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The Anderson model of a localized magnetic center is used to study a system of interacting
localized moments in a dilute magnetic alloy. The operator equation-of-motion method is used

to calculate both the localized

manner which carefully treats both the Coulomb and the scattering interactions.

and the conduction-band quasiparticle excitation spectra in a

Hole-~electron

pairing is used to facilitate the accurate evaluation of the effective interaction between centers,
This effective interaction causes the localized quasiparticle excitation energies to spread and
shift by an amount proportional to n,’? (2, being the density of centers). The conduction-band

quasiparticle excitation energies are spread and shifted by an amount proportional to ».

There

are no gaps in the conduction-band spectrum. The Born series for the conduction-band scattering

amplitude is summed analytically.
order of Born approximation,

It is shown that spurious gaps are an artifact of any finite
Self-consistency is achieved both in calculating thermal averages

(especially local magnetic moments) and in satisfying the Friedel sum rule.

I. INTRODUCTION

In this paper the study of an interacting system
of localized moments in a dilute magnetic alloy will
be continued, with each localized center containing
a magnetic moment being represented by the model
of Anderson.! The paper shall examine the quasi-
particle excitation spectrum associated both with
the localized centers and with the conduction band
of the host metal when #n, the density of centers,
is small but finite. In order to properly account
for the interaction between centers, particularly
in the paramagnetic phase of the system, it is im-
portant to introduce the idea of pairing. Specifical-
ly, one pairs an electron in some single-particle
orbital, spin up, with a hole in some single-particle
orbital, spin down. For the case where the two
spatial orbitals are the same, this amounts to leav-

ing unspecified the orientation of the spin of the
electron occupying the orbital.

The quasiparticle excitation spectrum shall be
determined by means of the operator equation-of-
motion method.? While doing so, special care will
be taken to achieve self-consistency in two senses

‘of the word. First of all, the various thermal aver-

ages will be determined self-consistently. This as-
sures that the net magnetic moment on any center
is evaluated self-consistently with regard to both
magnitude and direction. Second, the parameters
of the Anderson model will be chosen such that there
is consistency with the Friedel sum rule,® corre-
sponding to the fact that the electric field associated
with any excess charge on a localized center must
be screened out by the surrounding conduction elec-
trons. In the absence of a local moment, the usual
form of the Friedel sum rule applies to the Ander-
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son model, as has been shown by Langreth.? This
author shall assume that this is also true in the
presence of a local moment. The satisfying of the
Friedel sum rule will be carried out in a fashion
analogous to that recently developed for treating
the extraorbital model of a dilute metallic alloy.5

In the original treatment of interacting localized
moments by this author,® use was made of a gen-
eralized effective field. Specifically, this means
that the commutator [c,,, H] was linearized with
respect to the complete set of one-electron destruc-
tion operators c;, (H being the Hamiltonian of the
system). In a second paper,”’ this procedure was
generalized in order to treat the intracenter Cou-
lomb repulsion accurately. Herethe commutator
¢;s, H] was treated exactly, but the double com-
mutator [[¢,,, H], H] was linearized with respect
to ¢;y and [¢;;, H]. For simplicity, only the single-
center problem was considered, although the cal-
culation could have been readily extended to the
many-center problem. If this had been done, the
results for the localized centers (but not for the
conduction band) would have been identical with
those to be calculated in the present paper.

In this paper, the third of the series, the analy-
sis is extended so that both [¢;,, H] and [[c;,, H],
H] are treated exactly, but the triple commutator
[[ley, H], H], H]is linearized in a fashion dis-
cussed in detail in Sec. II. As is apparent from
the work of Kim® and Theumann, ® this method of
truncating the equations of motion is sufficient to
allow for the appearance of Kondo-like effects!®
associated with the scattering interaction. The cal-
culation of the conduction-band quasiparticle exci-
tation spectrum, with Kondo effects included, in-
volves the solution of what is, in effect, an integral
equation for the conduction-band scatter ing ampli-
tude. Using a technique developed for the extra-
orbital model of a disordered alloy,’ the Born series
for this scattering amplitude is summed analytical-
ly in the limit of low density of localized centers.
The resultant conduction-band quasiparticle exci-
tation spectrum has »no energy gaps. In contrast,
any finite order of Born approximation will lead
to gaps in the conduction band in the vicinity of the
localized quasiparticle excitation energies. A
case in point is the results of I, where the first
Born approximation was employed. This situation
is an example of the fact that perturbation expan-
sions in the scattering interaction'! need not nec-
essarily be convergent.

Several attempts® %1213 have been made to study
the Anderson model of a single center by means of
the Green’s-function equation-of-motion method.*
None of these attempts have properly satisfied self-
consistency. Not only was the Friedel sum rule
ignored, but, more seriously, it was assumed a
priori that the center had equal occupancy by elec-
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trons of both directions of spin, which is equivalent
to assuming a vanishing local moment as far as
self-consistency is concerned. Once such an as-
sumption is made, it is inappropriate to attempt,
as did Theumann,® to infer an effective exchange
constant. In contrast to recent suggestions,!t'1®
the fact that Theumann’s exchange constant differs
from the value calculated for the Anderson model
by perturbation theory'® does not necessarily imply
inaccuracies in truncating the equations of motion,
but rather the absence of a local moment. It
should be added that attempts such as those of
Mamada and Shibata!! tc attack the problem with
perturbation theory also forego self-consistency

in the sense that the unperturbed state is, in gen-
eral, characterized by a different value of local
moment from that of the perturbed state.

II. EQUATION OF MOTION

The Hamiltonian of our system is

H=Hy+H, , 2.1)

= 1 T
HO_E €rCraCro + EoE CioCio
Ry 0 i,0

+ UOE CLCi‘C;{.Ciz , (2.2)
i

Hl = 2 (Vkic;rocio + V—kicyuckv) . (2‘ 3)

kyiy0
The one-electron energies ¢, (for the conduction
band) and ¢, (for the localized centers) are mea-
sured relative to the Fermi level. The total Hamil-
tonian represents a system of conduction-band elec-
trons interacting with electrons in localized s orbi-
tals on impurity centers, the index ¢ designating
centers. The positive Coulomb energy U, is asso-
ciated with any center containing two opposite-spin
electrons. We shall take

VE=Vow s

so that H, is Hermitian. We will later need the fact
that

s o
- ~-ike R;
Vii = Vye ¢

(2.4)

(2.5)

where R; is the position of the ith center and V, is
the matrix element for a center located at the ori-
gin, If we had only one center in the whole crys-
tal, H would be the Hamiltonian for the Anderson
model of a localized magnetic center.! The electron
creation and destruction operators obey the usual
anticommutation relations.

We wish to look for an operator © such that

[o, H]=Hwo .

