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The Anderson model of a localized magnetic center is used to study a system of interacting
localized moments in a dilute magnetic alloy. The operator equation-of-motion method is used
to calculate both the localized and the conduction-band quasiparticle excitation spectra in a
manner which carefully treats both the Coulomb and the scattering interactions. Hole-electron
pairing is used to facilitate the accurate evaluation of the effective interaction between centers.
This effective interaction causes the localized quasiparticle excitation energies to spread and
shift by an amount proportional to no {no being the density of centers). The conduction-band
quasiparticle excitation energies are spread and shifted by an amount proportional to no. There
are no gaps in the conduction-band spectrum. The Born series for the conduction-band scattering
amplitude is summed analytically. It is shown that spurious gaps are an artifact of any finite
order of Born approximation. Self-consistency is achieved both in calculating thermal averages
{especially local magnetic moments) and in satisfying the Friedel sum rule.

I. INTRODUCTION

In this paper the study of an interacting system
of localized moments in a dilute magnetic alloy will
be continued, with each localized center containing
a magnetic moment being represented by the model
of Anderson. ' The paper shall examine the quasi-
particle excitation spectrum associated both with
the localized centers and with the conduction band
of the host metal when no, the density of centers,
is small but finite. In order to properly account
for the interaction between centers, particularly
in the paramagnetic phase of the system, it is im-
portant to introduce the idea of pairing. Specifical-
ly, one pairs an electron in some single-particle
orbital, spin up, with a, hole in some single-particle
orbital, spin down. For the ca,se where the two
spatial orbitals a,re the same, this amounts to leav-

ing unspecified the orientation of the spin of the
electron occupying the orbita, l.

The quasiparticle excitation spectrum shall be
determined by means of the operator equation-of-
motion method. While doing so, special care will
be taken to achieve seEf consistency in two -senses
of the word. First of all, the various thermal aver-
ages will be determined self-consistently. This as-
sures that the net magnetic moment on any center
is evaluated self-consistently with regard to both
magnitude and direction. Second, the parameters
of the Anderson model will be chosen such that there
is consistency with the Friedel sum rule, corre-
sponding to the fact that the electric field associated
with any excess charge on a localized center must
be screened out by the surrounding conduction elec-
trons. In the absence of a local moment, the usual
form of the Friedel sum rule applies to the Ander-
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son model, as has been shown by Langreth. 4 This
author shall assume that this is also true in the
presence of a local moment. The satisfying of the
Friedel sum rule will be carried out in a fashion
analogous to that recently developed for treating
the extraorbital model of a dilute metallic alloy.

In the original treatment of interacting localized
moments by this author, use was made of a. gen-
eralized effective field. Specifically, this means
that the commutator [c„,H] was linearieed with

respect to the complete set of one-electron destruc-
tion operators c„(H being the Hamiltonian of the
system). In a second paper, ' this procedure was
generalized in order to treat the intracenter Cou™
lomb repulsion accurately. Here the commutator

[c„, H] was treated exactly, but the double com-
mutator [[c„,H], H] was linearized with respect
to c„and [c„,H]. For simplicity, only the single-
center problem was considered, although the cal-
culation could have been readily extended to the
many-center problem. If this had been done, the
results for the localized centers (but not for the
conduction band) would have been identical with
those to be calculated in the present paper.

In this paper, the third of the series, the analy-
sis is extended so that both [c„,H] and [[c„,H],
H] are treated exactly, but the triple commutator

[[[c„,H], H], H] is linearized in a, fashion dis-
cussed in detail in Sec. II. As is apparent from
the work of Kim and Theumann, this method of
truncating the equations of motion is sufficient to
allow for the appearance of Kondo-like effects'
associated with the scattering interaction. The cal-
culation of the conduction-band quasiparticle exci-
tation spectrum, with Kondo effects included, in-
volves the solution of what is, in effect, an integral
equation for the conduction-band scattering ampli-
tude. Using a technique developed for the extra-
orbital model of a disordered alloy, ' the Born series
for this scattering amplitude is summed analytical-
ly in the limit of low density of localized centers.
The resultant conduction-band quasiparticle exci-
tation spectrum has no energy gaps. In contrast,
any finite order of Born approximation will lead
to gaps in the conduction band in the vicinity of the
localized quasiparticle excitation energies. A
case in point is the results of I, where the first
Born approximation was employed. This situation
is an example of the fact that perturbation expan-
sions in the scattering interaction ' need not nec-
essarily be convergent.

Several attemptse' ' ' have been made to study
the Anderson model of a single center by means of
the Green's-function equation-of-motion method. '
None of these attempts have properly satisfied self-
consistency. Not only was the Friedel sum rule
ignored, but, more seriously, it was assumed a
priori that the center had equal occupancy by elec-

0= Ho+0),

Ho = ~ &kCk, Ck, + Eo~ C;,C&,
k, ty $, ty

(2. I)

+ UpZ c( gcq icq gc(i i (2. 2)

H, = 5 (V„c„c;,+ V „c;,c~,) .
k, $, e

(2. 3)

The one-electron energies &, (for the conduction
band) and &p (for the localized centers) are mea-
sured relative to the Fermi level. The total Hamil-
tonian represents a system of conduction-band elec-
trons interacting with electrons in localized s orbi-
tals on impurity centers, the index i designating
centers. The positive Coulomb energy Uo is asso-
ciated with any center containing two opposite-spin
electrons. We shall take

(2. 4)

so that H, is Hermitian. We will later need the fact
that

y y ik ~ P~ (2. 5)

where R, is the position of the ith center and Vk is
the matrix element for a center located at the ori-
gin. If we had only one center in the whole crys-
tal, H would be the Hamiltonian for the Anderson
model of a localized magnetic center. The electron
creation and destruction operators obey the usual
anti commutation relations.

We wish to look for an operator 8 such that

[8~ H] = tubs (2. 6)

If Eq. (2. 6) is exactly satisfied, hu is necessarily
seal. If A& is positive, 8 is a quasiparticle de-
sfruction operator associated with an excited state
of the system containing one quasiparticle of ener-
gy h&. If h~ is negative, 6 is a quasiparticle

trons of both directions of spin, which is equivalent
to assuming a vanishing local moment as far as
self-consistency is concerned. Once such an as-
sumption is made, it is inappropriate to attempt,
as did Theumann, to infer an effective exchange
constant. In contrast to recent suggestions, "'"
the fact that Theumann's exchange constant differs
from the value calculated for the Anderson model
by perturbation theory' does not necessarily imply
inaccuracies in truncating the equations of motion,
but rather the absence of a local moment. It
should be added that attempts such as those of
Mamada and Shibata" to attack the problem with
perturbation theory also forego self-consistency
in the sense that the unperturbed state is, in gen-
eral, characterized by a different value of local
moment from that of the perturbed state.

