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The spin-spin correlation functions and the critical-scattering intensity for Heisenberg
models of general spin, S=2 to ~, on the sc, bcc, and fcc lattices are studied on the basis of
high-temperature series expansions along the lines developed in Paper I IM. F.. Fisher and
R. J. Burford, Phys. Hev. 156, 583 (1967)j. Subject to increased uncertainties for low spin,
it is concluded that the exponents y= l. 375+0'pl, 2V =1~ 405+()'p~, and & =-0. 043 + 0. 014 describe all
lattices and all spin. Explicit formulas are presented for the susceptibility/zero-angle scatter-
ing Xo(T), for the inverse correlationlengthIt&(T), for the effectiveinteractionrange~&(T), and
using the Fisher-Burford approxl. mane. , for the total scattering g (k, T). The shape parameter p~
attains the "universal" value P, = 0.11for large spin but shows signs of spin dependence (and lattice
dependence) for low spin. Atfixed kthescattering is predicted todisplay amaximumabove T~deter-
minedby I(~(T~„)/k =0.10 (for S & 2) to 0.15. A detailed study is madeof the structuredependenceof
the critical-point correlations (S~OS4)~ for various models. This leads to the revised, universal
estimate P~ =0. 15 for all three cubic lattice, spin-& Ising models. The results are compared d
briefly with various experiments which support q & O. 05.

I. INTRODUCTION

Near the critical point of a many-body system
there is a large increase in the scattering intensity
in certain directions. In the case of a ferromagnet
the critical scattering, which can be observed with
neutrons, occurs in the forward direction and is as-
sociated with large-scale fluctuations in the local
magnetization. The general nature of this magnetic
critical scattering has been quite well understood
since the work of Van Hove, ' who adapted the class-
ical theory of Qrnstein and Zernike. If one re-
stricts attention to the quasielastic scattering (which
in the case of neutron scattering must be obtained
experimentally by taking careful account of the in-
elastic nature of most of the sca.ttering), and uses
the first Born approximation (which is normally
quite adequate if appropriate experimental precau-
tions are taken), one finds that the scattering inten-
sity is essentially proportional to the Fourier trans-
for m of the sp jn-paj. r correlations '

I""(r-r';e, r)~((S;"-(S;"))(S,-". -(S"-))) . (I. I)
As is well known, the calculation of the intensity of
the critical scattering thus reduces to a study of the
pair-correlation functions and especially their long-
range slow spatial decay in the critical region.

In Paper I of this series' such a study was per-
formed for the spin-~ Ising model of a ferromagnet,
which also serves as a model of a lattice gas, a
binary fluid, an anisotropic antiferromagnet, and,
most successfully, of a binary alloy such as beta-
brass. That study was particularly motivated by
exact theoretical results for the plane-square Ising
model, which revealed unequivocally the defects of
the classical Ornstein- Zernike theory. ' The ideas
involved have been reviewed quite extensively '

and will not be reiterated here. The aim of the
present paper is to reproduce the calculations of

Paper I for the Heisenberg model of a ferromagnet
in order to obtain numerically accurate and analy-
tically convenient approximants for the scattering
intensity (and correla. tion functions) at all tempera-
tures above critical (and in zero field). Attention
is restricted to the nearest-neighbor fully isotropic
Heisenberg ferromagnet but all spins from 8 = —,

' to
8= ~ are considered. In addition, the results for
the classical limit will be applicable to the corre-
sponding antiferromagnets. Incidentally, we have
also improved aspects of the original calculations
for the Ising model. (See Secs. VB and VIA. )

The two-dimensional Heisenberg model is not
considered here. It has been proven that this model
has no spontaneous magnetization and no long-range
order. Nevertheless, there remains the possibility
of a transition at which the initial susceptibility di-
verges. ' However, the uncertainties attached to
this crucial point suggest that attempts at a detailed
numerical calculation of the correlation functions
in the presumed critical region would be premature.

As in Paper I, our work is based on the numeri-
cal analysis 2nd extrapolation of high-temperature
series expansions for the susceptibility, for the sec-
ond and higher moments of the correlation functions,
and for the individual correlation functions them-
selves. The available series (see Sec. III) are, un-
fortunately, appreciably shorter than for the Ising
model so the numerical results are correspondingly
less precise and less certain. Nevertheless, the
dominant features and various important details can
be established with confidence: In particular, we
find a small but definitely nonzero value of the ex-
ponent q and, in addition, the maximum in the scat-
tering intensity at fixed angle occurs above the crit-
ical temperature T, . Graphs of the various quanti-
ties of interest are presented in Sec. VI. The final
result for the scattering intensity is expressed in
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terms of the exponents q and p and an explicit for-
mula for the inverse correlation range ~,(T). (See
Summary in Sec. VL)

The layout of the rest of the paper is as follows:
In Sec. II the notation and certain preliminary rela-
tions are presented. For the most part the reader
is referred to Paper I except ~here specific differ-
ences arise. The numerical extrapolation of the
suscept1blllty and second-xnoment, sex'168 ls dis-
cussed in Sec. IV. The individual correlation func-
tions are extrapolated in Sec. V. The scattering
approximants are developed in Sec. VI Rnd the re-
sults discussed and compared briefly with experi-
ments in Sec. VII.

II. NOTATION AND FORMAL RELATIONS

We shall use the same notation as in Paper I, un-
less stated otherwise. The fem exceptions arise
because we are dealing with the Heisenberg model.
The reader should refer to Secs. II-VI of Paper I to
familiarize himself with the notation and in order
to understand the theory behind the Fisher-Burford
approximants for the correlation functions and their
Fourier transforms. (We also draw attention to the
glossary of symbols in Paper I. )

A. Morsel

In this paper me study the critical properties of
the isotropic nearest-neighbor Heisenberg model
above the critical temperature. In order to treat
general values of the spin, all properties mill be
normalized so as to pass continuously over to the
classical case S = ~. The Hamiltonian for the
Heisenberg model of spin 8 will be written as

(2. 4)

where y"=sM'/sH while Xo(T) is the basic reduced
susceptibility which approaches unity as T- ~ (for
all S). For the isotropic Heisenberg model, above
the critical temperature and in zex'o field we have
the further simplification

T""(r)= 3&.,1'(r), I'"'(o) =1,
where

r(r)= I3/S{S+I)](S; S;)=31 "(r) .
B. Scattering Cross Section

(2. 5}

(2. 6)

For simplicity consider a beam of unpolarized
neutrons incident upon the system of localized
spins, fixed to a lattice. The scattering is caused
by the D1Rgnetlc lntex'Rctlon between the neutx'on di-
pole moment and the moments of the lattice spins.
In the quasielastic Born approximation, the scat-
tered intensity (So/SQ) in a given direction is found
to be propoxtional to the spatial Fourier transform
of the correlation function. '6'~ %6 introduce a x'e-
duced scattered intensity mhich is normalized by the
scattered intensity from a lattice of paramagnetic
splns~ namely,

field above the critical point, thexe is no long-range
order and the correlation function may conveniently
be defined as

I'""( ) = I:3/S(S+ I)1 (S S,'-) (lI = 0) . (2. &)

With these definitions, the susceptibility-fluctuation
theorem takes the form

Z=- ~ Z S,"S,— "ZS,',
(g) = 1+ I"'(k), (2 'I)

where S;-=(S;",S,S ) is the spin operator on the ith
lattice site (i =1, . . ., N), m(=gi(sS) is the magnetic
moment of the spin, J is the exchange parameter,
0 is the external magnetic field which is applied in
the z direction, and (ij) here denotes that the sum
extends over all nearest-neighbox pairs of sites.

We shall assume that the exchange parameter J
is positive, that is, the model is one of a ferromag-
net. The previous result that the zero-field scat-
tering for an Ising antifexromagnet about the super-
lattice-point is identical to the scattering from the
ferromagnet about zero-momentum transfer holds
now only for the classical Heisenberg model (S = ~),
but is not valid for finite spin owing to the lack of
commutation of the relevant operators.

The magnetization is defined as

C. Further Notation

The notation nom parallels that in Paper I, except
that the correlation function I'(k) in Paper I should,
for the isotropic Heisenberg model, always be re-
placed by 1*'(k). In particular, the spherical mo-
ments of the cox'1'61Rtlon function Rre defined by

~, (T) = + (~/n)'I""(r) . (2.9)

mhere the Fourier transform is defined as in Paper
I, namely,

i*'(k) = Z e'"' I "(r), (2. 8)
r&0

and k is the momentum transfer to the scattered
neutron.