’

(2.6)

If Eq. (2.6) is exactly satisfied, 7%w is necessarily
rveal. If fiw is positive, O is a quasiparticle de-
struclion operator associated with an excited state
of the system containing one quasiparticle of ener-
gy nw. If hw is negative, ©is a quasiparticle
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creation operator associated with an excited state
of the system containing one quasiparticle of energy
|7w!. If Eq. (2.6) is only approximately satisfied,
then 7w may be complex. In this case, the signa-
ture of the real part of 7w determines whether 0 is
a quasiparticle creation or destruction operator.
In any case, 7%w must be in either the second or the
fourth quadrant of the complex w plane to ensure
that the quasiparticle excitations are causal (i.e.,
decay with increasing time). The lifetime of such
an excitation is given by

T=(2|w2])-1,

where - iw, is the imaginary part of w. Values of
w in the first or third quadrant indicate instabili-
ties.

We introduce the notation

(2.7)

(2.8)

= Af
Nto—claclu

for the particle-number operator, in terms of which
we can write

Ho=2" €Nyo+ €924 Nig+ Up2dN; o N;, (2.9)
Ry 0 i,0 i
We define the operators
P1ic = Cio »
Paic= Ni, -oCio »
(2.10)

= _ At
wliko_Ni,-ccko Ci,-ociack,-u’

Paire = Cz, -Ci,-oCio -
Calculating the commutators of H with respect to
Cy and the various ¢’s we get

[ceos H]= €kcka+2i Vei®1i0 5 (2.11)
(@105 H]= €®1io+ Up®Paia+ 20 VepiCha » (2.12)
(@210, H]= (€0 + Up) @aio

+ 20 (Vi@ ino = VeiPaine) »  (2.13)
[¢1ir05 Hol = € Prino s (2.14)
[@2iro> Hol=(2€9+ Up— €)P2440 » (2.15)

- T
[@1ik05 Hi]—zj ijci,-u(ci,-ocja - ciocj,-u)
|
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T
+Z>k' V. k'lci,-a(ck', -0Cro — Ck'ack,-a)

- T
Z_;k' Vk’ick',-a(ck, -¢Ciog — Ck'oci,-o) )

(2.16)
[P2ire, Hi]= ‘Ej V-ij},-aCi,-an
+Ek’ V-k'ic;,-a(ck’,-ociu— Ck'aci,-a) .
(2.17)

The basic approximation of this paper is now in-
troduced. The right-hand sides of Eqs. (2.16)
and (2. 17) are linearized with respect to all possi-
ble c¢;, Or ¢, , operators. In other words, the oper-
ator coefficient multiplying any c;, or ¢, is re-
placed by the corresponding thermal average. It
can be checked that every such thermal average has
a portion independent of », the density of localized
centers in the crystal. In addition, the thermal
average multiplying ¢;, has a portion linear in n,.
We make the approximation of dropping this latter
portion, valid in the dilute limit. As a consequence,

thermal averages of the type
<C;{aCyc> s <C;,-oci’a> for i+’ ’
<C;uck'o> ’ <C}:,-cck'o> fOl" E$E,

are ignored. We retain thermal averages of the
form

N10= (Nyo) (2.18)

by={clicry ), (2.19)
Rino = (ClaCho) (2. 20)
bino= (€}, -oCha) - (2. 21)

The actual calculation of these thermal averages
will be carried out in the appendices. As is shown
in Appendix C, n;,, and b;,, are proportional to V,;.
Since V,; is inversely proportional to the square
root of the volume of the crystal, »;,, and b,;,, van-
ish in the infinite-volume limit. Nevertheless,
these averages make contributions to sums over %
space which are finite in the infinite-volume limit,
and thus must be retained. Equations (2.16) and
(2.17) are replaced by

(@110 » H1]= 205 Vigl1ts, - €10 = (801 + 085105, o] + Vier{ (4, - = 1y - o)Cio = [(Bs = 5086 1+ (bF = D)6 ] ¢4, o}

[¢2{ko’ Hl:, == Vo {(nl,-u _"k,-u)cio - [(bi - blz)éav + (b’f - b;zk )6atJ ci,-o‘}

Here we have made use of the fact, proved in Ap-
pendix C, that

(2. 24)

=n¥k
ni,-k,a_nllzu ’

+ 200 Vo iWin, - oChro = DinaCar,-a) s (2. 22)
+Ek’ Vg (n?(k,-ack'o - b)i.(lz, -uck',..q) . (2.23)

[
by, eyo = Vi, -0 - (2. 25)

The assumption of finite b, and b,,, introduces the
possibility of pairing. Hereit is hole-electvon pair-
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ing, as in the excitonic insulator,!” rather than
electron-electvon pairing, as in the superconduc-
tor. Unlike the excitonic insulator, however, here
a finite b, indicates only that an electron is occupy-
ing the orbital ! with its spin pointing neither
straight up nor straight down.

Let us, for the moment, consider some arbitrary
set of operators ¢,,. We introduce the vector oper-
ators

w=(), B=,0) .
We define the 2X2 matrix

(y,; ¥

_<<[11)p'9‘p;']+> <[¢pn lPLL))
(per 030 [Bpes 05100

We have need of the general matrix notation
M= (mn mu) , M‘rE(mEf m§v>
My My, My My,
An arbitrary M can be expanded in terms of the
four matrices

o1y . (01
" \10) » \-10/

w30 (3 -

Equations (2.27) and (2. 28) imply that

(2.26)

(2.27)

(2. 28)

(15 2710 = (%5 G510 (2. 30)
We define the vector operators
vasonr) s enm(o)
B4 E(‘Pm x> . B E(‘qur) (2.31)
Piirs Pairs
and
oy = Ogy = Wy ¥y;
T30 = Prip — W — Vi ¥s » (2.32)
Wy = Baip = Vi Vs
where
W= ([®55 93],)
Vi = (@105 131 (2.33)
and
T, E(Z ) (2. 34)
Thus we have
W= U = ([®p; 231,
=30, +1; )Ta+ 300 =m0y )74
= 3(by+ b7y = 3(b; = BY)iry . (2.35)
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Similarly, we have
(1405 e 1. = O U
(1@ 145 951 )= 65504, (2. 36)
([ ®2105 ¥1,1.) =645V
Here we have used the fact that
_[ Pies  — bik')
Vi = 2.37
i (‘ bins  Mips ( )
In analogy with 4, it is convenient to define
[ Mg, _bk
U, = (2. 38)
¢ ("' b;: Ny )
We see that
(%5 9))=0 if p#q, (2. 39)

so that we have, in effect, a set of independent
vector operators. In addition, ¥, and ¥,; are
novmalized, i.e.,

(s L) = [y Y100 =74 (2.40)
The other vectors are not normalized; for exam-
ple,

(W5 93,10 =Yy (ry = Wy) .

The normalization matrices for ¥,;, and ¥,,, are
rather complicated; fortunately, they are not needed
for the following developments.
Equations (2.11)-(2.15), (2.22), and (2. 23) can

be rewritten as
(@, H]

= (€oTa+ Uply) Wy + Upllay + 20, Vopi %y
[‘IIZi ’ H]

= [Upui (g = W) + 22, (V04 = Vis V) 14

(2. 41)

(2. 42)

+[eoTa+ Up(Ty = U] oy + 20 [VE %110 = Ves Yain]

. (2. 43)
(P14, H]

= € Y1ir ~ Up Vi ¥
H{Vei (U = W) + 0 (€ = €0)T4 = UpW; ]} ¥4y
(2. 44)
(Y24, H]
= (2€9+ Up = €)Wy — Up0j Yoy
= {vt (uy = up) + Vf[ (€ = €0)ma = Uplra = )] 1y,

(2. 45)
This replacement of s by ¥’s in the commutators
has lead to considerable cancellation of terms.