II. EQUATION OF MOTION

The Hamiltonian of our system is



2706 B. H. PARMENTEB

creation operator associated with an excited state
of the system containing one quasiparticle of energy

I bio I. If Eq. (2. 6) is only approximately satisfied,
then h~ may be comPlex. In this case, the signa-
ture of the real part of h& determines whether 6 is
a quasiparticle creation or destruction operator.
In any case, h~ must be in either the second or the
fourth quadrant of the complex ~ plane to ensure
that the qua. siparticle excitations are causal (i. e. ,
decay with increasing time). The lifetime of such
an excitation is given by

(2. 7)

where —i~2 is the imaginary part of &. Values of
~ in the first or third quadrant indicate instabili-
ties.

We introduce the notation

AT
lo Cioci

for the particle-number operator, in terms of which

we can write

a(C«
1 aC«a —CkkaC«1 a)

—Zk. Vk i C« ~ - a(Cki - aCia —Ck'aCi a) ~

(2. 16)
['@21«a ~ H1] ~i V «icy, aci aCia

+&, V, i C« a(C«1 aCia —Ck«aCi a)

(2. 17)
The basic approximation of this paper is now in-

troduced. The right-hand sides of Eqs. (2. 16)
and (2. 17) are fineari2ed with respect to all possi-
ble c&, or ck. , operators. In other words, the oper-
ator coefficient multiplying any c~, or c, , is re-
placed by the corresponding thermal average. It
can be checked that every such thermal average has
a portion independent of no, the density of localized
centers in the crystal. In addition, the thermal
average multiplying ci, has a portion linear in no.
We make the approximation of dropping this latter
portion, valid in the dilute limit. As a consequence,
thermal averages of the type

Ho = +~ («N«, + eoZ N;, + UoZN;, N;, .
i, o

We define the operators

+iio Cifr &

+2i o +i, - o Ci o r

(2. 9) (c';.c;..), (c'; .c;,.) for i xi',

(Ckack'a ) & (Ck, - aC«'a )

are ignored. We retain thermal averages of the
form

gl

Piiko cvi „ocko Ci, -o'Ciock, -o ~

(2. 10) n„-=(N„), (2. 18)

2iko' Ckk „oCi, oc

(2. 11)

(2. 12)

[~2;., H]=(eo+ Uo) O2;.

+~k (V-ki'Plika Vki ski«a) &

[P1$«at Ol '4@ii«a s

(ski«a ~ Ho] = (2&o+ Uo &k)iI'21«a ~

[P„.„,H, ] = V«~, Ci, (C, , aC„-—aC;,C, ,)

(2. 14)

(2. 16)

Calculating the commutators of H with respect to

c„, and the various y's we get

[Cka, H] = e«C«a+ ~i Vki p1ia q

[Piia~ H] = SOD iia+ UO'Pkia+Za V kiC«a ~

bi —(Ci Cl ) ~

2«a ( iaC«a )

bk =(C Ck )

(2. 19)

(2. 20)

(2. 21)

The actual calculation of these thermal averages
will be carried out in the appendices. As is shown
in Appendix C, ni„, and b;k, are proportional to Vkik

Since Vki is inversely proportional to the square
root of the volume of the crystal, n;„and b,k, van-
ish in the infinite-volume limit. Nevertheless,
these averages make contributions to sums over k

space which are finite in the infinite-volume limit,
and thus must be retained. Equations (2. 16) and

(2. 17) are replaced by

[p,„,, H ]=&
&

V J[n;,cj, —(b;6„+b;5„)c&,]+ V, 1(n, , —n, )c„—[(b; —b )5„+(bi*—b*)&. ] ci, .]'
+Z ~ V .;(n, ,c., —b;,c, ,), (2 22)

[9 21«a ~ H1] V- ki Oni, - a nk, - a)Cia [(bi bk)bat + (bi bk )ba l Ci, - ]a
++ ~ V- '(n*k, -. «"- b", -. k .-.) .

ni, -k, a nF«a & (2. 24)

Here we have made use of the fact, proved in Ap-
pendix C, that

(2. 26)

The assumption of finite b, and b,k, introduces the
possibility of pa& inI, . Here it is hole-electron pair-
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ing, as in the excitonic insulator, '7 rather than
electron-electron pairing, as in the superconduc-
tor. Unlike the excitonic insulator, however, here
a finite 5, indicates only that an electron is occupy-
ing the orbital / with its spin pointing neither
straight up nor straight down.

I.et us, for the moment, consider some arbitrary
set of operators g~, . We introduce the vector oper-
ators

Similarly, we have

&[C'«a'~a ],)=ba. &;,
&[C'i a'@iy].&= 5;, Vg„,

&[@ala i @lj]+) 5(JUN

Here we have used the fact that

—
&inst

'Cia =
—&is

(2. 36)

(2. sv)

Pt yf — t (2. 25) In analogy with Mi, it is convenient to define

%'e define the 2&2 matrix

(2. 27)

We see that

&[4~; 4",],) = 0 if P 0 q, (2. 39)

We have need of the general matrix notation

tt t4 ~$ tt lt (2. 23)

so that we have, in effect, a set of i~dependent
vector operators. In addition, C„and 4„are
normalized, i.e. ,

&[~It
' ~a].&

= &[ lf
'

1~].) = ~4 ~

An arbitrary M can be expanded in terms of the
four matrices The other vectors are not normalized; for exam-

ple~

&[~u ~a~],&='u«~4-'u;)

0-1 ' '4 O1.

Equations (2. 2V) and (2. 28) imply that

&[+„+.'].&
= &[~„~,"].&' .

We define the vector operators

Pai t

&2iat

@Pi @B +i+li ~

@lid @1 i%

@Rik +'0+ii t

Thus we have

= a (n;, +n;, )v, +-,'(n;, —n;, )7,

(2. 29)

(2. so)

(2. sl)

(2. 32)

(2. 33)

(2. 34)

The normalization matrices for Q„, aIld 4 p„are
rather complicated; fortunately, they are not needed
for the following developments.

Equations (2. 11)-(2.15), (2. 22), and (2. 23) can
be rewritten as

= (&o~4+ f o«) @i*+~o+a ++a ~-a~'4

[e„,P]
= [~on (7'4 -%)+ +a ( C«a —l'a ~'0 ia) ]@i~

+ [&,~, + U, (~, —~,)]e„+Z, [v,*,~„„—v„e„„],
(2. 4s)

[@~ a ff]
= &O+li~ —U(i'Ui~+ai

+(v„.(~ -e,)+v„[(~,—o,)7, —ff;u, ])e„,
(2 44)

[@a~a ~ ff]

= (2oo+ Uo —&a)'4~a —&oCa~a~

(e('u' '"a)+'U~f [(&a —ao)~4 —f7o(7'4 —'u;)]]'@y; ~

(2. 45)
This replacement of 4's by +'s in the commutators
has lead to considerable cancellation of terms.