(2. 2)

where the angular brackets denote the standard
statistical average calculated with (2. 1). In zero

At a fixed t.mperature above the critical point, and
for sufficiently small (ka) the scattering function
y(k, T) should have a convergent expansion of the
form
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1/X(k, T) = [Xo(T)] '[I+A (T) (ku)'- A (T)(ks)'+

(2. 10)
where

A, (T) = (~,a) '= p, (T)/2dXO(T) . (2. 11)

It will be remembered that the Ornstein-Zernike
hypothesis asserts that the expansion (2. 10) is valid
up to and at the critical point, so that at T= T„

g, (k) =D/(ka)' (ka- 0) . (2. 12)

More generally, however, such an expansion is no
longer valid and one must expect '

g(k) = D/(ka) " (ka - 0) . (2. 13)

In addition to the exponent g which is expected to be
positive, the exponents y and v describe the asymp-
totic behavior in the critical region of the suscept-
ibility as

(2. 14)

and the effective (inverse) range of correlation as

~,(T) = [A2(T)a ] ' ~- [1 —(T,/T)]" (T- T, ~) .
(2. iS)

These exponents are expected to be related by2'

(2 —q)v = y.
D. Approximant for Scattering

Fisher and Burford proposed the following approx-
imant for the scattering function:

[1+y~A (T)K2(k)&2]~& ~

, T)=x(T)
[ ( )-(~) ], (2. 16)

Since there is no analytic solution of the Heisen-
berg model available, exact series expansions will
be used to study the various properties of interest.
We consider, in particular, high-temperature ser-
ies in the variable

K= J/kBT (3. 1)

for the susceptibility, the second moment of the
correlations, and the correlation functions for vari-
ous lattice vectors r.

In this section the sources of these series are ex-
plained. The series are given in Tables I-III.
We consider the face-centered-cubic (fcc), the
body-centered-cubic (bcc), and the simple-cubic
(sc) lattices. To avoid undue tabulation we con-
sider explicitly only the spin values S= &, 1, —,',
—,', and ~. The results for other values follow to
sufficient accuracy by interpolation in the variable
1/S(S+1) which is what enters the general expres-
sions.

A. Susceptibility Series

The coefficients of the susceptibility series are
normalized by the definition

point. Thus at T= T, the approximant (2. 16) re-
duces to

(k)
[(&gs)' ' Xo]r-r, y,"/0,

(ka)' "

as ka-0, and so Q, can be determined to match the
amplitude D in (2. 13).

III. SERIES FOR HEISENBERG MODEL

where

K'(k) = 2d[1-q '5~-, e"' ']= k'[1+0(k'a')], (2. 17)

Xo(K) = + sA" .
n=o

With this normalization we always have

(3. 2)

in which d and q are the dimensionality and coordi-
nation number of the lattice and 6 runs over the set
of nearest-neighbor lattice vectors. [In Paper I
K(k) was denoted by K(k) but we have modified the
notation to avoid confusion with the expansion vari-
able J/ksT=K, see below. ] This approximant em-
bodies most of the features of the exact results for
the two-dimensional Ising model that are expected
to be generally valid. The function g(T) is chosen
so that at high tempera, tures the denominator has
two simple poles at k=+ix, where x(T) is the true
inverse range of correlation (corresponding to an
asymptotic decay of correlation as e "").' Second,
P(T) is chosen so that the expansion for small (ka)
of 1/x(k, T) will be identical with the exact expansion
(2. 10) up to first order in (ka) . This implies the
relation

(2. 16)

Finally, the critical value of Q(T) is chosen to give
the correct amplitude of scattering at the critical

ao= 1 and a, = q(S+ 1)/3S, (3.3)

with q=6, 8, and 12 for sc, bcc, and fcc, respec-
tively. It follows that the mean-field approximation
for the critical temperatures is given by

ke T, ' = ke To qJ(S + 1)/3S . -—— (3.4)

Rushbrooke and Wood calculated the coefficients
a„ to sixth order for general spin; Stephenson,
Pirnie, Wood, and Eve have obtained the seventh-
order term. For the spin- —,

' model, the series have

been extended to tenth order for the loose-packed
lattices and ninth order for the fcc lattice, by Baker
et al. ' ' In addition, the series for the S= class-
ical model has been extended further by Jasnow and
Wortis' to ninth order for the loose-packed lattices
and eighth order for the fcc lattice. Recently the
fcc series has been extended to tenth order by

13(a),(b)

The coefficients for these susceptibility series
are listed in Table I.
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fcc bcc sc

TABLE I. Susceptibility series coefficients a„. TABLE II. Series coefficients for the moments of
the correlation function. For definition of the coefficients
m„(t) see Eq. (3.5).

(A) Second moment (=2
bcc sc

1
2
3

5
6
7
8
9

10

12
120

1 104
9 780

85 073.660
731680.800

6 237 020. 952
52 772 446. 05

443 850 499.4

8
56.6667

380.4445
2 481.0185

15 891.6346
100 574. 8113
631067.476

6.6667
40

229. 1139
1 278. 6618
7 019.0057

38 096.4579
205 085. 045

8
48

277. 3333
1 533.3333
8 406. 4000

45 314.6667
242 341.C794

1 283 099.809
6 776 582. 797

35 571 676. 39

5. 3334
23.5556

101.9259
421.4198

1727. 1309
6 958.0542

27 892.372

4. 4444
16.7901
62. 3685

222m 3137
785. 8202

2 731.8190
9 452. 8525

6
24
88

330
1 248. 8000
4 401.7333

15 287. 0095
55 337.5429

198 243. 2423
674 141.7367

12.3333
36.4444

103.8426
293.4469
813.3398

2 238.5293

3.3333
8.8889

22. 9246
56.9441

140.1383
338.8217
814.1216

12
276

4 504
60 080

716 302.4000
7 964 389.8667

8
126

1407. 1111
13 269. 9074

113736.3654
916100.6846

6.6667
88. 1481

826. 3704
6 598.4941

48 087. 9796
330 135.6829

5. 6000
62. 4960

4S4. 5080
3 351.0799

20 781.2099
121598.0026

8

120
1 253. 3333

10325. 3333
76 820. 2667

534 713.2444

5.3333
55. 5556

400
2 407. 4938

13 189.4453
67 820. 7252

4. 4444
39.0123

236. 3274
1 214. 5466
5 694. 1497

25 127.1547

3.7333
27. 7262

141.9766
622. 5585

2493. 9379
9 423. 5424

6
66

492
2 728

13428
62 943.7333

31
161.3333
681.8426

2 598, 8642
9 275. 0188

3 ~ 3333
21.8519
96, 0384

350. 2210
1 156.4007
3 581.3859

2. 8000
15.5680
57. 9790

181.5808
516.2252

1 379.2376

5.6000
28. 5227

139.3037
664. 2970

3 119.3376
14491.9231
66 803.2293

S=y5

3.7333
12.0462
38.3260

117.2651
356. 1623

1064. 6229
3 168.3769

2. 8000
6.4213

14.3189
30.7881
65.5964

137.4341
286. 2656

1

3
4
5

7
8
9

10

32
181.5111
885. 3333

3 959.3972
16728. 5269
67 885. 8962

267 307. 9501
1 028 186.2491
3 881 417.5558

2. 6667
14.2222
52. 2667

165.6099
479. 9116

1314.0260
3 453. 2284
8 805. 2527

21 925.4904

2
8

21.4222
48. 7111

100.7337
196.1286
365.7050
660.4992

1 163.5584

(B) Fourth moment )=4
1
2

5
6
7
8
9

10

4
14.6667
51.7333

178.4593
606.7454

2 042. 1004
6 821.9528

22 659.3609
74 921.3032

246 802. 5462

2. 6667
6. 2222

14.3407
31.8617
70. 3116

152.8116
330.7434
709.9936

1 519.8070

2
3 ~ 3333
5.4222
8.5185

13.2670
20.3360
30.9990
46. 8667
70.6068

4
85.333 333 3

821.511111
5 796.740 74

34499. 249 1
184 184.314
91157S.099

4265 876. 89

2. 666 666 67
37.925 925 9

241.896 296
1 115.865 02
4325. 88140

15010.879 5
48 231.670 3

146 414. 162
425 450. 198

2

21.333 333 3
101.422 222
343. 229 630
964.733 686

2409. 810 32
5 547. 327 40

12 024. 463 2
24 888. 178 6
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2 3
3 l. 6667
4 —11.6667
5 75
6 1 123.8889
7 6 208. 7016
8 24 174.1619
9 114921.8577

—1
2g 3333
5

17
—34.3778
463. 2476

—1103.0127
9451.3146

—1
—3
11.6667
30.7333

—157.2667
—172.0667
1995.0444
795.0360

2
3

5
6
7

2. 4167
6. 1111

19.2940
71.6698

295. 3278
1 314.8757

-0.2500
3.4444

—1.0764
16.6019

—6.0532
127.3582

3

—0.2500
0.3333
0.1273
3.3414

—1.5593
5.3604

TABLE III. Series coefficients for the correlation
function. For definition of the coefficients q„(r) see Zq.
(3.7).