We see that the commutator of H with any ¥, can
be written as a linear combination of the various
¥,. Thus we assume that the operator 0 of Eq.
(2.6) can be written in the form

0=23,A0,, (2. 486)
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where

@,
Ay 5((1, . )

is a vector coefficient. Here we are using the no-
tation

(p)=®) + (18) + (25) + (1K) + (2K) . (2. 48)

If we substitute Eq. (2.46) into (2. 6), take the anti-
commutator with respect to ¥/,, thermally aver-
age, and divide by the normalization matrix

(%, ; ¥.]1,), we get the set of equations

(2. 47)

A;(fk - iw) +Z>i V-kiA;i =0,

|en

22 AL[K(p, D7) = iwdype 4] =0, (2. 49)

where we are defining

K(p, p")=([[ %, H]; ¥ 1) (% 85 107 .
(2. 50)

Note that because of Eq. (2.39) every term of
([[¥,, H]; ¥.],) is automatically proportional to
(¥, ; ¥&],). Thus it is not necessary to know
the latter in order to evaluate K(p, p'). In turn,
setting p’ equal to k, 14, 2i, 1K, and 2k, we can
write Eq. (2.49) as

AL[(fo = Tiw) T+ Upl; ] + 2}2 A; Vei +A;i [Ugu; Ty —uy) +2k (V¥Ug = I/IinIk)]
+ 20 AL {Vis (U = ) + 03[ (€ = €0)74 = Up;]}

Azl(eq+ Uy = )Ty = Uy ] + AL, Uy - Uozk (A3 Vip + Abyp V3 =0,

AItk(ik - fw) +A;i V=0,

Apin(2eg+ Uy = € = fiw) = A} V=0 .

These last two equations immediately give

Al =—-ALVE(e, - Tiw)? (2. 56)

(2.51)
- Ek A;ua {vx(u, —w,) + U, [(€ = €))7y = Up(my—uy)]}=0, (2.52)
(2.53)
(2. 54)
(2. 55)
[
Here we have made use of the identity
[(eq = Q)74+ UgW;] [ (eg+ Uy = 1074 — Uy ]
- 0‘111(7'4—‘“1) E(Gg"'ﬁﬂ) (€o+ UO—EQ)T,; . (2. 65)

A.;.rik = +A£i Vi (2€0+ Up = €, — )™ (2.57)

It is shown in Appendix D that
2o [ V&0 1 (& = T0)™ + ViUl (6 + T = 260 = Up)™]
= (k= 1)U [(eg+ Up)Ts — UpW;], (2.58)
20 | Ve [Py = ) [(€ = 7)™ = (g + Fiww = 264 = Up)™]
=\ =1)Uglepleg+ Upty . (2.59)

The proportionality factors (k —1) and (\ — 1) are
real functions of w. The functions « and X differ
appreciably from unity only if the temperature T

is comparable to or smaller than the Kondo tem-
perature Ty, and even then only if 7w lies in the
immediate vicinity of zero or (2¢,+ Up). (By im-
mediate vicinity we mean that the energy difference
is comparable to or smaller than kzTy.) With the
aid of Eqs. (2.56)-(2.59), Egs. (2.52) and (2. 53)
become, respectively,

ALQi+24, AV =0, (2. 60)
Agy == AL Ug[(eo+ Uy = 174 - U] ™, (2.61)
where we are defining

=k, (2.62)

L=k [(7w)? - (2€9+ Upliw +1eoleg+ Up)] , (2.63)
Qi =L[(eg+ Up=1Q)14 = Upu;]™ . (2. 64)

Equations (2. 51) and (2. 60) represent a system
of coupled equations for the unknown A},’s and
Al’s. We can immediately eliminate the A]’s
in favor of the Al;’s, or vice versa. Eliminating
Al from Eq. (2.60), we get

Al (Q; = Wry) - 20 AL L |V, |2eiE BimB) (g, — i)
#1 ok
=0, (2.66)

where

W=23, | V|2 (g = iw ) = 20)% [ d®k| V|2 (e, ~ i)™ .
(2.67)
Eliminating A{, from Eq. (2.51), we get
Aille =)~ [ V|23 07']
1
—k;;kAg, VEV, {Ee”r"""'ﬁ'Q;‘:O . (2.68)
The self-energy W is defined for w lying in either
the second or the fourth quadrant of the complex
w plane. In the first or the third quadrant, W is
defined by analytic continuation across the real
axis.'® Since we are primarily interested in w near
the real axis, we use the Plemelj relation
1
lim (x+4n)t= 0’(;) ¥ im6 (x)

-0+

(2.69)

in evaluating W. Writing
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W=wy — Wy , (2."70)
W= W, -iW,, 2.71)

we get
=@2m)3 @ [ d%| V,|% (e, - Fiwy)t, (2.72)

Wy=—1(2n)2 (sgnw,) [ d%k| V| 28(e, - wy)

] L AL

(2.173)
We shall later make use of the common approximai-
tion of ignoring the dependence of W on the magni-
tude of w, (e.g., by setting w,=0 inside the inte-
grands for W; and W,). See Appendix D.

II. LOCALIZED QUASIPARTICLES

We look for solutions to Eq. (2.66). We assume
that one particular vector coefficient, say Al;, is
much larger than all the other AY; (j#i). This ap-
proximation is certainly valid for sufficiently small
density of impurity centers. Thus, for A{i we have
Eq. (2.66), while for A}, (j#i) we have

Al (@ - wry)
=27 AL..J
p#i k'

ke (®p-Rp (€ — )t

-Au |Vk’ 2gn ik By~ IT[‘)(Ek'—}’fw) . (3.1)

Substituting (3.1) into (2.66), we get
AL(G, - P)=0, 3.2)
where we are defining
G, =Q;—Wry, (3.3)
=)t [ [ a®%ka®' | V|2 | Ve |? (e — i)™

X(ek: -t G;‘ em‘c.i')- ®;-8p . (3.4)
FER

Settting up the notation

pi=€g+ Up—35 Uy, +m;) (8.5)
4:=3 Uplny =ny) (3.6)
A;=Ughy (3.7)
we= g2+ | a,]2102, (3.8)
we have
(eg+ Uy = Q74— UpY

=<Pi“ﬁ9"‘h A ) , (3.9)

Af pi—72+q;
[(€0+ Uo - ﬁ9)74 -
=[(ps - mQP - 2] [(p, -

-1
Ug; ]
(A, + AT,

(3.10)

Q)T T~
—%(Ai - AT )iTg] .