We see that the commutator of H with any C~ can
be written as a linear combination of the various

Thus we assume that the operator 6 of Eq.
(2. 6) can be written in the form

—a(by+ b(*)7'g —a(b; —bg )Aa . (2. 35) (2. 45)



2'7O8 R. H. PARMENTER

where

(2. 47)

H, A,'[X(P, P') —8'(ue„.~,] = O,

where we are defining

(2. 49)

is a vector coefficient. Here we are using the no-
tation

(P) = (l )+(If)+(2f)+ (»i)+ (2&i) . (2. 48)

If we substitute Eq. (2. 46) into (2. 6), take the anti-
commutator with respect to 4~, , thermally aver-
age, and divide by the normalization matrix
([%k, ; Ckt, ],), we get the set of equations

X(p, p') = ([ I-. @o H] ' ~' ], ) ([4' ' ~' ].) ' .
(2. 50)

Note that because of Eq. (2. 39) every term of
([[4k, P]; 4k. ],) is automatically proportional to
([4k. ; 4'k. ],). Thus it is not necessary to know

the latter in order to evaluate X(p, p'). In turn,
setting p' equal to k, 1i, 2i, 1ik, and 2ik, we can
write Eq. (2. 49) as

A,'(o„-h~)+2, V „A'„=0, (2. 51)

Al~[(&o-&~)&4+ Uo&~]+~~kAk Vk~+Ao~ [Uo&~(«-&~)+~k (Vk~'U~k —Vk~'Uik)]

++~kAl;kfvk((&; —&k)+&;k[(&k —&o)&4- Uo&;D

-&~kAo&kfvk*;(&; -&k)+&lk I(~k- ~o)«- Uo(r4-«)]]=0 ~

pl[(6p+ o M)«UOR ]+ 1( 0
—UOZk (Al&QN+Aoik VO) —0,

A„,(&, —h )+A„V* -0,

Ao, k(2eo+ Uo kk h&) Ao& Vk&
= 0 .

(2. 53)

(2. 54)

(2. 55)

These last two equations immediately give

A„„=—Ao; V„*;(k —Pf(o) ',
Ao;k =+Apl Vk;(2~o+ Uo

(2. 56)

(2. 57)

l

Here we have made use of the identity

[(kp —hQ)rk+ Up%i(] [ (&p+ Uo —hQ)r4 —Up'u;]

—
Uphill((v'4 —&)) =—(kp —hQ) (kp+ Up

—hQ)r4 . (2. 65)

It is shown in Appendix 0 that

Zk [Hi'~ (KkkkR) + V okil( kook&+—260 —Up) ]
=(x —1)U [(&p+ Up)r, —Up~, ], (2. 56)

~k I vkI'(&;-&k)[(~k-@~) '-(~k+@~-2~p- Uo) ']
= (X 1)Uo ko(&o+ Uo)v4 ~ (2 59)

(2. 61)

where we are defining

A=K Q) (2. e2)

I.= x ' [(~)' —(2&p+ Up)h'(u+Xqp(op+ U, )], (2. 63)

Q( =L[(ep+ Up —hQ)v4 —Uolte]
' . (2. 64)

The proportionality factors (x —1) and (X —1) are
real functions of ~. The functions ~ and X differ
appreciably from unity only if the temperature T
is comparable to or smaller than the Kondo tem-
perature T~, and even then only if h lies in the
immediate vicinity of zero or (2&o+ Up). (By im-
mediate vicinity we mean that the energy difference
is comparable to or smaller than koTr. ) With the
aid of Eqs. (2. 56)-(2. 59), Eqs. (2. 52) and (2. 53)
become, respectively,

(2. 60)

Ao( = —A~lk Uo [(kp+ Up —hQ)7'4 —Up'll, ]

W-=&k Ivkl'(" h~) '=(-2v) 'fd'kI vkI'("-h~) '
(2. sv)

Eliminating At„ from Eq. (2. 51), we get

A,'[(o„-h~)~, —
I V, I'Zq ]

i
—5 A,', V,*V„,&~e""-k"~~q =0. (2. 6e)

The self-energy TV is defined for ~ lying in either
the second or the fourth quadrant of the complex
~ plane. In the first or the third quadrant, W is
defined by analytic continuation across the zeal
axis." Since we are primarily interested in & near
the real axis, we use the Plemelj relation

lim (x+ i7i) = O' —+ iwe (x)
1

q~ 0+ x
in evaluating S'. Writing

(2. 69)

Equations (2. 51) and (2. 60) represent a system
of coupled equations for the unknown A'„'s and
A„"s. %'e can immediately eliminate the A,"s
in favor of the A. ,', 's, or vice versa. Eliminating
Akt from Eq. (2. 60), we get

A„(Q, —W7, ) —Z A,~ Z
~

V, I'e'"' ' ~ " (ek —h&u)
'

jpj k
= o, (2. 66)

where
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M =(Ug -iC02 q

W'= W~ —iR'2,

(2. vo)

(2. vl)

a{= I.-' [(p, —kn)2 —w', ],
we have

(s. 11)

(2. vs)
We shall later make use of the common approxima-
tion of ignoring the dependence of W' on the rnagni-
tude of » (e. g. , by setting o), =0 inside the inte-
grands for W1 and W2). See Appendix D.

III. LOCALIZED QUASIPARTICLES

We look for solutions to Eq. (2.66). We assume
that one particular vector coefficient, say A„, is
much larger than all the other A(U (j& i). This ap-
proximation is certainly valid for sufficiently small
density of impurity centers. Thus, for A(1{ we have
Eq. (2. 66), while for A'„(j & i) we have

At~ (())) —W7 4)

= Z A,~Z ~
Vk.

~

e'" ' {) &) (&k. —h(d) 1

pw j
=A' 5

~
V ~' -'"" (~&-"() ( —@' )

' (3 1)

Substituting (3.1) into (2. 66), we get

A1{(G{—P{)=0,
where we are defining

(3. 2)

G] =—Q; —%74, (3.3)

P, -=(2({) ' J f d'kd'k'~ V, ~'
~

V„. ~'(43 —8'o)) '

)((~ k- )-1 5 G-1 {(k-k') ' (fig -R{) (3 4)

we get

W, =(2v)-'(p J d'k~ Vk~'(&k-)4, )-', (2. V2)

W2 2 (2({) (sgno)1) f d'k
I V. I

' 6("—k(o1)

= —(2&)-'(sgn~, ) k' "
~

V, ~'

P) —a]8' —AQ+ q]G~=a
P —a S' —AQ —q

(3. 12)
so that

G; = a; [(p{ —a{W —kn) —w{]

x [(4'o+ Uo —a( W- kn)v4 —Uo'u{] . (3. 13)