(A) Nearest-neighbor correlation or energy series r = P

Note: q~(p) =—l.
n fcc sc

r= (2, 2, 1) r= (2, 2, 2) r= (3, T, O)

2 0.666 666 667
3 2

4 4. 948 148 148
5 11.960 493 82
6 29. 047 477 95
7 71.676 710 96
8 180.357 0919
9 462. 554 070 1

10 1 206. 739 754

0
0.666 666 667
2.666 666 667
8.385 185 185

24. 237 037 04
66.978 624 33

181.534 350 7
489.578 346 8

1323.064 146

0
1
3.555 555 56

10.108 641 97
27. 140 740 74
71.487 524 97

187.770 615 4
495.768 555 5

1320.060 760

r=(3, 2, 1) r = (3, 3, O)

3

6
7
8
9

10

0.333 333 333
1.925 925 926
7.032 098 765

21.730 041 15
62. 53809131

174.322 066 2
479. 588 722 9

1314.861045

0.111111111
0. 888 888 889
4. 422 222 222

16.134 979 42
51, 294 462 08

152.792 422 7
440. 440 463 1

1249.027 058

r=-2(1 1 1)
(2) bcc S=~

TABLE III. (C0 tanned)

2
3
4

6
7

2
3

6

8

9
10

2. 1111
5.3342

15.9218
52. 0210

183.3319
689.3384

1.8267
4. 2739

11.4318
32. 8567

100.7318
326. 0232

l.3333
2.3778
4. 7407

10.0913
22. 7727
53.8991

132.2585
333.6282
860. 2701

—0.1111
2.9062

—0.4797
11.6202

—2.4879
64. 8619

5
2

—0.0400
2. 2952

—0.1467
7.2456

-0.6305
30. 1335

0
1,2667
0
2.2138
0
4.9374
0

12.7521

-0.1111
0.6016

—0.0681
1.9122

—0.3904
4. 1212

—0.0400
0.6028

-0.0355
1.1793

—0.0990
2. 1414

0
0.377 78
0
0.37178
0
0.380 52
0
0.477 56

l. 266 666 67
2. 213 756 64
4. 937 410 89

12.752 1189

r= (1,0, 0)

1 ~ 333 333 33
l. 896 296 29
3.801 622 57
9, 229 812 53

r=2(3, 1, 1)

1.0
2. 750 617 29
7.072490 69

19.273 295 8

r= (1,0, 0)

0.377 777 78
0.371781 31
O. 380 52440
0.477 555 80

r=(1, 1, O)

0.666 666 67
l. 837 037 03
4.256 037 62

10.795 837 2

r= 2(3, 3, 1)

0.333 333 33
1.945 679 01
6.497 597 49

19.803 950 1

(3) sc S=~

r=(1, 1, 1)

0.333 333 33
l.51111111
4. 227 936 51

11.471 595 5

r =-,'(3, 3, 3)

O. 111111ll
1.162 962 96
5. 182 198 70

18.176 815 2

(B) Correlation function for S=~
Note: q&(r) =1 for r =6. All coefficients otherwise not
listed vanish identically.

r=(1, 1, O) r= (2, O, O) r= (4, O, O)

r= (1, 1, O)

2 1.333 333 333
3 2. 377 777 778
4 4. 740 740 741

TO. 091287 47
6 22. 772 674 89
7 53. 899 069 56
8 132.258 525 3
9 333.628 207 5

10 860. 270 054 8

(1) fcc S=~
r= (2, O, O)

1 o 333 333 333
2. 666 666 667
5.451 851 852

12.088 888 89
28. 100 552 61
67.576 826 17

167.315489 7
424. 525 246 1

1099.204 139

r=(2, 2, O)

0.333 333 333
1e 333 333 333
4. 177 777 778

11.160 493 82
28. 496 907 70
72. 509 91181

186.190 606 8
484. 115040 0

1275.186 156

0.666 666 67
O. 503 703 70
0.502 051 20
0.588 090 14

r=(1, 1, 1)

0.666 666 67
O. 533 333 33
0.614509 11
0.78238108

0.333 333 33
0.400 000 00
0.585 138 15
0.713 146 00

r=(2, 1, O)

0.333 333 33
0.513 580 25
O. 669 888 30
0.884 467 61

O. 000 000 00
0.037 037 03
O. 154 732 51
0.458 809 85

r= (3, O, O)

0.11111111
0.274 074 07
0.583 021 76
O. 906 968 37
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8. Moments of Correlation Function

We define the coefficients of the series for the tth
spherical moment of the correlation function by

p, (K) = Z m„" 'K" .
n=1

With this normalization we always have

m,' '=q(S+1)/3S .

(3 5)

(3. 6)

The series for the second moment has been cal-
culated up to sixth order for general spin by Bur-
ford. ' For the classical model Jasnow' has calcu-
lated the series to ninth order for the bcc and sc
lattices and to eighth order for the fcc lattice.
Again, Moore has extended the series to tenth order
for the fcc classical model.

The fourth-moment series for the classical mod-
el was especially calculated for this work to ninth
order for the bcc and sc lattices and to eighth order
for the fcc lattice, using a program written by
Jasnow. '3 Moore has extended the fcc series to
tenth order. '""'"'

The coefficients of the moment series are given
in Table II.

C. Correlation Functions

The correlation function in zero field can be ex-
pressed as a power series in K with coefficients
q„(r) which are functions of position, explicitly

I"'(r) = — E q„(r)K" .
n=1

(3.7)

With this normalization we have q, (5) = 1 (where 5

is a nearest-neighbor vector).
The internal energy of the system is directly pro-

portional to the nearest-neighbor correlation func-
tion, that is,

V(q')= ,'qZ(1+S ') r "-(~-)

= ——', qJ(1+S ')' + q.(&)K". (3. 8)

The magnetic specific heat in zero field is the tem-
perature derivative of the internal energy so that

Co/ka = 6 q(l + S ) K 2 nq„(6) K" .
n=1

For general spin Rushbrooke and Wood have ob-
tained the first five terms in the specific-heat ser-
ies. ' Stephenson et al. have obtained the sixth
term. Baker et a/. ' have calculated nine terms of
the specific-heat series for the spin--,' model.

For the classical model the coefficients q„(r) of
the series for the correlation function were calcu-
lated using Jasnow's program' for lattice sites with
x& 3a. For the loose-packed lattices the series was
obtained to ninth order; for the fcc lattices, to
eighth order, and extended to tenth order by

Moore. Collins has recently calculated the first
four orders of the correlation-function expansion
for general spin; we have not used his results ex-
plicitly but they confirm Burford's coefficients for
the second moment to this order.

The coefficients of the energy series for general
spin and for the correlation function for several
lattice vectors r for the spin-~ model are given in
Table III.

IV. ANALYSIS OF SERIES

In this section we present a systematic extrapola-
tion of the series for the susceptibility and moments
of the correlation function. We shall analyze series
for the three lattices and for the spin values S = —,',
1, —,', -'„and ~: The dependence of the various crit-
ical properties on spin and coordination number
will be examined. Since most of these properties
are singular at the critical point, either diverging
as a power law or, if finite, having branch points,
care must be taken in the extrapolation. The two
methods used —the ratio method and Pads approxi-
mant techniques —are well described in the litera-
ture

A. Susceptibility Series

We assume that the susceptibility can be de-
scribed in the critical region by

yo(K) =A(K) [1 —(K/K, ) I

where A(K) is a function which is finite at the crit-
ical point and, hopefully, not strongly singular
there.

Since the susceptibility series are better behaved
than the series for the moments or the correlation
functions, the critical points K, = 8/kaT, have first
been determined from the susceptibility series and

then used in the analysis of the other series.
Estimates of the critical point and corresponding

estimates for the exponent y were obtained by ex-
trapolating the ratios and from the Pade approxi-
mants to the logarithmic derivatives. '"" A typical
plot of the ratios and a sample table of Pade approx-
imant roots and residues are given in Fig. 1 and
Table IV, respectively. Table V lists the values
estimated for the exponent y from each of the ser-
ies, using these two methods, together with their
apparent uncertainties. By contrast with similar
results for the Ising model these uncertainties are
quite large.