Defining

a; =L [(p; - 1Q)% - uf], (3.11)
we have
G =a-1(Pc—41W“7m+¢11 -4
o - af by —a;W—-nQ =g,
(3.12)
so that
G;I =a; [(p; - a W~ nQ)? - W?]'l
X[(€o+ Uo_ a,W—ﬁQ)T,, - Uﬂ‘ui] . (3. 13)

We now anticipate the following results of the
calculation. It turns out that p, and w; are always
independent of the index i. (Thus g, is also.) In
one of the two kinds of solutions, g; and A; are also
independent of 7; in the other kind of solution, ¢;
and A; vary in an essentially random fashion from
site to site, subject to the constraint that w,; be site
independent. The former is the ordered solution;
the latter is the disordered solution. We define

1t5<27'>‘“ss %k d’ | v,|?| v,

2 (Gk - w )-1
X (€ = )1 20 @t (B-k0 =Ry (3.14)
J#E i
D, =a;[(p; —a;W=HQP =] (py —a; W - 1Q)7, .
(3.15)
I, differs from P; by the absence of G;'. D; is that

portion of G;! proportional to r,. For the ordered
solution, we can replace G3' by G;' in P;, so that

P,=GjlI, . (3.16)

For the disordered solution, the portions of G,‘l
proportional to 7, T, and 73 make negligible con-
tributions to the sum over j in P;, this being due to
the random nature of ¢; and A;. The portion of

Gj' proportional to 7, is equal to D;, so that

P;=D, 1. (8.17)
We may now rewrite Eq. (3.2) as
Al Gi=0, (3.18)
where we are defining
Gi==3(a;+ ATy = 5(8; = A})iTy + 474
+a(p;, -a,W-1Q)7,, (3.19)
;= ((i: __'Z“v;, ’;%))2 _-Z:J, +Z‘a€ , (3. 20)
@=+1, ordered state
=0, disordered state . (3.21)

In order to evaluate I;, we approximate the sum
over j#¢ by the equivalent integral

27 ot E - (ﬁj-a,)znofdaRel(k-k')-ﬁ .
FER]
We are assuming a crystal of unit volume and a

(3. 22)
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density of centers »n,. Note that, having made this
approximation, I;=1is independent of the index 7.
It can be shown® that

I=4ny(2m)® [ a3k | v, |* (PR%/2m) (¢, - Hw)™!

(3.23)

where m is the effective mass of the conduction
electrons, which we shall assume is positive.
Writing

I:Il—ila, (3. 24)

we have
L=3n(2m) 0 [ k| V| * PR/ 2m) (€, - )™,
L= - iny(2m)" (sgnw,) fdak' Ve ‘ LR/ 2m)

x6(€, —iwy) . (8.25)

As with W, it is usually a good approximation to
ignore the w dependence of I by setting w, =0 inside
the integrands of Eq. (3. 25).

We return to Eq. (3.18). Corresponding to this
matrix equation, there is the secular equation

ay(py - a;W—1Q) +q; -4 -0
- Af oy (py —a,W-7Q) - g, ’
(3.26)
which gives
ay(p;~a;W-1Q)xw; =0 . (3.27)

Substituting this back into (3. 20), we get an equa-
tion cubic in o'

;3 = @ = [1+(a;/w,; 1) i+ [1 - Qa; /w; *1)=0 .
(3. 28)

Solving for the roots in the usual fashion, expanding
in powers of the small quantity I, and keeping only
the leading terms, we get

ajl=-1 (3. 29)

and
a;t=+1% (a; /w;) [5Q+ QIT/2 .

The root given by (3. 29) is unacceptable in that it
does not reduce to +1 in the limit as n, and I van-
ish; the two roots given by (8. 30) are acceptable in
this regard. We must, however, have the sign ap-
pearing in (3. 30) be opposite to that appearing in
(38.27). This is necessary in order that the term
involving [ make a contribution to Z§ lying in the
same quadrant of the complex plane as does the
term involving W. This can be seen by substituting
(3.30) into (3. 27) and getting

(3. 30)

nQ=p; —a, Wt ajlw,
=pitw; —a, {W+[3(1+QIV?} .

Making the assumption that the conduction-band
effective mass is positive, we see that W and I lie
in the same quadrant of the complex w plane. We

(3.31)
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take the square root of I that lies in the same
quadrant as I. It should be emphasized that Eq.
(3.31), having been obtained by expanding in powers
of (I/w?), is not correct when w; =0. Under such
conditions, 7ZQ must be independent of @, so that
the appropriate solution to Eq. (8.27) is @;=0, or
#Q=p; - a;(W+I'?). Thus we see that Eq. (3.31)
gives the correct answer when w; =0 if we set @

=1 in the equation.

Defining

p=x1, (3.32)

W=w+[3(1+ QU2 (3.33)
so that (3. 31) becomes

AQ=p;+ pw; —a; W . (3.34)
With the aid of (3.11), we have

(py = 1@+ pw;) =L [(p, - 1% - wZ]W (3. 35)
or

L=(p; —1Q - pw,)W' . (3.36)

Substituting (2.73) into (3. 38) gives us a quadratic
equation for 7. Solving for 7w =«k#$, we get

Tiw=Tiw,, = g +3(Uy— W) +v {3(Uy+ W)?
- W [3Uple;, +n;y) + pow; ]+ (1 = X) gg(eq+ Uy)
= (L =)W [€g+ Uy = 3Up(ny, +m;,) = I“Lwi]}llz ,
(3.37)

where
v=x1. (3. 38)

It is understood that the choice of sign for v is in-
dependent of that for p. In principle, Eq. (3.37)

is only an implicit equation for 7w, since x and )
are functions of Zw. Asalready mentioned, unless
7w lies in the immediate vicinity of zero or 2¢,

+ Uy, k and A may be replaced by unity. Since such
a contingency very rarely occurs for 7w,,, we
shall make the approximation k=x=1, Q=w, in
treating the localized quasiparticles. Thus

ﬁwu,,= €0+%(U0_ W,)‘FV{‘;'(UO-F Wl)a

- W [$Usln;, +m5,) + paw; ] /2. (3.39)

From this point on, the self-consistent determin-
ation of 7w, , follows just as in the treatment of the
one-center problem as given in II. It is only neces-
sary to replace Wby W’. The determination of the
thermal averages n;, and b; is carried out in Ap-
pendix A. Equations (A42)-(A44) express n;, and
b; in terms of the weighted statistical factor g,,
defined by Eq. (A45).