We now anticipate the following results of the
calculation. It turns out that P& and se, are always
independent of the index i. (Thus a{ is also. ) In

one of the two kinds of solutions, q, and d, are also
independent of i; in the other kind of solution, q,
and ~, vary in an essentially random fashion from
site to site, subject to the constraint that u, be site
independent. The former is the ordered solution;
the latter is the disordered solution. We define

la

1{=(2)r)
/

f

d kd k'/Vkf /Vk /
(k„—8(o)'

X(g k )-1 Q e((k k')' (ity i({)
jA' j

(3. 14)

D, —= a, [(p, —a, W- hn) —w, ]
' (p, —(3, W —an)T

(s. 16)
I, differs from P, by the absence of G&'. D, is that
portion of G, ' proportional to 74. For the ordered
solution, we can replace G,.' by G,

' in P;, so that

P]=G] I] . (3. 16)

For the disordered solution, the portions of G&'

proportional to 7&, v2, and 73 make negligible con-
tributions to the sum over j in P, , this being due to
the random nature of q& and 6&. The portion of
G&' proportional to v4 is equal to D, , so that

Settting up the notation
1

P -=43+ Uo -
2 Uo(n;, + n;,),

q{
—=

2 U()(n{, —n(, ),
(3 6)

(s. 6)

P]=D]I; .
We may now rewrite Eq. (3. 2) as

a'„G,'=0,
where we are defining

(s. lv)

(s. 16)

hq = Uob;,

w =-(q'+ ~~, ~2)"2

we have

(ko+ U()
—kn)v'4 —Uo'u{

(3.7)

(s. 6)
2(6{+ 6( )Tl 2(4{ 4{)3T2+ q{T3

+ (k{(P( —a{W —8n)T4, ('3. 19)

(P; —a;W —kn) —w{ —a, I,Q]:
(p, —a( W —tin) —w(+ Qa(I{2 2 2

P] —AQ —
qg

[(&o+ Uo k'n)&4 Uoe{]

p, —hQ+q; (3.9)

= [(p, —@n)2 —w2] ' [(p, —Ifn)r4+q{r3- —', ({3{+&~()w1

--2'(~{ —~()ii2] . (3. 1O)

Defining

Q -=+ 1, ordered state

=0, disordered state . (s. 21)

Q 8{(k-k')' ()ly-K{) I ~3n {{k-k')'R
jpf

We are assuming a crystal of unit volume and a

(3. 22)

In order to evaluate I, , we approximate the sum
over joi by the equivalent integral
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I= Ig —zI2, (s. 24)

density of centers no. Note that, having made this
approximation, I, = I is independent of the index i.
It can be shown that

I= .'n, (2~-) 'jd'hlV„I'(h'h'/2m) '(-~„-h~) ',
(3. 23)

where m is the effective mass of the conduction
electrons, which we shall assume is positive.
Writing

take the square root of I that lies in the same
quadrant as I. It shouM be emphasized that Eq.
(3.31), having been obtained by expanding in powers
of (I/w;), is not correct when w, =0. Under such
conditions, hQ must be independent of Q, so that
the appropriate solution to Eq. (3. 2V) is n, =0, or
hQ=p, —a, (W+I'~o). Thus we see that Eq. (3. 31)
gives the correct answer when zo; =-0 if we set Q
= 1 in the equation.

Defining

we have

I =-'n (2v) '+ J d'h
I I» I'( h h' /2m)-'(&» - ho, ) ',

Io= 'n-o(-2~) '(sgn~i) 1'd'hl ~»l'(h h'/2m) '

x6(&» —h~, ) . (3. 25)

As with W, it is usually a good approximation to
ignore the w dependence of I by setting» =0 inside
the integrands of Eq. (3. 25).

We return to Eq. (3. 18). Corresponding to this
matrix equation, there is the secular equation

p, =+1
q

W'-=W+ [-,'(1+ q)I]'",
so that (3.31) becomes

SO=p;+ pm), —a;S" .
With the aid of (3. 11), we have

(p; —hQ+ vw; ) = L, '
[(p& —hQ) —w, ] W'

or

I = (P; —hQ —pw;) W

(3. 32)

(3. 33)

(3. 34)

(3. aS)

(3. 36)
n( (P) —a; W —hQ) + q;

which gives

=0,
n( (p —a) W —hQ) —q.

(s. 26)

Substituting (2. V3) into (3. 36) gives us a quadratic
equation for hQ. Solving for h~ =zhQ, we get

h&u =h&u~, —= so+ —,(Uo —W')+v(4(Uo+ W')

n, (P, —a; W- AQ)+ u, =0 . (3. 2'7)

Substituting this back into (3. 20), we get an equa, —

tion cubic in n&".

n, ' —n,
' —[1+(a;/w, )'I] n, '+ [1 —q(a, /u, )'I] = 0 .

(3. 2a)

where

—W' [-,'U, (n, , +n„)+pw, ]+ (1 —X) eo(go+ U, )

(1 v)W [eo+ Uo »Uo(n;, +n;, ) —p, w&]}",
(3. 3V)

(3. sa)

Q) = —1-1 (3. 29)

n, '=+ I+ (a, /w, ) [-,'(1+ Q)I]'t' . (s. 30)

The root given by (3.29) is unacceptable in that it
does not reduce to + 1 in the limit as no and I van-
ish; the two roots given by (3.30) are acceptable in
this regard. We must, however, have the sign ap-
pearing in (3. 30) be opposite to that appearing in
(3. 2V). This is necessary in order that the term
involving I make a contribution to AQ lying in the
same quadrant of the complex plane as does the
term involving O'. This can be seen by substituting
(3. 30) into (3. 2V) and getting

FiA=P; —a;8'+ a, gg,

=p, + w, —a, (W+ [—,'(1+ Q)I]' o} . (3.31)

Making the assumption that the conduction-band
effective mass is positive, we see that 8' and I lie
in the same quadrant of the complex (d plane. %'e

Solving for the roots in the usual fashion, expanding
in powers of the small quantity I, and keeping only
the leading terms, we get

It is understood that the choice of sign for v is in-
dependent of that for p. . In principle, Eq. (3. 3V)
is only an implicit equation for A&, since z and X

are functions of A~. As already mentioned, unless
hw lies in the immediate vicinity of zero or 2~p
+ Uo, v and &. may be replaced by unity. Since such
a. contingency very rarely occurs for hen, „, we
shall make the approximation ~=X=1, Q=~, in
treating the localized quasiparticles. Thus

h „=,+-,'(U, —W')+ (-.'-(U, + W')'

—W'[-,'Uo(n;, +n;, )+Vw, ]}"'. (3 39)

From this point on, the self-consistent determin-
ation of 8&„„follows just as in the treatment of the
one-center problem as given in II. It is only necea-
sary to replace 5' by 5". The determination of the
thermal averages n«and b, is carried out in Ap-
pendix A. Equations (A42)-(A44) express n;, and

5, in terms of the weighted statistical factor g~,
defined by Eq. (A45).