Baker et a/. "have concluded that for the spin- —,
'

model all the lattices have an exponent y = 1.43
+ 0. 01. Jasnow and Wortis' and Joyce and Bowers
both conclude that y= l. 38+0.02 for the classical
(S=~) model for all three lattices (revising the
original estima. te y = 1.33 of Domb and Sykes' ).
More recently Bowers and Woolf' have conjectured
that y = 1.375 independently of spin and lattice. For
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5 6 7

- 3.70

2 bcc
—3.60

- 3.50

a=0
0

0

—3.400

0l ~
0
a&~0

0 - 3.20

~+go(&)

(X')
—1.45

0

0

—t.40

- l.35

I

0.30
i

0.25 0,20 0.15 0.10 1 /n

—1.30

0.0

FIG. 1. Typical ratio plot for the susceptibility series
showing (a) the ratios p,„=a„/a~& and the linear extrap-
olants of the ratios pn (~) 2~(~+~)pn (n+ e —2)pn-2] plotted
vs 1/~, and (b) the extrapoiants g„(~)= (n+~) t. (p„/p ) —1]
for the exponent y —1. These plots are for the bcc, S= 2

case: the value of p taken as 3.280.

graph of residues (= y) vs poles (= K,). ]
It is evident from this short survey' '"and an ex-

amination of Table V that the value of the exponent y
is not very well determined. On general grounds one
expects y to be independent of lattice structure; ex-
tensive experience with the Ising model (both exact
and numerical results) confirms this. ' Such an
hypothesis is also borne out by the evidence of Table
V. The question of the spin dependence is more
problematical. Early work on the Ising model"
suggested that the exponents were spin independent
and this has been supported by recent further work
for spin 1. The longer series now available for
spin ~ tends to indicate' '"" y=1. 23, in place of

y = l. 25, but a more detailed analysis by Saul,
Jasnow, and Wortis (see footnote 7 in Ref. 21) indi-
ca,tes that this is probably due to coincident (weaker)
singularities masking the simple y =1—,

' behavior.
The evidence for the Heisenberg model in Table V
is equivocal. There is, without doubt, a general
trend towards lower y values with higher spin.
This is most marked for the fcc data which might
reasonably be represented by a formula such as
y(S) = 1.375+ [0.04/S(S+ 1)]. For the loose-packed
lattices, however, the trend is not as strong and
there is even evidence for a, minimum in y(S) around
S= —,'; we cannot, however, take this seriously. In-
deed, if we accept the lattice independence of y and

ignore the data for S= —,', the uncertainties are
really consistent with the hypothesis that y-—1.38
independentfy of spin (See. the row of weighted

the spin-~ model on the fcc lattices they find that
Pads approximants to [(d /dK ) Iny, (K)]' give
seemingly excellent convergence to p = 1.375 when
using the series to eighth order. This value is also
consistent with the evidence for the bcc and sc lat-
tices. Unfortunately, on using the next two terms,
this rapid convergence is seen to have been illusory,
as shown in Table VI. """(This Pade table should be
compared with the one for the same case shown in
Table IV, which supports the estimates quoted in
Table V. ) Bowers and Woolf also examined the
spin- —,

' model with nearest- and next-nearest-neigh-
bor model. Here they find y=1. 374 for the fcc lat-
tice using approximants to the logarithmic deriva-
tive. Again they find y =18 to be consistent for the
loose-packed lattices. However, their arguments
are not really conclusive since they are based on a
"self-consistent" method of finding the critical point
corresponding to @=18 and then estimating the ex-
ponent corresponding to this critical point. As is
well known, there is a close correlation between
the estimates of y and K, in most methods of extrap-
olation so that self-consistency is not a sufficient
criterion of acceptability. [This correlation will be
seen clearly if the data of Table IV are plotted as a

(A) bcc 8=—
I 2 3 4 5

0.27098
1.015
0.29742
l. 277
0.30487
1.379
0.30516
1.385
0.30474
l.375

0.33329
1.889
0.30427
1.368
0.30517
1.385
0.30499
1.381

0.28280
0.979
0.30504
l.382
0.30486
1.378

0.32519
1.969
0.30480
l. 376

0.28806
0.951

Estimates: K~=0.3049~ 2

y=1.38+ 1

(B) fcc S=~

0.31442
1.364
0.31410
I.355
0.31408
1.354
0.31364
l.346
0.31537
l.433
0.31448
l.367

0.31395
1.351
0.31408
1.354
0.31409
1.355
0.31458
l.374
0.31472
1.382

0.31418
1.358
0.31357
1.345
0.31457
1.373
0.31474
1.383

0.31586
1.481
0.31506
l. 405
0.31471
1.381

0.31501
1.402
0.31396
l.340

0.31471
1.381

Es tir. ates: X~ =0.3147+ 3
y=1.38& 2

TABLE IV. Sample I'adb t;ables for the logarithmatic
derivative of the susceptibility series showing roots
(approximating K~) and residues (approximating y).
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TABLE V. Estimates of the exponent p (the uncertain-
ties are in the last place quoted).

Latti

= J/kT, are collected in Table VIII and their depen-
dence on spin and coordination number can be seen
from Fig. 3. For "large" spin (actually S& 1) the
critical temperatures are well represented by

fcc Pade
Ratio

l. 43 +4
l. 43 +3

1, 39+2
1.38+2

1, 375+1 1.365+1
1.38 +2 1.38+2

1.38 +2
1.38 +1 S~keT, = —,'JS(S+ I) (q —1) &, tl —e/S(S+ I)j, (4. 3)

bcc Pads
Ratio

1.39+4
1.38+4

1,385 +2 1.38+ 1

1, 43+5 1, 38+4
1,36+1
1.36 +3

1.37 +1
1.39+1

with

sc

Weighted
average

Pade
Ratio

l. 42 +2
?

1.39+7
1.43 +3

1.415 1, 392

1.38+4
1.41+2

1,365+4
l. 39 +2

1.381 1.367

1.38 +2
1.37 +1

l.378

e, = 0. 8666, e = 0. 1296, fcc (q = 12),

8, = 0. 8812, e = 0. 1587, bee(q = 8),

e, = 0. 8675, e = 0. 2011, sc(q = 6),

(4. 4)

mean estimates in Table V. ) The series for S= —,
'

seem definitely to support the large values re-
ported, but even though they are longer series they
are certainly the most erratic and hardest to ana-
lyze. In view of Bowers and Woolf's analysis of the
second-neighbor S= —,

' model we are, in agreement
with them, inclined to conclude that

y = 1.375'o'o, (4 2)

is a good estimate for all spin (and all the cubic lat-
tices). One may, however, leave open the possibil-
ity that y is significantly higher just for S= —, and,
in view of the relative shortness of the series, the
uncertainties quoted in (4. 2) may still be somewhat
overly optimistic. ' '" Qf course, the third decimal
place in (4. 2) has almost no significance: It merely
represents the "conveniently close" fraction 18,
which we will adopt for subsequent analyses. Since
one of our main interests lies in the systematics
with respect to spin and lattice structure, a some-
what higher working choice, such as 1.380 or 1.390,
would not seriously affect our general conclusions.

Having accepted the 'estimate y = 1—'„more relia-
ble estimates of the critical point may be obtained
by the standard ratio and Pade approximation meth-
ods. Typical results are shown in Fig. 2 and Table
VII. The final estimates for the critical point K,

5 6 7 8910
I I 1 I I I

S= —bcc2 —5.10

- 5.05

- 5.00

S = —bcc2
—3.30

3.28

where we may note that the mean-field approxima-
tion T, = To corresponds to e=—0 and 8, =q/(q —1).
(See also Fig. 3. ) Although the e, do not vary
monotonically with q, the values of (q —1)8,/q
=0.795, 0.771, and 0.723 (for q =12, 8, and 6, re-
spectively) are monotonic.

The critical susceptibility amplitudes A(K, ) were
determined by forming Pade approximants to the
series A(K), defined via (4. 1), and evaluating these
at K= K, . Any approximants with spurious poles in
the region )K~ & K, were discarded. The amplitudes
A., are presented in Table IX and Fig. 4. The mean-

TABLE VI. Pade table for [(d /dK ) lngog)]' for
8 =~ fcc (roots and residues).