IV. CONDUCTION-BAND QUASIPARTICLES

We look for solutions to Eq. (2.68). It is fenta-
tively assumed that one particular vector coeffi-
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cient, say A}, is much larger than all other A}, .
Unlike the corresponding assumption in Sec. III,

it is by no means obvious that this assumption is
true here, even in the limit as n, the density of
centers, vanishes. We are, in effect, invoking the
Born approximation. For A}, we have Eq. (2.68),
which we write as

ALG, =Y AL VIV o @K Rt (4.1)
R'ER i
where
Go= (€ = )Ty~ | Vi |? 20, Q71 (4.2)

Al = ATV Vk(Ee“E"E" Ry @it +kZ) [ Ve,
j X}

Substituting (4. 5) into (4.1), we get

Ak<‘"k-|Vh! |V |20 & ® -0 ®R-Rogiigag

’

22) ¢t F Rymke Ry gm ik By-Rp) Q;lG",,l,,Qf)G;.‘ :
iip

—lv,,l2

2711

For AL (K’ #%), we have

A;:Gk: =A; V:‘ sze- t(k-E0)e ﬁj Qj-l
F

+ 20 AL VAV D e iR E Y Ry
R ER R j
(4.3)
We assume
AL 2 ALV, D, e M EE Ryt ot (g4
Substituting (4.4) into (4. 3) we get
(4.5)

le.I | Ve |2

X2y ik ®i-Hy) eik'-(ﬁj-ﬂp ke (®y- ﬁf’Q'leuQ;‘G,;}Q;l):O . (4.8)

i 4,0

Equation (4. 6) represents the second Born approximation.
the triple sum over ¢, j, and p reduces to a double sum
In the sums over K and K/, we can approximate G,;.l and G;}, by their values in the limit »y=0. Thus

sum over 7 and j reduces to a single sum (i =3);
(i=p).

(4.6) becomes

Alfen- 112D 6D W Pley oy = [ ]2 D

In the double sum over i and j, we separate out the
terms 7=7j, whereupon we can write (making use
of the definitions of I and W)

Al [c,,- |v,|? w(EQ;2+W2 Q;“)

- InlB D 6t 2 a0 @.e)
Note that the terms involving W are linear in ng,
whereas the terms involving I are quadratic in n,.
Thus, in the dilute limit we can drop the latter
terms, getting

AHG = | Vi |® 22, @ LW + (Wi ] }=
(4.9)
It can be seen that if we perform the iteration
process for A} an indefinite number of times (rath-
er than twice, as done above), then in the low-con-
centration limit Eq. (4.9) is replaced by

Ak<(1k— | V,JZE Q 5 (WQ;l)">:0. (4.10)
nal

Keeping only the first » terms in the n series rep-

resents the nth Born approximation. Fortunately,

we can sum this Born series by inspection. Making

-1 -1 41
i Q) Q) | Ve |2
k',kll

Due to destructive interference, the double

| Vo |2 (€0 = 7w )™ (€er = Fiw)™

X g EI-E) - (ﬁi-ﬁj’]zo . @

T
use of Eq. (3.3), we get
AlG,=0, (4.11)
where we are defining
Gl=G, - | Vo2 W, @'G;t . (4.12)
Making use of the definitions of G, and G;, this
can be written

Gh= (€ = Tiw)Ty— | V|2 22,67 (4.13)

In terms of a;=a [Eq. (3.11)], we have

Git=a[(p - aW =122 - u?]? [(p —aW-1Q)T,

+5(0, +AN)T +5(A, = AX)iTy - q;75] . (4.14)
Thus
22 Gt =ngal(p — aW = Q) = w2 {(p - aW - Q)74
+Q[3(Aa+ A% +3(A =A%) ity — qT5] } .
(4.15)
so that
-,
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ngal V, 12 Q

- (p —aW - ﬁg)z_wa [%(A-‘- A*)T1+%(A - A*)iTz_qu]'

(4.16)

Corresponding to Eq. (4.11), we have the secular
equation

detG;=0,

(4.17)

which gives

B (p—aW=-1R) - uQu
Ew=EWku ":(k"noa, 1/12’2< (p_aW__th)z_wz) 1)

(4.18)
where

n =41 (4. 19)

The two possible roots correspond to the two pos-
sible choices of spin orientation of the conduction-
band quasiparticle excitations. Note that the two
roots are degenerate for either the paramagnetic
(@ =0) phase or nonmagnetic (w=0) phase.

The right-hand side of Eq. (4.18) will diverge
if and only if

nQ=p—aW+puw . (4. 20)

Aside from containing W rather than W', Eq.

(4. 20) is the same as Eq. (3. 34), theroots to which
give the localized quasiparticle excitation energies
7wy, In the dilute limit, however, the imaginary
part of k™ w,, is not large enough to satisfy (4. 20).
This indicates that there are no gaps in the con-
duction-band spectrum, and thus no possibility of

a second branch to the spectrum (one correspond-
ing, for example, to conduction electrons localizing
themselves in the vicinity of the impurity centers).
This should be contrasted with the results we would
have obtained had we stopped with any finite ovder
of Born approximation. Consider, for example,
the second Born approximation which gives Eq.
(4.9). The corresponding secular equation leads to
a self-energy for 7Zw,, which diverges whenever
the quantity L vanishes (in turn occurring for real
%iw). It is readily apparent that the same behavior
occurs for the nth Born approximation (» finite).
The conduction-band energy gaps calculated in I
were an artifact of the use of the first Born approx-
imation. We see that the summing of the series
appearing in Eq. (4.10) is a crucial step in the
present calculation.

Having disposed of the possibility of gaps in the
dilute limit, we may, with no loss of accuracy,
replace w =« by 7% '¢, everywhere on the right-
hand side of (4.18) which may be written

Ty, = € + 10| Vit 22,51+ 1w @)(kte, +aW = p - vw)™,
(4. 21)
where we are defining

v=+1, (4. 22)
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The self-energy W appearing in (4. 21) is to be
evaluated at 7w, = €, while

(4.23)
(4. 24)

a=L' (p-klg+w) (p~kre—-w),

kL =€ - (2¢5+ Uy) € +Aegleg+ Up)
Defining

Wy, =a™(p ~ ke, +vw)=L(p — ke, —vw)™

- €2 — (2e0+ Up e, + N egleg + Up)
Kleg+ Ug(l-g.,)] -

) (4. 25)

we can write (4. 21) as
Ty, = €, +"0‘ Ve ‘2 Ev%(l +ur Q) (W - ng,)'l .
(4. 26)

Making use of the fact that W is the only complex
quantity in (4. 26), and defining the angle

8,, = arctan] Wy(W, — ws,)™], (4.27)
we have
Frwey
=€p+ng | Vol 220, 5(L+ pv@) [(Wy = Wy,)2+ W3]/ 2etou .
(4.28)

The cross section for scattering of a quasipar-
ticle of wave vector K by a localized center is

0= (09 2, 7)™, (4. 29)

where 7, is given by Eq. (2. 9). We may approxi-
mate the quasiparticle velocity v, by its value in
the dilute limit, namely,

4 dey
dk

Combining Eqgs. (2.9), (2.84), and (4. 27)-(4. 30),
we get

v =7 (4. 30)

0,= @n/k?) 2,5 (1 + uvQ) sin®s,, . (4.31)
But, in general, we must have
ok=‘z—’; 2, (21+1)sin%,, , (4.32)
1=0

where §,, is the phase shift of the Ith partial wave
associated with the quasiparticle of wave vector

-

k. Thus
J2ws (1+pvQ)sin®s,,= 2, (21+1)sin%,, . (4.33)
1=0

As discussed in the Introduction, we invoke the
Friedel sum rule®

i (21+1)6, . (4. 34)