IV. CONDUCTION-BAND QUASIPARTICLES

We look for solutions to Eq. (2. 68). It is tenta
timely assumed that one particular vector coeffi-
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cient, say A~, is much larger than all other At. .
Unlike the corresponding assumption in Sec. III,
it is by no means obvious that this assumption is
true here, even in the limit as no, the density of
centers, vanishes. We are, in effect, invoking the
Born approximation. For A», we have Eq. (2. 68),
which we write as

+ y At ~ y 5 - »k&''-k')'R»q-1

We assume
(4. 3)

For At», (k'Wk), we have

At Pc y Q - »(k-k')' »i» q-1

where

G» = (»» —@~)t4-
I

I'» I' ~» Q»' ~ (4. 2)

A -AtP' V Z '& " ) PQ G

Substituting (4. 4) into (4. 3) we get

(4. 4)

—Atp( y g»&k'-k&'»t» ~-1 Q I I&' I3$»(k''»i»-k'5p) -»k'" (»i»-itp& n-lr-1 n-1 ~-1
Qy +

yll g p

Substituting (4. 5) into (4. 1), we get

At G — V ~ Vi ~~ e" ''
& ~'Q G ~ Q — Vq Vqp V~„

a' i, j a', n"

&&
5»k. (if»»f )»k~ ~ (5» ii»)»k~1' (»f »t»& ~ lG 1 ~ lr ln 1 ne ~ e Qp I p pQg G~p Q~

—0
&323P

(4. s)

(4. 6)

Equation (4. 6) represents the second Born approximation. Due to destructive interference, the double
sum over i and j reduces to a single sum (i= j); the triple sum over i, j, and i& reduces to a double sum
(i=p). In the sums over k and k', we can approximate G»,

' and G„,', by their values in the limit tz&&=0. Thus
(4. 6) becomes

A»G»-II»l'& Q»'& ll» I'(" -&~)'-ll'»I'Lq Q»'Q»'~ II» I'lp» I'(" -~~)'(;"-~~)'
z

l- »(k'-k'') ' (»i»-%»& 0 (4 q)

In the double sum over i and j, we separate out the
terms i =j, whereupon we can write (making use
of the definitions of I and W)

use of Eq. (3.3), we get

aG„'=0, (4. 11)

A,' I:, —
l

I', l'II' ) Qi'+II') ()i')

—lp'»I'&, 'IZ Q, 'Z q,
' =0. (4. 8)

Note that the terms involving 8' are linear in no,
whereas the terms involving I are quadratic in no.
Thus, in the dilute limit we can drop the latter
terms, getting

A» lG» —
I

I'»
I

' +» Q»' [(WQ»')+ (WQ»')']] = o .
(4. 9)

It can be seen that if we perform the iteration
process for At an indefinite number of times (rath-
er than twiceas d, one above), then in the low-con-
centration limit Eq. (4. 9) is repla. ced by

where we are defining

G»-=G» —
I
I'»I' w~» Q»'G»'. (4. 12)

Making use of the definitions of G„md G„ this
can be written

G» = (&» —@&)r4—
I

I'» I' E»G»'

In terms of a, = a [Eq. (3.11)], we have

(4. 13)

G»'=a[(i& —aW-hn) —z() ] [(p —aW-)zn)t. 4

+, (&» + &»")r, +-3(ik» —&»")zi3 —q»t 3] (4. 14)

Thus

Z» G =~,a[(p —aW-en)3-~3)-&Op —aW-en)r,

+Q[-.'(n+~*)t, +-.'(~- n") z~, qr, ]'I. —

A C' — V Q S"Q "=-0
n~i

(4. 10) (4. is)

Keeping only the first n terms in the n series rep-
resents the nth Bown approximation. Fortunately,
we can sum this Born series by inspection. Making

so that

( )
n,a I I', I

' (I —a W —IIII))
(p —a W- An) —z()
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n0al V~I Q
2

(p - N - a~a)'-
The self-energy W appearing in (4. 21) is to be
evaluated at h~, =

&~ while

(4. 16)
Corresponding to Eq. (4. 11), we have the secular

equation

detG„' = 0,
which gives

o (P —aW —hQ) —pQw
@& = h~o =. &o noal Vo

l (t, w h&)o o

(4. 18)

a=L ' (p —g '
go+(u) (p —y 'e~ —zv),

KL = Eo
—(2fo+ Uo) Eg+ Xe'o(&o+ Uo)

Defining

Wo„= a (p —K ep+ vK) = L(P —K eo —vK)

&a —(2&o+ Uo)&a+~&o(&o+ Uo)

z[eo+ Uo(1-g „)]—&,

we can write (4. 21) as

(4. 23)

(4. 24)

(4. aS)

where

p, =+ 1

The two possible roots correspond to the two pos-
sible choices of spin orientation of the conduction-
band quasiparticle excitations. Note that the two
roots are degenerate for either the paramagnetic
(Q=O) phase or nonmagnetic (co=0) phase.

The right-hand side of Eq. (4. 18) will diverge
if and only if

(4. 20)

I2M LA&A„=&o+noalVol ~„o(I+pvQ)(~ '&o+aW-P —v~) ',
(4. 21)

where we are defining

(4. 22)

AQ=p —aR'+ p,m .
Aside from containing 8'rather than W', Eq.
(4. 20) is the same as Eq. (3.34), the roots to which
give the localized quasiparticle excitation energies
I&„„. In the dilute limit, however, the imaginary
part of ~ 'h&u„ is not large enough to satisfy (4. 20).
This indicates that there are no ggps in the con-
duction-band spectrum, and thus no possibility of
a second branch to the spectrum (one correspond-
ing, for example, to conduction electrons localizing
themselves in the vicinity of the impurity centers).
This should be contrasted with the results we would
have obtained had we stopped with any finite order
of Born apProximation. Consider, for example,
the second Born approximation which gives Eq.
(4. 9). The corresponding secular equation leads to
a self-energy for A~„which diverges whenever
the quantity L vanishes (in turn occurring for real
he). It is readily apparent that the same behavior
occurs for the nth Born approximation (n finite).
The conduction-band energy gaps calculated in I
were an artifact of the use of the first Born approx-
imation. We see that the summing of the series
appearing in Eq. (4. 10) is a crucial step in the
present calculation.

Having disposed of the possibility of gaps in the
dilute limit, we may, with no loss of accuracy,
replace u = ~Q by h '&~ everywhere on the right-
hand side of (4. 18) which may be written

5„,=- arctan[Wo(W, —Wo„) '],
we have

(4. 27)

@~at

=a~+no
l V~l +„2(I+pvQ) [(W, —Wo„) + Wo] 't e"va .