S = |x) bcc

—3.26

- 2.08
2 0. 31446

l. 376

3 0, 31443
1, 374

0.31443
1.374

0.31446
1.376

0, 31443
1.374

0, 31458
1, 383

0. 31500 0.31485
1.411 l. 399

0. 31482
1.395

M ~o~—==————~~$206

- 2.04

4 0.31446 0.31482 0.31491
1.376 1.397 1.407

I

0,20 0.10 0.0

5 0.31461
l. 383

6 0. 31482
1, 397

0.31491
1, 407

FIG. 2. Typical set of ratio plots to determine the
critical point A~T~/J from the susceptibility series given
the value of the exponent p as 1.375. The extrapolants
p, *„(&}= (g + &) p,„/[(yg + &) + (p —1)] are plotted vs 1/g for the
bcc lattice, with spin values S=2, ~, and ~.



2676 D. S. RITCHIE AND M. E. FISHE 8

TABLE VII. Sample Pade tables of b'0(K)]' ~ with y
=1.375 for the bcc lattice.

2 3 4

0, 19767
0. 19733
0. 19684
0. 19707
0, 19641
0. 19776

0. 19726 0. 19696
0. 19646 0. 19710
0, 19714 0. 19741
0 ~ 19768 0, 19732
0. 19729 0. 19744
0. 19765

Kc = 0. 1974+ 0

S=—32

5

0. 19728
0, 19667
0. 19732
0. 19738

0002

0. 19760
0. 19782 0, 19771
0. 19762

0.30482
0.30457
0.30473
0, 30474

0.30459
0. 30469
0. 30474

0. 30476 0.30474
0. 30474

Kc 3 47 +0 ~

0.48703
0. 48691
0, 48618
0. 48650
0, 48624

0. 48691
0. 48708
0. 48646
0.48640

0. 48500 0.48651 0.48599
0, 48643 0. 48638
0, 48637

Kc = 0. 4863 8 + 0. 0010

field prediction is
gmf

C (4. 8)

Near the critical point we may write approximately

A(K) =A, [1+a)(l —K/K, )], (4. 8)

The tth moment of the correlation function is ex-
pected to diverge as a power law with an exponent
tv+y, that is, '

) &(T)- Il —(&./&)] " '" (&- T, +) . (4. 7)

The second-moment series has been analyzed in
detail for all the values of spin and for all three
lattices. The values of K, determined from the sus-
ceptibility series were used in forming estimates
for the exponent from the ratios and in calculating
Pads approximants to the series (K-K, )

(d/dK) in@2(K). As well as analyzing the second-

where the constant a~ may be determined from the
Pade approximants. These estimates are presented
in Table X, and are seen to change sign and in-
crease monotonically with spin. Explicit "best" ap-
proximants for A(K) and thence, through (4. 1), for
the susceptibility are given in Table XI.

B. Series for Correlation Moments

2v=1. 405 0
00021 (4. 8)

where the asymmetric uncertainties allow for those
in p quoted in (4. 2).' However, it should be borne
in mind that the uncertainties for the S= —,

' models
considered alone would be much larger than indi-
cated. In any case we have adopted the main value
(4. 8) (and y = 1—',) for all the subsequent calculations.

moment series, we examined the series for p~(K)/
Xo(K), which should diverge at K, with an exponent
2v. In addition, we constructed a "mean-square-
size" series (R„)from the second-moment series
by dividing the coefficients term by the correspond-
ing susceptibility coefficients. The mean-square-
size function R (K) must diverge at K= 1 and should
have an exponent 2v. In Fig. 5 and Table XII, we
present representative examples of the ratio plots
and Pade tables. The fourth-moment series was
analyzed for the S= ~ model in the same manner.
However, the stronger divergence makes it a harder
series to extrapolate reliably. Nevertheless it
served to check the expectation (4. 7) for t = 4 by
yielding estimates for v within + 0. 01 of those found
from the second moments (see below). For S= ~
the ratios and Pads approximants to p,/y, appeared
to give the smoothest and most precise results.
For lower values of S the direct second-moment
series yielded estimates with equal or less scatter.
The mean-square-size series gave estimates for 2v
typically lower by G. 01—0. 04 but the range of uncer-
tainty was correspondingly larger and the estimates
less consistent between the different lattices. The
over-all weighted-average estimates for 2v for each
spin and lattice are listed in Table XIII. The uncer-
tainties are again quite appreciable, especially for
S= —,'. There appears to be a slight downward trend
with spin; but there is also a tendency for the esti-
mate of 2v to increase as the coordination number
falls. This lattice effect is almost certainly spuri-
ous: accepting that, we see that the evidence for
any spin dependence is much weaker. In line with
our assumptions for y we will presume the value of
v to be independent of spin as well as of lattice
structure. We are inclined to give a little more
weight to the sc and bcc values relative to the fcc
lattice whose high coordination number tends to give
it a more mean-field-like behavior. (The tetrahe-
dral lattice with q = 4 would presumably show the
opposite effect. ) Our final estimate is then

TABLE VIII. Estimates of the critical points K~=X/kpT~ (the uncertainties are in the last place quoted).

Latti

fcc
bcc
sc

0.1241+ 3
0.1974+ 3
0.2960+ 3

0. 16795+ 5

0.2632 + 4
0.383 z 1

0. 19558 + 5
0.30474+ 4
0.4385 x 5

0.22815 + 10
0.3543 s 2
0. 5060 a 4

0.3147 x 1
0. 48635+ 10
0.6916 ~ 2
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3
2
T

1

2

0.80—o

0.75—

Tc 0—
Tp

0.70-

1.30I-

1.20—

Ac

1.10—

I

/o

0.65— 1.00

0.60— 0.90
fcc

0,55— 0.80—

0.0 0.5 i/(s+ —,')
0.0 0,5 i/(s+ —,') 0

FIG. 3. Dependence of the critical temperature k&T,/J
on spin and lattice: a plot of T,/Tp vs 1/(S+ &), where
To ls the me an-field critical temperature defined in Eq.
(3 4)

FIG. 4. Dependence of the critical susceptibility ampli-
tude A.~ on spin and lattice. The mean-field value for the
amplitude is A~=1.

q = 0. 043+ 0. 014 . (4 9)

It might be thought that the uncertainty in y [see
(4. 2)], if taken into account, would lead to a signifi-
cantly larger uncertainty in the value for p. This
is actually not the case because of the correlation,
already mentioned, between the estimates of y and

K, . Thus an increase 4y in the assumed value of

y will, through the standard ra, tio analysis (on a 1/n
plot) lead to an increase of about bK, = byK, /
(n —1+y) in the estimate of the inverse critical
temperature from n terms of the susceptibility ser-
ies. (This might be "amplified" by a factor of 2 or
3 through the extrapolation of the "trends" of suc-
cessive estimates. ) The increase bK„when used
in the analysis of the p, a or p. a/Xo series, will in turn
lead to a correlated increase in the estimates of 2v
of

2bv —(n —1+ 2v)bK, /K,

= by(n —1+ 2v)/(n —1+y) . (4. 10)

If q is calculated from (2- q)v=y, the changes in y

If we accept the basic exponent relation ' (2 —71)v

=y and use y = 18, we find from (4. 8) that

and v nearly cancel and one finds

by= —((2v —y)[1 —(y/n)]/2v )&y . (4. 11)
With the values estimated for y and v the factor in
braces lies between 0. 05 and 0. 09. Even with &y
=+0.05 this leads only to ~p= +0.004 or less, so
that it is only the direct uncertainty in v given y that
leads to the uncertainty in p. This is confirmed' '

by a previous tentative analysis of the series for the
fcc S=~ model '"" '"'based ony=1. 333, which
gave q = 0. 075 + 0. 035; this includes the present cen-
tral estimate within its range of uncertainty even
with no allowance for the change in assumed va, lue
of y.

For mnemonic purposes it may be useful to rep-
resent the estimates for p by a simple fraction.
From the many possibilities allowed by (4. 9) the
following alternatives seem the simplest which lie
near the center of the range:

q= ~34 = 0. 04167, y =1-'-, 2v= 1+4&—1.40425,
(4. 12)

and, which we prefer,

q= 4,= 0. 04444, y =1-,', 2v= t.~~~ = 1.40625 .
(4. 13)

TABLE IX. Estimates for amplitude A(K, ) (the uncertainties are in the last place quoted).