2
Z==

T 1=0
Here 6, is 0,, evaluated on the Fermi surface, and
Z is the excess number of conduction electrons in-
troduced into the system by each center. As it
stands, Eq. (4.34) is not appropriate to a ferro-
magnetic system., Thus we restrict ourselves to
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the nonmagnetic (w=0) or paramagnetic (@ =0)
phase in combining (4. 33) and (4. 34). If we make
the approximation that only s-wave scattering is
important (i.e., 6,,=0 for 7>0), then (4. 34) com-
bined with (4. 33) becomes

(4. 35)

where §, is §,, evaluated on the Fermi surface. It
is a reasonable approximation to restrict ourselves
to T=0 in satisfying (4. 35), whereupon 5, is ob-
tained by substituting into (4. 27) the value of W,
given by

3725,8in%,=sin®(372) ,

_ &g+ Uy
W, e Uyl=g.) . (4. 36)
Here we are making use of the fact that
lim (5> =1. (4.37)
w=0,7-0 \ K

APPENDIX A

For the purposes of calculating »;, and b;, we
can approximate the quasiparticle operator 0, by

0,2Al, ¥, + AL W, . (A1)

In other words, we restrict the sum of Eq. (2.46)
to terms involving a single center. We hasten to
add, however, that the Al, and A}, in Eq. (Al) are
those already calculated in Eqgs. (2.61) and (3. 18)
by taking into account the interaction between cen-
ters. For the time being, we drop the center index
i. We need to invert Eq. (Al) in order to get ¥, as
a function of the four possible ©’s (corresponding to
the four roots for Zw). Knowing ¥,, we can cal-
culate »n, and b.

First of all, we need to determine the vector co-
efficients A} and A}, Writing

Aqu(aikfu’ atiy) ,
(A2)
A;u= (a;iu’ di‘m) ’

u being the quantity of Eq. (3.32), we can express
Eq. (3.18) as

Mw — A
(atn.u aty.)( A*q “w+q> =0. (A3)
Solving this, we get
Al,=C*w+q, -4),
(A4)
Al =Ct(+ &%, w+q),

where the C, are as yet unknown normalization
factors. Equations (2.61) and (3. 10), when com-
bined with (A4), yield (setting x=1)

Al =-Uy(p —liw — uw)™ Af, . (A5)

In order to find the normalization factors, we
use

2713

(ou,0L])=1, (AB)

a consequence of O, being a fermion quasiparticle
operator. Substituting (Al) into (A6), while making
use of Egs. (2.39)-(2.41), we get

A{u Ay "'A;u‘u(’r'l —U)Ay,=1. (A7)
Equation (2. 65) can be written

Uga(ry -u) = - (g — iw) (&g + Uy = Tiw) 74
—[(€g+ Uy = Tiw) Ty = Upu |2 +2(€p + 3 Uy - Fiw)

X[(€+ Uy =liw) T4 = Ugu] . (A8)
Thus

UZAS, u(r, —U) Ay,
=UE[ - (€ ~Fw) (€ + Uy = Fiw) (p = Tiw -pw)t-1

+2(€g+3 Uy —liw) (p —Frw — pw) Al A, , (A9)
and (A7) becomes

[ —(€0 - hw) (€g+ Uy — Iw) +2(€0+% Uy - fiw)

X(p =fiw = uw)|(p —liw — pw) 2 A}, A, =1. (A10)

From (A4), we have

Al A= |Cul 2 2ww+q) . (A11)
Thus
| Cul?=20w(w +q) (p - Fiy — pw)™2
X 2[(eq+% Up = Tiw) (p = liw — )
- (gg-Tw) (gg+ U —Tw)] . (A12)

We now introduce the notation A,,, A}.., 0.,
expressing the fact that these quantities depend on

both 1 and v. We define
O++
- 0.
o= 0 , (A13)
o..
Al Al
- t t
U= A:'* Af" : (A14)
A1+- A2+-
Al A}
= (¥
v= ( ¥, ) (A15)

© and ¥ are fourth-order column vectors, while
! is a 4x4 matrix. Equation (Al) can be written

0o=U"1¥, (A16)
so that
¥=0o, (A17)
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where U is the inverse of U"!, We define the 2x2

diagonal matrices

-~ _ a+,p O
Av=( o aw) , (A18)
~ b 0
B, s( il ) , (A19)
v 0 o,
where
au,=(p ~Tiwy, = pw) by, , (A20)

bqu[Z(io +3 Uy ~Hwyy) (p = Fiw oy = H0)

— (g =Hwy,) (€ + Uy =Tiw )12, (A21)

Here we have written 7w ,, to indicate that 7w de-
pends explicitly on u and v. [Do not confuse a,,
and b,, with the a; of Eq. (3.11) and the b, of Eq.
(2.19).] We also define the 2X2 matrix

Sl a2 fwrqg —A
W= [20(w + g)] ( " w+q) . (A22)
Note that the inverse of this matrix is
_ -1/2fW+q +A
W= [2w(w+q)] (-—A* w+q) . (A23)

We define the 4x4 matrix, written in 2x2 block
form, as

~ A, B
-1 e D

M _(A_ Y ) . (A24)
Note that the inverse of this matrix is

- (B, -B,):

i (% A*)D, (A25)
where

D=(A,B.-B,A)", (A26)

Equation (A25) should be understood to mean that
the upper left-hand block of # is B_D, the upper
right-hand block is ~ B, D, etc. Defining

du=(au, by, ~au, 0,070, (A27)
we have

= d+ 0

b= (O d_). (A28)

The point of all these definitions is that we can
write

U™t=m"1w, (A29)
so that
T=W . (A30)

The portion of Eq. (A17) of interest here can be
written

Uy Uyp Ugs U14>-
W= © A31
! (Uzl Uss Usy Us (a31)

5
or
O,
Cir (Uu Uiz Uss U14) 0.
= . A32)
(Cu U, Uss Usy Uy 0,. (
O..
We have
<U11 UIZ
Ugy Use
=wB.D

B aefw+q +A> b,.d, 0 >
=[2w(w +q)] <_A* w+q < 0 b.d./)’

(A33)
<U13 Um)
Ug Uy
=-wB, D
- aefw+q +A <b++d+ 0 )
= ~[2w(w +q)] (_A* w+q> 0o b.dl
(A34)
Substituting (A32) into the equations
<[Coy C;L):l ’ (A35)
while making use of
([OquL'u' ]+>=5uu’6uv' ’ (A36)

we get the results
(U2 + | Ura]®+ | Uss| 2+ | U |?)
= (| Uat| 2+ | Uga| ®+ | Uns| 2+ | Un | =1 . (A37)
Inserting (A33) and (A34) into (A37), we find
ldu| =20 [0u|® . (A38)
We define the statistical factor
FErtws| [ do' [0 - w)?+wd]t
X (M + 1) (A39)

associated with the excitation

W =Wy —iwg (A40)
(w; and w, being real). It can be shown that
<0'Irw Ou'v'>=fu.u5uu'5w' ’ (A41)

where f,, is the statistical factor associated with
wu Substituting (A32) into the definitions of #,,
and b,;, while making use of (A33), (A34), and
(A38), we get

3

(g +n)=(g.+g.) , (A42)
(nu—n¢')=(q¢/w)(g.-g,~) ’ (A43)
by=(8,/2w)(g.-g.) , (A44)

where we are defining the weighted statistical factor
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8u= (20 bu )™M (2] buy| 1) (A45)

Note that both f,,, and g, are real, and lie between
zero and one. Equations (A42)-(A45) were used
(but not derived) in II. The matrix U, of Eq. (2.38)
can be written as

U= Cw) ' 20, gufwti+ulg s -3 (A + 2P 1
—%(Ai "At)iTZJ} .