(4. 28)
The cross section for scattering of a quasipar-

ticle of wave vector k by a localized center is

o, = (no vo 7~) ', (4. 29)

where v„ is given by Eq. (2. 9). We may approxi-
mate the quasiparticle velocity v~ by its value in
the dilute limit, namely,

dip
dk

(4. 30)

Combining Eqs. (2. 9), (2. 84), and (4. 27) -(4. 30),
we get

o, = (4v/h') Q„-,' (1+ p, vQ) sin' S„, .
But, in general, we must have

(4. 31)

o, = —
o Q (2I+I) sin 5»,

1 -"0
(4. 32)

where 6» is the phase shift of the lth partial wave
associated with the quasiparticle of wave vector
k. Thus

P „—(1+ p. vQ) sin 5„~= Q (2I + I) sin 6 z . (4. 33)
3=0

As discussed in the Introduction, we invoke the
Friedel sum rule

(4. 34)

Here 5, is 5» evaluated on the Fermi surface, and
Z is the excess number of conduction electrons in-
troduced into the system by each center. As it
stands, Eq. (4. 34) is not appropriate to a. ferro
magnetic system. Thus we restrict ourselves to

hat» = e, +nol V, l 2„-,'(I+ pvQ) (W —Wo„)
' .
(4. 26)

Making use of the fact that W is the only complex
quantity in (4. 26), and defining the angle
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the nonmagnetic (w = 0) or paramagnetic (Q = 0)
phase in combining (4. 33) and (4. 34). If we make
the approximation that only s-wave scattering is
important (i. e., Ei» = 0 for l & 0), then (4. 34) com-
bined with (4. 33) becomes

([6„,6'„],) =1, (A6)

a consequence of 6, being a fermios quasiparticle
operator. Substituting (Al) into (A6), while making
use of Eqs. (2. 39)-(2.41), we get

—,'Q„sin 6„=sin (—,'vZ), (4. 35)

where 6„ is 5„~ evaluated on the Fermi surface. It
is a reasonable approximation to restrict ourselves
to 7 =0 in satisfying (4. 35), whereupon 6„is ob-
tained by substituting into (4. 27) the value of W,„
given by

A, » A, »+Ao»'44(r4 -8)Ao» = 1 .
Equation (2. 65) can be written

U0 u(T4 u) (eo @!d)(Eo + U0 I4!d) T4

[(40+ Uo 5!d) ~4 Up%i] + 2(eo+ 0 Uo h&d)

(A7)

40(eo + Uo)

op+ Up(1-g „)
(4. 36) Thus

x[(to+ U!i -k!d) v4 —Up'u] . (AB)

Here we are making use of the fact that

lim — =1 . (4. 37)

APPENDIX A

For the purposes of calculating ~„and b, , we
can approximate the quasiparticle operator 6, by

6]-A)]4(]+Aq] 4~ (Al)

A', „=(a44'„, a),„),

Ao ——(a~&, „, af, ),
(A2)

p, being the quantity of Eq. (3. 32), we can express
Eq. (3. 18) as

In other words, we restrict the sum of Eq. (2. 46)
to terms involving a single center. We hasten to
add, however, that the At„and A~0, in Eq. (Al) are
those already calculated in Eqs. (2. 61) and (3. 18)
by taking into account the interaction between cen-
ters. For the time being, we drop the center index

We need to invert Eq. (Al) in order to get 4, as
a function of the four possible t}'s (corresponding to
the four roots for 8!d). Knowing @,, we can cal-
culate n, and b.

First of all, we need to determine the vector co-
efficients A, and Az. Writing

U!iAO»'u(r4 -&)Ao»

= U!i [ (4:0 If!d) (4:0 + U!i I!d) (p kv }4w) —1

2(gp + 0 Up k d) (fp 8'!d uw) ] At» A4» &
(A9)

and (A7) becomes

[ —(&0 —8'!d) (&0+ U, -h!d)+2(4:0+-,' U, —8!d)

x(p —h!d —pw)](p —h!d —pw) 'At4, A&, =1 . (A10)

From (A4), we have

A'„A„= lC„l-'2w(w+q) .
Thus

l
C„ l

'= 2w(w + q) (p —}4!d —pw) '

(All)

x 2[(40+ —,
'

U!i -h!d) (P —k!d —p, w)

(A13)

—(40 —h!d) (&0+ Uo -8&d)] . (A12)

We now introduce the notation A~»„, At~, „,
expressing the fact that these quantities depend on
both p, and p. We define

Jtl I) —g(a„„a„,)
Solving this, we get

A4+= C+'(w+q, —&),

A1- C- (+ n+& w+q) &

p, ~+ q

(A4)

U -1 Aq,
(A14)

where the C„are as yet unknown normalization
factors. Equations (2. 61) and (3. 10), when com-
bined with (A4), yield (setting!4=1)

(A15)

8 and 4 are fourth-order column vectors, while
U ' is a 4 x4 matrix. Equation (Al) can be written

Ao» = —Up (P —A!d —iuw) A4»

In order to find the normalization factors, we
use

6=U
so that

IAt

4 =Uo,

(A16)

(A17)
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where U is the inverse of U '. We define the 2x2
diagonal matrices

(A18)

{A19)

++

U~~ UL3 U~3 Uw

&al 022 ~as tJa4

8
h

(Aso)

b„„=[2(c, +—-,' Uo-K(d„„) (p -a(d„„—px)

-(e, -a~,„)(~, + U, n~-„„)]"'. (A21)

Here we have written Sfq„„to indicate thRt @~ de-
pends explicitly on (u and v. [Do not confuse a„,
and b„„wit hthe a; of Eq. (3. 11) and the b, of Eq.
(2. 19).] We also define the 2&2 matrix

(A22)

Note that the inverse of this matrix is

( )) gg(N Q 6)(b, d, 0
)

(A34)
Substituting {A32) into the equations

w=(au(w+q)] "'( q

) .

Vfe define the 4x4 matrix, written in 2x2 block
form, Rs

(A24)

while making use of

&[e~.eL "l.&=8~~ 8,"
we get the results

& I ~a~
I

'+
I
~» I

'+
I
~»

I

'+
I
~i41'&

(Ass)

(Aso)

Note that the inverse of this mRtrix is

Inserting (A33) and (A34) into (A37), we find

D =(A.,a -a.A)- .
Equation (A25) should be understood to mean that
the upper left-hand block of M is 8 D, the upper
right-hand block is —B,B, etc. Defining

(A2V)

(A28)

%6 define the stRtlstlcRl fRctor

f= Yf
I ~p I J d(d [((() —(()i) + (()2 ]

x (e'""'+1) ' (A39)

RssoclRted %'lth the excitation

(A4o)

(&u, and ~2 being real). It can be shown that

The point of all these definitions is that we can
write

(A29)

The portion of Eq. (AIV) of interest here can be
wry. tten

U~l Ula U~3 U~~
j, 6

U3~ Uag Ups U~

where f„„is the statistical factor associated with
Substituting (A32) into the definitions of n;,

and b„iwlehmaking use of (Ass), (A34), and
(A38), we get

(n„+n, ,)=(g +g,),
(n„-n„)= (q, /w) (g. -g,),

f;=(&~/2~)(g -g.),

(A42)