Lattic

fcc
bcc

1.190 a 1
1.1770 a 5
3..2971+ 2

0.98476+ 5
1.0092 z 2
1.124 a 1

0.92456+ 2
0.95020m 3
1.0518 x 4

0.8797+ 1
0.9114+ 2
1.0040+ 5

0.8520 + 8
0.8686 ~ 1
0.96647+ 5
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TABLE X. Estimates of the constant a~ in Eq. (4. 6).

S
Lattice

fcc
bcc
sc

—0. 27
—0. 14
—0. 17

0.011
—0.05
—0.09

0.08
0.07

—0.02

0.19
0.13
0.03

0.23
0.24
0.07

(The simpler possibilities 7l= 28= 0. 0357, y =1—'„
2v= 1-,' =1.400 are also consistent with the error
limits but lie rather close to one end of the range. )
One might reasonably have adopted one of these sets
of values for the rest of the numerical calculations
but we have retained the estimate (4. 8) for 2v and

used the nominal value 7)=-2 —(y/v) = 0. 04270. . .
which then follows.

C. Exponent Relations

We note that the value of g for the Heisenberg
models seems somewhat lower than for the three-
dimensional Ising models (q= 0. 056 + 0. 008= —„)al-
though in view of the uncertainties this might not be
significant. The values of y and v are, however,
certainly different from the Ising values (y = 1.250,
v = 0. 642).

It is worth comparing the estimates for y, g, and

v with those following from the familiar exponent
or "scaling" relations which have been advanced on
various grounds. The so-called gap exponent ~

may be estimated from a study of the fourth and

higher-field derivatives of the free energy. For
spin —,

' these derivatives have been calculated by
aker e& a~ &o, ss but si.nce they used y 1 43 in their

analysis we will not utilize their estimates. More
recently, however, Stephenson and Wood "' have
calculated and analyzed these series for S =~ on the

fcc, bcc, and sc lattices. Their results may be
stated as

& —y = 0. 36 + 0. 025 . (4. 14)

By the thermodynamic exponent relations &= P+y
this difference should equal p. In fact, by a special
method due to Baker, these same authors'"' have
estimated P directly for the fcc lattice (only) finding

P = 0. 38 + 0. 03 .
Since their method effectivelyutilizes the magnetiza-
tion curve only for T (0.99T, the agreement be-
tween (4. 14) and (4. 15) is quite satisfying. On ac-
cepting (4. 14) the scaling relation 2 —n = 2P +y
= 2h- y yields the prediction

2 —n = 2. 09 + 0. 04 or a = —0. 09 + 0.04,
where, as usual, the negative value of n indicates
a finite, cusped specific-heat curve. This value
of n is not inconsistent with independent direct esti-
mates (see also below) although these are not very
precise. Thus for S = ~ Jasnow and Wortis esti-
mated o. = —0. 1, while the analyses of Domb and

TABLE XI. Selected Pads approximants to A(K). A{K) = (1+/&6+ ~ ~ ~ +p&K )/0+q~E+' ' ' +q@& ).

fcc bcc sc

-7.4268
27.3146

—31.6562
—34, 4289

—1.6063
—1.1913

2. 9002

—3. 8503
5.0252

—5. 2259
1.2916

-3.3956
0.41246
2.0317
0.0010192

—4. 9642
8. 1056

—2. 8724
—l. 2990

0.074558

—8. 3470
31.2128

—32. 2152
—80.3582
—87. 7438

—l.4193
—l. 7676

2.0371
-0.077721

—3.4866
3.8863

-4.2743

—2. 9688
-0.58037

1.3062

-4.5950
6.6160

—l. 1683
-1.0599

18.2015
1l. 9818

314.3184
1837.5978
769.4057

3.5178
l. 4785

—0.61008
1.4910

2. 7906
0.28957

—0.96350
0.45440

0.045613
—2. 7044

1.6370

0.72952
—2. 2907
—0.83515

0.87130

17.1671
—4. 6685
335.2731

1446.4672
—208. 3458

3.4087
1.6914

—0.46282

2. 8582
0.97004

—0.35252

0. 19317
—2. 2873

0.92326

0. 89003
—1.9209
—1.0643

0.42039
0.068423

4. 5963
17.3070
38.8650
30.4452
8. 8253

2. 5774
6. 1238
7.3166

l. 9766
0.92461
0. 95267

2. 2423
1.9675
0.77707

0. 62369
—0.37657

0. 18076
0. 13052

3.2416
13.8446
26. 8813
11.9750

2. 1674
5. 5048
5. 4911

-0.61807

1.7790
0.79561
1.0333

2. 1597
l. 9696
0.90043
0. 21954

0.61183
—0. 27988

0.21222
0. 12206
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—3.00
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p.~=1 - 1.60
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o~ 3.00
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o

—2.60
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-. 1.40

—1.30

—2.90

—1.20

0
I

0.5 0.4 0,2

- 2.80

~
- 2.70~O

- 2.60

0.1 0.0
1/n

I

0.4 0.3

—1,30

—1,20

0.1 1/ 0.0

(b)

s-1
2

bcc
jLg) = 5,06

5 6 7 8
I I I

- 1.80
- 1.60
- 1.40

-1.20
—'I.OO

FIG. 5. Typical ratio plots for the correlation-length
exponent v using the extrapolants g„(~)= (n+ e) (p„/JLf~ —&)

for (a) the second moment p2(K); (b) the second moment
divided by the susceptibility p, &(K)/Xo(K); and (c) the
second-moment, series divided term by term by the sus-
ceptibility series (A2(K) ). Cases shown are for the bcc
lattice, with spin values 8=2, 2, and ~.

s=—32
bcc

—1.50

- 1.45

—1.40

linked to their estimate y = 1.43. Finally, the
thermodynamic scaling relation 6= 1+ (7/P)
= n/(a- y) yields the prediction

&=4. 8+0. 3 .
The estimate (4. 15) with 'V= 1—', gives 6= 4. 6 hut with
a somewhat larger uncertainty.

Now we may test the dimension-dependent expo-
nent relations ' '~ dv=2 —n and 2 —g=d(5 —1)/
(6+1). By (4. 17) the former gives

s=fo
bcc
p.~=2.05

O

o- —— ==~]140
0

0 o
- 1.35

—1.30

O.S

Bowers and Stanley may be summarized by

n = —0. OV + 0. 04 .
Bowers and %oolf for the second-neighbor S=~
model concluded that o. = —0. 09 a 0.03, which coin-
cides with (4. 16). On the other hand, for 8 =-',

Baker et al. estimated 0. = —0. 2, although this was

2v= l. 38+0.03 . (4. 19)

The central value here lies significantly below our
direct estimate (4. 8). This discrepancy is of the
same sign and similar magnitude as in the three-
dimensional Ising model' Iwhere 2v= l. 285 while
—', (2 —n)= 1.250]. In this case, however, the uncer-
tainties are sufficiently large that the deviation can-
not really be considered significant. Indeed, if the
indirect estimate (4. 16) is used one finds 2v=1. 40
+0.03, which agrees well with the value accepted.
The second d-dependent relation yields, with
(4. 18), the prediction q = 0. 085 + 0. 055. This again
is slightly lower than our estimate although the un-
certainty is sufficiently large to allow a zero (or
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TABLE XII. Sample Pads tables for the exponent of the second-moment series (the values adopted for K, are those
given in Table VIII).

3.08
2. 65
2. 93

2e 53
2.79

S=2 bcc
1 2

3.52

S-- 2 bcc
21 3

(a) (K--~,)D»p, (~) i „.E =2v+&

2.71 2. 72 2. 78 2
2.72 2. 60 3
2.78

5

2. 755
2. 762
2. 800
2. 771

S= ~ bcc

2. 762
2. 746
2.774

2. 782
2. 772

2. 771

l. 60
l. 28
l. 38

1.10
1.35

Estimates; 1.4+ 0.2

Estimates: 2.7 + 0. 2 2. 7 + 0.1

)) (+ Kg)D in[~2(Z)/Xo(K) j ~

C

1.37 1.37 1.40 2
1.37 l. 37 3
l.40

5
1.38+ 0, 02

(c) (K -K,)D ln (R~~) I ~ ( = 2v

1.392
1.393
1.418
1.398

2.77.+ 0.03

1.393
1.392
l. 399

1.40 + 0.01

l.405
l.399

l.398

l. 54
1.39
l.37

l.34
1.37

l. 24
1.29
l.39

1.29 1.38
0.90

1.307
1 y 370
l.379
1.403

1.364
l.378
1.372

1.386
1.399

Estimates: 1.37+ 0.05 1.39~ 0.01

negative) value for q [The .value following from
(4. 15) and 6= 4. 6 is q= 0. 07. ] In any event, we
must conclude that the evidence presently available
is not in real conflict with the d-dependent scaling
relations although there are some hints of a discrep-
ancy similar to that in the Ising model.