APPENDIX B

(A46)

For purposes of calculating »,, and b,, we can
approximate the quasiparticle operator o, by

0,=AlY, . (B1)

In other words, we restrict the sum of Eq. (2. 46)
to the term involving a single Bloch wave, We
hasten to add, however, that the A in Eq. (B1) is
that calculated in Eq. (4.11) by taking into account
the interaction between Bloch waves. It is neces-
sary to invert Eq. (B1) in order to get ¥, as a func-
tion of the two possible 9,’s (corresponding to the
two roots for 7Zw,). Knowing ¥,, we can calculate
e and b,. For the time being, we restrict our-
selves to the case Q=1 [where @ is given by Eq.
(3.21)], whereupon ¢, and A; are independent of
the site index i.

Writing

A;;:.:(a:wr a:au) ) (BZ)

i being the quantity of Eq. (4.19), we can express
Eq. (4.11) as

Hw — A
(a,:‘m,a;‘.u)( ! qurq>=o. (B3)

Solving for Al,, we find

Al =2ww+q)] ™ 3w+q, -a),

. (B4)
Al =[2w(w+ )]V 3 (+ 2%, w+gq) .

Here we have chosen the normalization such that
Al Agu=1, (B5)

thereby ensuring that o, satisfies Eq. (A8).
Writing

~ Ok"'
= B6
O <Ok-) ’ (B6)
we can reexpress Eq. (Bl) as
0,=w¥,, (B7)
so that
V,=W0p, (B8)

W being the 2x 2 matrix of Appendix A. We substi-
tute (B8) into the definitions of n,, and b,, while
making use of

<0:u0ku'>=fku6uu" (B9)
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Sru being the statistical factor [Eq. (A39)] associated

with w,,. We obtain
(s +10) = (fo+ fos) (B10)
(n)u _nk')=(q/w) (fk- "fka-) ’ (Bll)
by = (A/2w) (foefrs) - (B12)

Although these results were derived for the case
@ =1, they are actually true for the case Q=0 as
well, where (n,, —n,,) and b, vanish. For the latter
case, fwy,=lw,. and 0,, is an arbitrary linear
combination of ¢, and c¢,,. The use of Eq. (B4) for
Q=0 corresponds to taking 0,, to be a quasiparticle
operator associated with a spin parallel (or anti-
parallel) to the net spin associated with a localized
center having ¢;=¢q, A;=A. The thermal averages
7y, and b, are necessarily independent of what linear
combination of ¢,, and ¢,, is used in constructing
0 pue

The matrix U, of Eq. (2. 38) can be written as

W= 2w)™ 2y fou {wTe+ 1[qrs—3 (A + A%) 7y

-3(a-a%)i7,]}. (B13)

APPENDIX C

For purposes of calculating n;,, and b,,,, and
thus the elements of the matrix v;,, we need to ap-
proximate the quasiparticle operators ©; and -0,
more accurately than was done in Appendixes A and
B. It is convenient to concentrate on some particu-
lar K and i. This allows us to use the same matrix
W, in connection with 9,, for both cases @ =0 and
and @=1, just as was done in Appendix B.

First we consider 9,. Rather than Eq. (A1), we
write

0,SAl U, + A} ¥, + ALY, . (Cc1)
But here
AZ= - (&, "h'(’-’i)-lzllA{j Vi

x - (g, —hw) AL VY, (c2)
since Af,;> Al, for j#i. Thus
0= Al ¥y + AL ¥y — (€, —Tiw,) " AL, VH T, . (C3)

We define the 4 X4 matrix, written in 2X 2 block
form, as

= (Z, O
Z= (0 Z_) , (Cc4)
where
5 _f(2+4 O
Zv"( 0 z_u>’ (C5)
Zuy= (fk - ﬁwiuu)-l . (Ce)

In matrix form, Eq. (C3) can be written
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5i=f]-1‘1’4'z—(ﬁ-1)1en V:;‘I’k ’ (e}))
where (7). is 2 4X2 matrix consisting of the
left half of the 4x4 matrix U "' of Appendix A. We
also designate by U,,, the 2X 4 matrix consisting of
the top half of the U matrix. Premultiplying (C7)
by U,,,, we get

i’[top(:j i~ ‘llli - &tcpz ((7-1)1eft V:i \I/k . (Ca)

With the aid of Eqs. (A29), (A30), and (B8), this
becomes

U= U400 4+ VE WK, O (C9)
where we are defining the 2x2 matrix
%= MyopZ (M ™)yt - (C10)
From the definition of 77 in Appendix A, we get
X,=D(B.A,Z,~B,A.Z) . (c11)
ertlng
5ck=(“0’” xok) : (C12)
we have
Ken=du (bu = AusZps = bus @u_z,.)

_(a,“/b‘“ 2y, = (au.-/b B ZI-L-‘
(@u/bus) = (@u./b,.) (C13)

Equations (A20) and (C6) allow this to be rewritten
as

xkp. = (ﬁ&)‘p,- - hwiu-t)-l

% P —Hw —Fwiu. _ D= —Aw;,.
= hwiu. € —hwip. )

(C14)
It is convenient to make the decomposition
*’kk Kp3T3+Kpa Ty (C15)
where
Kps=3 (Kpo ~Kp.) 5
(C16)
Ko =3 (Kpo +3,.)
Thus Eq. (C9) becomes
V1= Upop0 i+ VE(Kps WK g3 WT3) O - (c1n)

This result differs from Eq. (A31) by the presence
of the term containing 0,.
Next we consider © ,. Rather than Eq. (Bl1), we
write
0,xAN ¥, + Al ¥, . (C18)
But now

Al ==L AL Vi [(€o+ Uy =7 2,) Ts — Up U, |

= - LAV, (€ + Uy = 192) 74 - Upwy ], (C19)

since A}, < A for ¥’ #K. In a2 manner analogous to
the proof of Eq. (A5), we can show that the above
expression can be rewritten as

AIW:"L-l(p‘ i = k™ wy,) Vi AL (C20)
In matrix form, Egq. (C18) becomes
0p=w ¥, =8, WV, ¥y, (c21)
where we are defining the 2x2 matrix as
~ (%5 O )
9r< 0 9./ (c22)
en=L7Hp = pw =k w,,) . (c23)

Here

= k" (TTwpn)? — (2€0 + Up) Fiwp, + M€o(€g + Uy) ]

= k" [(€g = Frwpn) (€ + Ug = Flwyy) + (N ~ 1) €g(€g + Up)] ©
(Cc24)

Premultiplying Eq. (C21) by w, and making use of
Eq. (A31), we get

\I-’k='WE)k+ Vkiwgkw-l Utopa i (C25)

Just as with X, it is convenient to make the de-
composition

gk:9k373+9k474’ (C26)
gk35%(9k+ "gk-) ,
(c2m)
$,u=3(9,+9,).
Thus Eq. (C25) becomes
W, =WO o+ Vi (9pa Upop+ 913 Utop) 0 4 (C28)
where we are defining the 4 X4 matrix
U'=wryM . (C29)

This result differs from Eq. (B8) by the presence
of the term involving 0.

