (17), we find the local
strains of Eqs. (16) to be

and

if p=2 .

1f 2 ~2 ua

(20)
S~ =0,

where

~f1 ~f2 1

tlat = —ttis= 1 if f = (l, —,'c) .
The summation on q is taken along the c axis of the

Here a, and 5, are the Fourier transforms of the
spin-deviation operators af and bf.

The terms in the magnetoelastic Hamiltonian
that transform according to the y and n represen-
tations are calculated in an exactly similar way.
A surprising result is that H', = 0. The local
strains are zero in this case, due to the choice
q=qc and the hcp symmetry of the crystal. The
spin functions of the n representation all involve
bilinear combinations of the magnon operators, so
H, contains only processes that do not conserve
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particle number, and which contribute only to
broadening effects.

Let H ~ denote the total second-quantized Hamil-
tonian relevant to mode mixing:

zip

where

x [(at+a, )+X,(bt+b, )]j, (23)

B'(NS ) ~2i . qc
2/2 sin

2
R

zip

The quantity S~„ is the unperturbed phonon energy,
and A„and 8„.are the coefficients that appear in

Eq. (7) with a subscript j= 1, 2 added to denote
acoustical- or optical-magnon branches, respec-
tively. (The earlier discussion was in the double-
zone scheme using a Bravais lattice. ) The factor
—,
' in Eq. (23) is inserted to prevent double counting.
The boson operators a, and b, are a mixture of
acoustical- and optical-magnon-annihilation opera-
tors. We define operators c, and d, by the follow-
ing transformation:

a, = (1/v 2) (c, + d, ),
b, = (1//2)(c, —d, ) .

Expressing H ~ in terms of these new boson opera-
tors we obtain

fects, and so couples only local displacements to
the spin system. In the excited states of the lat-
tice, however, dynamic quantities, such as lattice
angular momentum, may couple to the spins. In
Sec. IIC, it is shown that a kind of "I Sco-upling"
does, in fact, couple the acoustical magnons to the
optical phonons, giving rise to a splitting. This
mechanism, however, does not lead to any coupling
of acoustical modes, so let us use the mode-mixing
Hamiltonian H ~ to calculate the splitting between
the TA and MA branches.

For the mixing of these specific modes H ~ re-
duces to

B,=Z, E(q) n,'n, +Z, a(u, gtp,

+Z, &,'(n,'+n, )(p', +p, ) . (26)

Here r ', = [E(q)/2(A, +B,)J
'~2 b„and the mode

labels p and j are suppressed. We diagonalize this
Hamiltonian by defining a new annihilation opera-
tor:

Pq = tg Q q+ t2Qq + t3P q+ t4Pq

The imposition of the condition [y„H ~]= Q, y«
gives four homogeneous equations in the coeffi-
cients t&, t2, t3, t4. The quantity 0, is the energy
of the mixed phonon-magnon mode. The solution
of the Heisenberg equation of motion is nontrivial
if the following condition on the secular determinant
is met:

[E(q) —II, J

+d d +d «d„)«+8(d P««P, + /2 6 «(P «. + P «)

x[(c,'+c, ) 5„+(d,'+d, ) 5„]J. (26)
(h(u, —n, )

(8M«+ Q«)

=0.

Here 5„and &p2 are Kronecker &'s. Finally, we
make a Bogoliubov transformation of the operators
c, and d, to magnon-creation and -annihilation op-
erators:

Cq =Qgq Qgq
—

Vgq Qg

dq =Q2 Q3 —V2 Qg, q ~

(26)

Here o.~, and as, are the annihilation operators for
acoustical and optical magnons, respectively. The
coefficients of the transformation satisfy relations
analogous to Eqs. (12). Substitution of Eqs. (26)
into Eq. (25) yields

B~-s = ~ E~(q) n~«n~«+ ~ @'d««p««&««
2 ~e P~a'

E (q)
-1~3

+ ~ 2(~
' B, &„~~,(n~, +n~, ,)(8,', , +8„)

ipse

~ ei+ @i~

(27)
By virtue of the Kronecker 6, 5&P, that appears in

Eq. (27), the magnetoelastic interaction of Evenson
and I.iu [Eq. (1)]fails to account for the coupling of
acoustical and optical modes. This interaction was
originally devised in order to describe static ef-

(29)
In writing Eq. (29) we use b', =b', *. The determi-
nant may be simplified easily, and reduces to the
following equation for the eigenvalues of the mixed-
mode state:

O', —Il,'([E(q) ]'+ (K(u, )'J+ (g(u, )'

x[E(q)]'-4II~, I~', I'E(q) =0. (3o)

One observes strong mixing when E(Q) =Arne, Q
being the wave number at which the branches
"kiss. " In this case Eq. (30) has the solution

II = E(Q) ~
I
he

I

then the energy splitting A~ at Q is

B b S (Ac+Be) ~~2 . Qc
([E(Q)]"

Taking E(Q) to be 2. 0 meV and Q = 0. 25 A ' we
find

~~=0. 86 meV .
This compares well with the observed splitting
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and agrees with the results of an independent cal-
culation by Jensen. +

C. Mechanism for Coupling of MA and TO Modes in Tb

In this section a mechanism is proposed which
couples acoustical magnons to optical phonons
along the c axis of a hcp crystal near the edge of
the Brillouin zone. Such coupling results in a
splitting of the dispersion relations of these modes
as observed in Tb metal, and cannot be explained
using a formulation of magnetoelasticity which
couples the spin system to local strain fields.