D. Correlation Range

~(0)(g) y(II)(pp)[1 f ~&~/$($+ 1)] (4. 22)

/«~ =0.2165, 0. 2396, 0. 2407,

the mean-field prediction is (2d)~ 2=. ~g= 2. 449.
For S & 1—,

' the values are well represented by the
formula

Numerical values for the inverse effective corre-
lation range x,(T) have been obtained by evaluating
direct Pade approximants to the series for the func-
tion f(K) defined by

(~,a)'=2&&'f(&) II-(&/&, )P" (d=2) . (4. 20)

q = 12 (fcc), 6 (bcc), 6 (sc),
respectively .

V. CORRELATION FUNCTION

(4. aS)

A set of "best" Pade approximants to f(K) are listed
in Table XIV. They can be used in (4. 20) to recon-
struct ~, (T) for all T& T, . Near the critical point
we can write

~, (T)a= P, ,[(T/T, ) —1]"(1 —b, [(T/T, ) —1]j. (4. 21)

Estimates of the amplitudes I'j, and 5, are listed
in Tables XV and XVI, respectively. We note that

i (I )=~,(k)=D/(ua)' " as aa-o. (5. 1)

Equivalently, we must be able to calculate the am-
plitude D in the real-space expression

To utilize the Fisher-Burford approximant for
the total scattering, we must know the critical am-
plitude D of the correlation function, defined in
(2. 13) via

I" (r)=D/(~/a)" '" as v-~ . (5. 2)

2 2

1.39+ 2 1.39*2 1.39+ 1
1.39+ 2 1.40+ 2 1.40-j:1
1.41+ 2 1.41+ 2 1.41+ 2

1.397 1.40 1.40

fcc
bcc

1.41 + 2
1.41 + 3
1.42+ 3
1.41'

SC

Average

TABLE XIII. Estimates for the exponent 2v (the
uncertainties are in the last place quoted).

Lattice 3 5

1.40+ 5
1.42+ 7
1.40+ 5
l. 41

By taking Fourier transforms the two amplitudes
are ea,sily seen to be related by

D/D = 4v cos(—,'7 7))i' (1 -7))(a'/vo), (5. 6

in three dimensions, where T(z) is here the stan-
da, rd gamma function.

Fisher and Burford estimated the value of the
amplitude B with the aid of the critical-point energy
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TABLE XIV. Selected Pads approximants to f(K). Note: We tabulate only po to pl. and q~ to q~,
f(K) = (pp+p&K+ +piKz)/ ~1+ q&K+. . .+q~K

fcc

0.08333
0.23995
l.0872

0. 12500
0.24903
0.64273

0.15000
0.02312
0. 14995

0. 17857
—0.11524
—0. 29787

0.25000
—0.60647
—0.56098

l. 9627
—0.74182
—0.039952

2. 5579
29. 3909

—15.3829

1.3767
6.3909

—5.4996

-0.47409
1.4991

—3.3010

—l. 2436
—1.4096
-0.090415

—2. 8904
—l.3913

9.2708
—5.7178

0.12500
0.60651
l.3877

0. 18750
0.52575
0.40145

0.22500
0.42022
0.03107

0.26786
0.35920

—0. 13322

0.37500
0.30018

—0.75405
—0.38346

0.10682

4.7346
20. 6764

—12.4890

2. 5492
2.7314

—2. 8488

l.5905
—0. 17050
—1.2897

1.0688
—l.0473
—0.41911

0.57829
—2.4228
—0.70944

0.81549

0. 16667
0.52905
l. 2951

0.25000
0.45904
0.43604

0.30000
0.38384
0.19197

0.35714
0.29762
0. 16053

0.50000
0.49150

—0.20418
0.001748
0. 10462

3.4277
16.0892

—10.0056

l.9178
3.0770

—1.3308

l.2976
l.0003

—0.64619

0.81664
0.44060

—0.26101

0.95149
—0.52978
—0.063210

0.23040

TABLE XV. Estimates of the amplitude of the correlation
function I'

f, .
S

LRt;tlC e

fcc
bcc

1.90 + 2

1.85+ 5
1.67+ 4

2. 185+ 5
2. 111+5
1.906~ 7

2. 288+ 2
2. 212+ 2
2.013+ 2

2. 366+ 2
2. 283+ 2
2.089+ 2

2.427+ 7
2.364+ 2
2. 152+ 2

U„which, by (3.8), is related directly to the near-
est-neighbor correlation function by

(5.4)

In the two-dimensional Ising model the exact results
may be written

(5.5)

where for the square lattice & =0.00530 while for
the trlRngulRr lRttlce 6 ——0.00297. By comparing
the behavior of the function (r/a)" '"1"",(r ) (which
should approach D as x- ~) for small values of
jl j on the square Rnd simple-cubic lRttlces Flshel
and Burford concluded that (5. 5) would probably
hold in three dimensions if the magnitudes of & were
increased to 0.026 for the loose-packed se and bcc
lattices, and to & = —0.016 for the close-packed fcc
lattice .

In this section we shall follow a similar proce-
dure, ' in particular, we will first estimate U, [or
I"", (5)] for all lattices and all spins, while for S = ~
we will also estimate I", (r) for small values of r.
[In addition, we have studied 1","(r ) for the 8= ~
and S = —,

' cubic Ising models. ] However, our subse-

quent estimate of the "correction" q will be more
soundly based since we have examined carefully the
full Fourier inversion involved and the eharacteris-
tie way the lattice structure enters. We will see,
in fact, that Fisher and Burford probably under-
estimated the magnitude of & by a significant amount'
(although none of their genera, l conclusions are al-
tered).

A. Extrapolation of Correlation Functions

In order to extrapolate the correlation functions
reliably to T = T, it is essential to allow for their
singularities at the critical point. We shall assume
that the nature of the leading temperature singular-
ity in I"*(r; T) is the same for all r. This is
known to be rigorously true for the soluble two-
dimensional Ising models and there are strong argu-
ments for its general validity. ' Since the nearest-
neighbor correlation function is proportional to the
energy U(T) we hence have

as K=X/kaT, -K„where the second term is non-
singular at K, but may nonetheless dominate the
first term if the specific-heat exponent ~ is nega-
tive.

In fact, as mentioned in Sec. IVC, one may esti-
mate n through the sca.ling relations using the esti-
mates for v and y, with the result n = —0. 10 [see
Eq. (4. 16)]. We have checked this by a direct
RnRlysls of the sel"16s fol 8 + I] although only the
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Latti

fcc
SCC

0. 12
0.16
0.15

0.23
0. 23
0. 18

0.28
0.27
0.21

0.33
0.30
0. 23

0.38
0.37
0.25

TABLE XVI. Estimates of parameter 5&, defined by Eq.
(4.21).

0.187+ 5
0.199+ 6
0.222 *9

0.224+ 2

0.240 * 3
0.268+ 5

0.235 + 2
0.254 + 3
0.295+ 5

0.242+ 2
0.263+ 3
0.312 * 5

0.2468 + 5

0.273 + 2
0.329 + 2

TABLE XVII. The critical value of the nearest-neighbor
correlation function (uncertainties are in the last place).

Lattice S 1 OO

fcc
bcc

sc

series for S= ~ lead to more precise estimates. In-
deed, as noted before, Domb and Bowers and
Stanley concluded that e = —0. 07 for S = ~. For
S=-,' Baker et al. estimated e= —0. 2 but we shall
not give this weight here since it was based on a
critical point consistent with y = l.43. In summary,
we shall adopt

n = -0.10 (5. V)

for the purpose of extrapolating the I"(r) to T= T,.
Fortunately, the numerical results are fairly in-
sensitive to the precise value of n.

The values of I",'(r) were found by extrapolating
the partial sums

S„(r) = g q„( r")Ic," (5. 6)

N1-I g
(P 1)

( N -t)l-n p
(P-1)~ ~V-1

—(N-o)'- (5. 9)

[see (3.6)] to N = ~ using the accepted estimates for
K,. The relation (5.6) implies that the term q„(r)K,"

decreases asymptotically like n ' ' so that the
pa, rtial sums S„(r) should approa, ch their limit
S„(r) linearly with N " ' ' for large N. The extrap-
olation may be made roughly on a plot vs N ' but
to take systematic account of the noticeable curva-
ture of these plots Neville tables were constructed
to effect the extrapolation. This method effectively
fits polynomials of successively higher order (in the
chosen variable) to the partial sums: The explicit
formula used in /th order is

Table XVII: We discount this, however, since the
direct approximants are known to be poor when the
energy is nearly cusplike as implied by n =0.