With the aid of Egs. (C17) and C28), we can now
determine 7., and b;,,. The results are most con-
veniently expressed in the form

(Rips +ipn) = Vi 200 (8 80+ & pufrow) (C30)

(Ris = i) = Vki(qi/w>z>u“(gkugu“"xkufku) ’
(Cc31)

bigr= Vai(B3/2w) 20, (9 4 gu+Kpw fun) »  (C32)

bins = Vki(Ar/zw)Eu U(gkugu+xkufku) ’ (C33)

where g, and f,, are the statistical factors defined
in Appendixes A and B, respectively. In order to
evaluate 9,, and X,,, we introduce the approxima-
tions

Bwiu=€,=€+3 1+v) Uy, (C34)
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(C35)
into Egs. (C14) and (C23), respectively, obtaining

Fwpu= €

Kopu=- U(-)1 EUV(P - Hw - €v) (€k - Ev)-1

=—(p—pw—¢€,)(g —€,) " (eg+ Uy — €)™, (C36)
and

$pu=[(€g - €) (€ + Uy — €,) + (A = 1) €y(€g + Up) ]

X[k(p - pw) —€,] . (C37)

[In (C37), A and k are to be evaluated at fiw = €,.]
These approximate expressions for 7w;,,and 7w, are
correct inthe limit V,; —~ 0. Thus (C36) and (C37), in-
serted into (C30)-(C33), will result in values of
nipe and by, accurate to terms linear in V,;, which
is sufficient for our purposes. Making use of Eq.
(2. 4) and the fact that €, has inversion symmetry in
k space, we immediately obtain Egs. (2.24) and
(2.25). The matrix v,, of Eq. (2. 37) can be ex-
pressed as

ViUpi = (20)7 | Vkl zzu(gkugu + KenSrw)
X{wry+ klgims = 5(8;+AF) 1y — 5(8; - AY)iT,]} .
(C38)
APPENDIX D
For purposes of calculating the sums of Eq.
(2. 58), we can approximate k and X by unity in g,,

[Eq. (C37)], as it appears in V¥U,; [Eq. (C38)].
This approximation gives
Suy=—Kpa= Ut v(p - pw—¢,) (€,—€,)t, (D1)
so that (C38) becomes

VEUps= GwU) |V, |22 v(p - pw - €,) (€, — €,)!
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x{wry+ plg;ms— 5(8;+ AF)T, = 3(A; = Y )iT,] }

x[(1-2f,)-1-2¢,)]. (D2
First we consider the matrix sum
SiEEk V¥ Opile, —iw) ™ . (D3)

Substituting (D2) into (D3), we note that the contribu-
tion to S; coming from terms proportional to
(1 -2g,) can always be expressed as a linear com-
bination of the self-energy differences [W(iw)
- W(e,)]. Ivoking the approximation that W(w) is
independent of the magnitude of w,, then these dif-
ferences will vanish. (We shall ignore the possibil-
ity of any residual imaginary portions in the com-
bination of differences of the W’s.) Invoking (C35)
in the evaluation of (1 - 2f,,), i.e.,
(1 - 2f,,) = tanh(zB¢,) , (D4)
we see that S; can be written as

S;= (20!

LOCALIZED...III 2mn

X2, [(p = €)74— qyTs+3(4, +AF)T +5(8, - AT,

X2 | V|2 (€5 — €)1 (€, — 7iw) ' tanh(38e,) . (D5)

Approximating the factor (g, — ¢,)™! by its value at
€,=0, we get

Si=[pTa— qirs+3(8,+ AF)Ty +3(A; = AF)iTs)

% [2€5(€q+ U™ 20 | Vi |2 (€ = 7w)"! tanh (38, .

Comparing this with Eq. (3.9), we see that 0o
S;= Uy P(hiw)[(€g + Up)Ts — Ugl;] (D7)
where
P(rw)
= [2€q(€q+ U™ Up2ay | V|2 (€4 - )™ tanh (G Be,) .
(D8)
In a similar fashion, if we consider the sum
S22 Ve Ul (ep = '), (D9)
where
hw'=2€y+ Uy = fiw (p10)
then we find
S;= UG P(fiw’) [(eg+ Up)Ts — Upny;] . (D11)

Substituting (D7) and (D11) into Eq. (2.58), we see
that

k=1+Pliw)+Phw’) . (D12)

We next consider the sums of Eq. (2.59). In
particular, we define
S EZ}: I Ve Iz (U = U,) [(€ = i)™ = (g = ")) .
(D13)
Using Eqs. (A46) and (B13), we have
Si=(w)™ 23, |V, |2 [(e, - w) ™ = (& = Fiww’)™]
x23,[Q-2f,)

= (1 -2g ) Hore+ [ gis = 2(0; + AF)T
—-3(a; = a¥)it,]} . (D14)

As with the previous sums, the contributions to
S; coming from terms proportional to (1 - 2g,)
can be expressed as linear combinations of the self-
energy differences [W(iw) - W(fw’)], which will
be neglected. Approximating (1 - 2f,,) by (D4), we
get

5= 200 | V|2 (€ = )™ = (€, — Fiw )" ] tanh (2Be,) 74 -

(D15)
Substituting (D8) and (D15) into Eq. (2.59), we see
that

x=1+P(iw) - Plhiw’) . (D16)
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In the %k sum defining P(%w), we assume that
[ V1% is an even function of ¢,. Since tanh(3B¢,) is
odd in ¢,, we can replace (¢, — w)™ in the summand
by its odd portion, namely, €,[€Z - (fw)?]. Thus
we have

P(liw) = [2€(eq + Up)]™ Up g | Vi |2

x €l €2 - (7w )?] tanh(38g,) . (D17)

Let us invoke Eq. (2.69) in evaluating (D17). We
see that the imaginary parts of the summand cancel,
and

P(h’w) = P(}fw1)
= (2m)[2€o(eo+ Up)]™ Uy

x® [d% | V,|?[€2 = (7w,)?]™" € tanh(38¢,) -
(D18)
For simplicity, we now make the usual assump-
tions:

@) [ r=p [ ;Dde,, , (D19)

R. H. PARMENTER 5

| v |2= 72, (D20)
so that
P(iw,)=~3T f_ ;D[ez - (Mw)?]* etanh(3B¢€) de ,
(D21)

where we are defining
T'= - pVUy/ eoleo+ Up) .

As has been shown by Theumann,® (D21) can be
written approximately as

P(iw)=T 1n<[("k”g lz - ﬁ(fjv|1>2]”2> . (D22)
For |7w,| <D, we have
1+ P(iw,) = CIn{T:}[ 7% + (iw, /mkp?]V/%}, (D23)
where
Ty=1"'De VT (D24)

is the Kondo temperature.
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