(A43)

where we are defining the

reignited

statistical factor
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g„-=(2 „~b,„~
') '(Z„~b, „~ f,„) . (A45)

Note that both f„„and g„are real, and lie between
zero and one. Equations (A42)-(A45) were used
(but not derived) in II. The matrix 'li, of Eq. (2.38)
can be written as

&j=(2jo) '2 .g. {jor4+ jj[4jr3 2(+i++i) rj

f» being the statistical factor t Eq. (A39)] associated
with co». We obtain

(B10)

(Bl1)

(B12)

——,
' (~j —~*,. ) z7, ]) . (A46)

APPENDIX 8

For purposes of calculating n„and b„we can
approximate the quasiparticle operator pk by

k

In other words, we restrict the sum of Eq. (2. 46)
to the term involving a single Bloch wave. We
hasten to add, however, that the A2t in Eq. (Bl) is
that calculated in Eq. (4. 11) by taking into account
the interaction between Bloch waves. It is neces-
sary to invert Eq. (Bl) in order to get 4„as a func-
tion of the two possible 8,'s (corresponding to the
two roots for 8'jo2). Knowing 4'», we can calculate
nk, and bk. For the time being, we restrict our-
selves to the case Q= 1 [where Q is given by Eq.
(3. 21)], whereupon qj and b j are independent of
the site index i.

Writing

A„= (a„,„,a2„),
jj being the quantity of Eq. (4. 19), we can express
Eq. (4. 11) as

p 'M) —q
(jja~v ~ jj2~v) =0.

pn+q

Solving for A.kt~, we find

Although these results mere derived for the case
Q = 1, they are actually true for the case Q = 0 as
well, where (n2, —jj2,) and b2 vanish. For the latter
case, kw„= S(dk and 6» is an arbitrary linear
combination of c2, and c„,. The use of Eq. (B4) for
Q = 0 corresponds to taking g» to be a quasiparticle
operator associated with a spin parallel (or anti-
parallel) to the net spin associated with a localized
center having q, = q, ~, = 4. The thermal averages
nk, and bk are necessarily independent of what linear
combination of ck, and ck, is used in constructing

The matrix c„ofEq. (2. 38) can be written as

--,'(~ -~+) 2~2] j . (B13)

APPENDIX C

For purposes of calculating n, k, and b,.k„and
thus the elements of the matrix g,.k, we need to ap-
proximate the quasiparticle operators 0, and ek
more accurately than was done in Appendixes A and
B. It is convenient to concentrate on some particu-
lar k and i. This allows us to use the same matrix
VP, in connection with g„ for both cases Q= 0 and
and Q = I, just as mas done in Appendix B.

First we consider fj j. Rather than Eq. (Al), we
write

A„=[2jo(jo+ jf)]
'j (jo+q, —&),

A2 = [2jo (jo+ q) ]
' j 2 (+ &*, jo+ q) .

(B4)

Here we have chosen the normalization such that

+ku +k~

thereby ensuring that 6, satisfies Eq. (A6).
Writing

6 ]—Aq]4(;+Aq]kP]+4k+k .
But here

A2t= —(e2 —hjdj) 'QjAtjj V fq

=- —(e, -8jo,.) 'Z„V,*j,
since A.»»A« for jCi. Thus

(cl)

(c2)

we can reexpress Eq. (Bl) as

(Bs)
S i = A1j +li + +2j @2j (e2 @joi) +1j ~2j +2 ' (C )

We define the 4 x4 matrix, written in 2x 2 block
form, as

-1

so that

+k ~6k ~

(BV)

(Bs)
where

Z, 0
(c4)

W being the 2x 2 matrix of Appendix A. We substi-
tute (Bs) into the definitions of n„n aod2, while
making use of 2 vv (&2 8jOjvv) ~

(c5)

(cs)

«2. 62. ~ ) =f2. 5" (B9) In matrix form, Eq. (C3) can be written
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0 i= U 4i —Z(U )left Vki

where (U )„« is a 4x2 matrix consisting of the
left half of the 4x4 matrix U ' of Appendix A. We

also designate by U„, the 2x 4 matrix consisting of
the top half of the U matrix. Premultiplying (CV)
by Ut„, we get

Ai k,
= —L (P —PK —K Kidkg) VkiAk

In matrix form, Eq. (C18) becomes

(c20)

since A~. «A.„ for k'4 k. In a manner analogous to
the proof of Eq. (A5), we can show that the above
expression can be rewritten as

Ui„s;=4,i
—Uk„Z(U )& ii Vkiik. {ca)

(C21)

With the aid of Eqs. (A29), (Aso), and (Ba), this
becomes

where we are defining the 2x 2 matrix as

(C22)
+ ~= Ut. p ~+ ~~~&«~~ (c9)

where we are defining the 2x 2 matrix

(clo)X k ™3ok Z( ~ ) isik ~

From the definition of M in Appendix A„we get

iik. = L'(P -—uii - ii 'a~„) .
Here

L=x '[(hidk ) (2&p+Up)S(dk +A&p( pe+Up)]

(c2s)

Xk ——D(B A, Z, —B,A Z ) .
Writing

(cl 1)

(c12)

= x '
[(k3 -8'+k„) (&3+ U3 —b(u„) + (X —1) e3(k3+ U3) ) .

(c24)
Premultiplying Eq. (C21) by ~, and making use of
Eq. (Asl), we get

we have
tat

, -1.4„='N6q+ Vq;~g„~ Ut, g ( . (c25)

X,„=d„(b„—a„z„.—b„a, z„) Just as with%, „, it is convenient to make the de-
composition

(a,/b „,) z „,—(a, /b, ) z„.
(a,./b„) —(a, /b„) (cls) ~ k 503 3+5p4 T4 (c26)

Equations (A20) and (Ca) allow this to be rewritten

X„,= (hid „-Kid, „,) '

P —
)LE gg —g~ q ~+ P —P,K —8 )g

SQ)f gy ~Q ~Q)f g~

(C14)
It is convenient to make the decomposition

s 4
—— (8,+s ).

Thus Eq. (C25) becomes
let IVII

&6 k + Vki (0 kk Utoy+ Sk3 Utok) Q i,
where we are defining the 4 x 4 matrix

U' -=~V'3M .

(c2v)

(c28)

(c29)

where

+k3 73+Xp4 74

X.3 -=l (X"-Xk-)

Xkk —.(Xk.+X.-) ~

Thus Eq. (C9) becomes

Uiops i+ Vki(Xk$%+Xk3 %+3)ek

(c15)

(clv)

This result differs from Eq. (B8) by the presence
of the term involving 8,.

With the aid of Eqs. (C1V) and C28), we can now

determine n,~, and b,.~,. The results are most con-
veniently expressed in the form

(c3o)

(nik, —n;kt) = Vki(ifi/w)Q~ 0{ii „kg+ .Xkfk„),

8 u
-- An 4n+ A&& 4&& .