In order to see how the lattice couples to the
spin system, one must look in detail at the way the
ions vibrate when a TO mode is excited along the
c axis near the Brillouin-zone edge. One sublat-
tice of atoms, say f= (I, 0), remains nearly sta-
tionary, whereas the other sublattice, f= (I, —,'c),
vibrates with nearest-neighbor planes on the sub-
lattice, being nearly 180' out of phase. Thus,
angular momentum is generated by the vibrating
sublattice, which can be coupled to the spin mo-
ments on the stationary sublattice. This formula-
tion yields a kind of spin-lattice L-S coupling, and
it can be written phenomenologically as follows:

Hm, = Z A[(Ry —Rfgg) x (vy —vy, 6)] ~ S~ . (32)
f5

Here Q is the position vector of the f th site, vz
is the velocity of the f th site, and A is an unspec-
ified coupling constant. We apply Eq. (32) to Tb
metal, assuming that the net magnetization is con-
fined to the basal plane along the easy a axis. We
take the polarization of the TO phonons to be in an
arbitrary planar direction, specified by angle 6 to
the a axis. Then, assuming v&= 0, the part of Eq.
(32) which leads to magnon-phonon mixing is given
by

H~ p
= E (7 ) —

vy~n Sy cosH
A.c

(33)
f6

Here the upper (lower) sign is used when summing
on atoms in the upper (lower) nearest-neighbor
planes of the f th atom. The quantity c is a lattice
constant. The quantity S& is the component of the

spin perpendicular to the a axis, and may be ex-
pressed as a linear combination of Fourier-trans-
formed spin-deviation operators of the sublattice
f=(f, o):

Sz i(-,'NS)'~'Z„(a~e '"' —a--, e'"' ) .

Then noting that the Fourier components of the dis-
placement r&„depend on time, according to the

factor e'"~', we use Eq. (17) to transform v&„
= (d/dt)(rz„) to phonon operators. Then, after
summation over f and 5, Eq. (33) becomes

~
= aeAi (NS)' (cos 8)

Z,~,R, (sin2qc) (pt, +8,)(g, —~t) . (34)

Here the optical-phonon index, p= 2, is suppressed.
The spin operators of Eq. (34) may be transformed
to a linear combination of acoustical- and optical-
magnon operators by using Eqs. (24) and (26).
Then the part of Eq. (34) which couples TO phonons
to acoustical magnons becomes

HTO-MA ~ ~ (8 +8 ) (+- + ) (36)

Here the acoustical-magnon index, j=1, is sup-
pressed. The strength of the interaction, b„ in
the region of strong coupling is written explicitly
as

3Aci 8 Aq+&q . Qc

(36)
~here Q is the wave number at which the acoustical
and optical branches cross. The unperturbed TO
phonons are degenerate with respect to polariza-
tion direction, so we consider 8 as uniformly dis-
tributed between zero and v/2 with probability den-
sity P(8) =(-,'w) ~. Then the splittings 4o are dis-
tributed with density P( ~

cos8
~ ) = 2/(v sin8). This

is reflected in the energy-absorption profiles of a
neutron-diff raction experiment which should show

sharp peaks in the neutron scattering by quasi-
particles in the region of maximum splitting (i. e. ,
for 8=0). The peak should be asymmetric, drop-
ping sharply to zero for energies greater than that
given by maximum splitting, and more gradually
to a small minimum at the unperturbed energy of
the phonon and magnon excitations.

One may account for the natural linewidth of the
quasiparticle states by allowing the 6-function dis-
tribution of each value I cosa

~ to broaden into a
Lorentzian distribution. Letting x=

~
cos~ ~, the

probability density for the unbroadened spectrum
is P(x) = I dr 5(x r)P(r). In th-is expression we
make the replacement

6(x - r )- (r/~) t(x x')'+!r-'] ',
where y is the linewidth of the spectrum. The dis-
tribution which allows for broadening may then be
written as

P(x)=(2r/v) 1 dr(1 —ra) '~a(r —2xr+xa+ ', y ) ' . -
0

(37)
The integral in Eq. (37) has been computed numer-
ically and shows a strong asymmetric peak in the
region of maximum splitting (8= 0). a' If the model
proposed here has any validity, this line shape should
be a characteristic of the neutron-energy-absorp-
tion profiles.

In order to agree with the observed splitting in
Tb, the value of A in Eq. (36) must be of order
10 '8 g/sec. We calculated A assuming that an ef-
fective field at the stationary sites is generated by
current created by the vibrating neighbor ions. This
classical approach yields a value A that is four or-
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ders of magnitude too small. A much stronger in-
teraction might be produced if the conduction elec-
trons mediate the interaction between the lattice
and the local spins, in analogy to the strong indirect
exchange interaction which couples the local spins
together in Tb. Mediation by itinerant 5d electrons
is plausible, since their large orbital moments can

couple effectively with the field produced by the
vibrating lattice.
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