But now

(cia)

A„= —I, 'Q~. A„Vk. i [(&3+Uo —IIQk) r4 —Up'n, ]

Ak Vki [(kp+ U3 80k) Tk —Uo ui ], (C19)

This result differs from Eq. (Asl) by the presence
of the term containing 5~.

Next we consider ok. Rather than Eq. (Bl), we
write

b;k = Vki(n /23i') ~, V (s k ~ g~+xk~ fk. )

( csl)
(cs2)

kidjgp 'Ep 'EQ+ 3 (1 + v) UP (cs4)

b;. = vk;(&i /2~) Z. u (~ ku g.+xk. f») (css)

where g and fk„are the statistical factors defined
in Appendixes A and 8, respectively. In order to
evaluate ~„, and g», we introduce the approxima-
tions
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For purposes of calculating the sums of Eq.
(2. 58), we can approximate «and X by unity in s»
[Eq. (C37)], as it appears in V„",'U„[Eq. (C38)].
This approximation gives

s.~q
= —Xo „=U o 4„v(p —pB) —t ), (&&,

—6 „)

so that (C38) becomes

(Dl)

v;,.~„=(4~Up)-'I v, l'z .(P- i ~-.„)(.,—.„)-'

x f~r, + I [q,r, ,'(~, +. ~~-)r-, -.-,'-(~,. —~&)ir,])
x [(1 —2f, ) —(1 —2&g, )] (D2)

First we consider the matrix sum

S;=4& V&, u&;(Eo——h(u) (D3)

Substituting (D2) into (D3), we note that the contribu-
tion to S; coming from terms proportional to
(1 —Pg„) can always be expressed as a linear com-
bination of the self-energy differences [W(h&p)
—W(z„)]. Invoking the approximation that W(hu&) is
independent of the magnitude of (d„ then these dif-
ferences will vanish. (We shall ignore the possibil-
ity of any residual imaginary portions in the com-
bination of differences of the W's. ) Invoking (C35)
in the evaluation of (1 —2f»), i.e. ,

(1 —2f„)= tanh(2Pt, ),
we see that S, can be written as

s, = (2U, )-'

into Eqs. (C14) and (C23), respectively, obtaining

&t oz ——Uo Z„v(p —/J &p —6„) (6& —t„)

(p p &p &&, ) (&o 6&,) (&o + Up —6&), (C36)
and

-" o~ = [(&o &a) (&o+ Uo &a)+(~ 1) &o(eo+ Uo)]

x [«(p —p&p) —a, ) . (C3'I)

[In (C37), X and «are to be evaluated at R&p = eo. ]
These approximate expressions for k&, „„andA~» are
correctinthelimit V„,-O. Thus(C36) and(C37), in-
serted into (C30)-(C33), will result in values of
n, „and b„, accurate to terms linear in V~, , which
is sufficient for our purposes. Making use of Eq.
(2. 4) and the fact that e, has inversion symmetry in
k space, we immediately obtain Eqs. (2. 24) and
(2. 25). The matrix g,„of Eq. (2. 3'1) can be ex-
pressed as

Vo &o = (2&p) '
I

Vo
I
'~.«o.g. + x»fo. )

x(&pv4+ p, [q;r, ——,'(b, +a f)r, ——,'(s; —af)iso]j .
(C38)

APPENDIX D

SQ) = 2$p+ Pp —I&

then we find

SI = Up P(I'&d ) [(op+ Up)7' U %. ]

(D10)

Substituting (D'7) and (Dll) into Eq. (2. 58), we see
that

«= I+P(h&d)+P(ff&p') . (D12)

We next consider the sums of Eq. (2. 59). In
particular, we define

S&-=~.
l

V. I'(~&-~, )[(;-N~) '-(;-k~') '].
(D13)

Using Eqs. (A46) and (B13), we have

s, =(4~)'&=, IV, I'[(~, -k~)' (; k~)-]
xE' [(1 2f

—(1 —2')][&d74+ p [q&T, —2(& &+d,*)T,

—-'. (~, —n&)i7, ]] . (D14)

As with the previous sums, the contributions to
S, coming from terms proportional to (1 —2g„)
can be expressed as linear combinations of the self-
energy differences [W(k&p) —W(h&d')], which will
be neglected. Approximating (1 —2f„) by (D4), we
get

S& = -'&,
I V, I'[(~. —iI~) '- (~o -@~') '1 tanh(2&~. )~4

(D15)
Substituting (D8) and (D15) into Eq. (2. 59), we see
that

X = 1+P(h(d) —P(h&p') . (D16)

&~ [(p - e )~4- q&7 o +'«-& +&& )~i+ ~o(&& - n& )f721

x5,
I V, I' (e„—~„) ' (~„—I&p) 'tanh(-, 'pe, ) . (D5)

Approximating the factor (q, —q„) '
by its value at

q~=G, we get

[p7 4 q&+o+ 2(n& + ni )~1+ 2(+& +& )~+2]

x[2op(qp+ U, )] ' L, I
V„I'(q„—h&p) 'tanh(-, 'p~, ) .

(D6)
Comparing this with Eq. (3.9), we see that

S, = Up' P(h&p)[(op+ Up)~4 —Up'lt;],

where

P(k&d)

=- [2&o(&o+ Uo)]
' Up+a I V& I'(&a -@&d) t»"( &o ) .

(D8)
In a similar fashion, if we consider the sum

S&
=—Z» Vo&'Uo&(eo —K&p')

where
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in the k sum defining P(N~), we assume that

~ V» I is an even function of &». Since tanh(-,'P»») is
odd in»», we can replace (&» —Ku) in the summand

by its odd portion, namely, e»[&» —(h~) ] '. Thus
we have

P(84&) [260(EO+ Uo)] I 0~» I
v» I

y, q„[g„'—(A(o)'] ' tanh(-,'P», ) . (D17)

i,et us invoke Eq. (2. 69) in evaluating (DIV). We
see that the imaginary parts of the summand cancel,
and

P(h(u ) = P(h(ug)

= (2v)-'[2~, (~, + V,)]-' V,

~~fd'k
I

&»I'[~» (&~-i)'] '"t~h( 'pe»)-.
(DIS)

For simplicity, we now make the usual assump-
tions:

(2~) ' fd'k = p f', d~, , (D19)

(D2O)

[(gks 1")'+ (K(u, )']'~'
(D22)

For th~, t «D, we have

I+P(h(u, ) = I'1 n(T 'r[T +(k(u, /wkly)']'"f, (D22)

where

(D24)

is the Kondo temperature.

so that
+D

P(I~() = —,'I'—f [&' —(I~,)'] '»tanh(-', pe) d~,
(D21)

where we are defining

r-=—pv'vg&, (~, + U, ) .

As has been shown by Theumann, (D21) can be
written approximately as
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