In Figs. 6(a)-6(c) the results for I""(r) are dis-
played for the sc, bcc, and fcc lattices, respective-
ly, by plotting

X) ( r") = (r/())'"r,"(r )/r,"(5 ) (5. 12)

TABLE XVIII. The critical values of the correlation
function (uncertainties are in the last place).

Lattice

fCC (1, 1, o)
(2, o, o)
(2, 1, 1)
(2, 2, o)
(3, 1, o)
(2, 2, 2)
(3, 2, 1)
(3, 3, o)

S= ~ Heis

0. 2468+ 5
O. 1624+5
0. 1375+ 10
0. 120+ 1
0. 105+ 1
O. 098+ 1
0. 090+ 3
0. 080~ 3

8= ~ Ising

0. 2776 a 5
O. 183+ 1
0. 155+ 1
0. 135+ 1
0. 118+2

0. 108+ 2
0. 102+ 3
0. 091+ 3

S= ~ Ising

0. 2475 + 5
0. 163+ 1
0. 138+1
0. 120+ 2

0. 105+ 2

0. 097+2
0. 090+ 3
0. 080+ 4

against x. Note that data are shown for S = ~ Hei-
senberg and S=-,' and ~ Ising models (although these
are not tabulated). By (5. 2) and (5.5) we expect
D(r) to approach an asymptotic value of (1 —e) as

Evidently, the complete asymptotic region
has not been reached by x =3a, which is the greatest
distance for which the partial sums can be extrapo-
lated with reasonable confidence. However, in view
of the relative uncertainties indicated at the bottom
of the plots, the variation might well be within 6 or
7/o of an asymptotic limit. The most striking fea-

r,""'(5)= r,'- "(5)[1 -~'/s(s+1)], (5. 10)

The results of these procedures are presented in
Tables XVII and XVIII. As explained, the values of
I",'(5) are proportional to the critical energy V,
[see (5.4)]. For S ~1~ the following formula repre-
sents our results:

bcc g(1, 1, 1)
(1, o, o)
(1, 1, o)
(1, 1, 1)

2(3, 1, 1)
g'(3, 3, 1)
—,'-(3, 3, 3)

0. 273+ 2
0. 199m 2
O. 156+ 2
0, 131+3
0. 130~3
0. 104+6
O. 088+ 6

0. 3106+ 7
0. 228 a 2
0. 179+ 2
0. 149+ 2
0. 146+ 3
0. 117+4
O. 102+ 7

0.2735+7
0. 200+ 2
0. 157+ 2

0. 131+3
0. 129+3
0. 101+5
0. 085+5

with

u"'=0. 173, 0. 254, 0.411

for (5. 11)

q = 1.2 (fcc), 8 (bcc), 6 (sc), respectively.

We may mention that we also examined direct Pade
approximants to the energy series. These give re-
sults systematically 5% lower than those quoted in

sc (1, 0, 0)
(1, 1, o)
(2, o, o)
(1, 1, 1)
(2, 1, o)
(3, 0, 0)
(2, 1, 1)
(2, 2, o)
(3, 1, o)
(4, o, o)

0.329+ 2

0. 206 + 2

0. 159+ 2
0. 161+5
0. 134+ 5
0. 108+ 12

0. 387+ 2
0. 245~ 2

0. 190+ 2
0. 194+4
0. 160+4
0. 126+ 8

0.332+1
0. 208+ 2

0. 162~ 4
0. 164+4
0. 135+7
0. 104+7
0. 120+ 7
0. 104~ 7
0 095x7
0. 080+ 9
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1.10

1.05--

1,00e—

0 95J-

0.90I-

(a) sc
0.85I—

0.80-

O.r5I
1.0

S = —Ising
I

2

S = m Ising

S = m Heisenberg

Loplcce

0

.L
2.0

0

i

l. apl ace
t,'sylrlt Ivte

at short distances. We now examine this point
more closely.

B. Lattice Green's Functions

Consider Laplace's equation V'2U =0 on a discrete
lattice space,' it can be written

5 [u(r) -~(r+S)]=0, (5. 13)
6

the sum running over the nearest-neighbor vectors
5. The Green's function ctp(r) for this equation is
defined by the solution of (5.13) with the inhomo-
geneous term

5p
"—-1 if r=0

T

S = — IsingI

= 0 otherwise, (5. 14)

1.05—
9 - cv Ising

S = m Heisenberg

1.00e
1

) X.~

e~

0.95- ( / //

, i /
./

(b) bcc

~ /

n8/l
t

0.80L. . ..
1.0 1.5 2.0

J.
2,5

+

/
/

//
/

Laplace
asymptote-~

r/a

1.05—

T ITS= —Ising2

S = m Ising

S = m Heisenberg

1.00e—— 8
+'

v.
igz~.0.95—

(c) fcc

0.90 E

,0
/..~y

Laplace
/ asymptote -~

on the right-hand side under the boundary condition
ct'p (r)-0 as r ~. By taking Fourier transforms
we find immediately

Op(k) =I/[&3(1-8'"')1
= 2d/qasIf'(k), (5. 15)

where the effective wave number K(k) = 0[1+0(ksas)]
was defined in (2. IV). We now recognize [either
from (5.15) or (5. 13)] that Bp(r) is just proportion-
al to the mean-field (or Ornstein-Zernike) approxi-
mation for the correlation function gt the critical
point [Ir& -=0]. The observation that the details of
the model seem inessential to the relative behavior
of the correlations at small r suggests that the
variation of ct p(r ) in the same region should provide
a good mimic.

We can test this by inverting the solution (5. 14).
For the simple-cubic lattice with r = (la, ma, na)
this yields the mell-known integral

0.80———
1.0

I

1.5
I

2.0
I

2.5 Bp(l, rn, n)

FIG. 6. Short-range behavior of the correlation func-
tion at the critical point as revealed by Q(r) = (x/a) '"I'0 (r)/
I'~(6) vs g /a for the S = 2 and S = ~ Ising models and the
&= ~ Heisenberg models on (a) the sc lattice; (b) the bcc
lattice, and (c) the fcc lattice. In addition, the Green's
function go(x) for the discrete Laplace equation is shown
for the sc lattice and the asymptotic value of go(r)/(~/a)
is indicated for all the lattices. The uncertainties of
extrapolation are indicated by the "error bars" shown

below the main plots. Missing values represent positions
for which the correlation series could not be summed
with acceptable accuracy.

ture of these graphs is that the values for all three
distinct spin models are almost coincident for each
separate lattice. Indeed, the differences between
them lie within the apparent numerical uncertain-
ties. On the other hand, the pattern of oscillation
of each lattice is quite distinctive. This indicates
the overwhelmingimportance of the lattice geometry
for the relative variation of the correlation functions

3 I cos l6, cosm 83 cosn63 cl8t d8 sd63
2(3 —cos 83 —cos 63 —cos 83)

(5. 16)

which has been extensively tabulated. 6 To make
a comparison with the variation of I",'(r ) we have
plotted the reduced Green's function (I'/a)b p( r )/
8 p( 5 ) on Fig. 6(a) on the same scale as the reduced
correlation function S(r ). The general nature of
the behavior is remarkably similar: All plots indi-
cate the enhanced correlation along the lattice
axes, i.e. , at the integral points ~=ma
(n= 1, 2, 3, . .. ), and depressed correlations at the
minima of the function

c(r) = lrl/s(r)
= «3+m'+ns)'"«ll + m + lnl) (-)

(5.17)
which is simply the ratio of the geometrical distance
Irl to the lattice graph distance s(r). Indeed, the
peaks and troughs of o(r) correspond precisely to



D. S. RI TC HIE AND M. E. FISHE R

those of the reduced Green's function and of & ( r ),
as can be seen in Fig. 7. This figure also shows
o(r ) for the bcc and fcc lattices where it again
matches the behavior of ~(r). The closeness of
the central estimates of S(r ) to the Green"s function
and their systematic variation suggests that the
accuracy may be rather better than indicated by the
quoted uncertainty limits.

Whereas we do now know the asymptotic value of
K)(r ) we can easily compute the exact limiting am-
plitude for the Green's function bo(r); it is marked
on the graph in Fig. 6(a). However, this function
has an asymptotic decay corresponding to q =0,
whereas the approximant to be used for the scatter-
ing has the form

b„(k)~ [ff(k)]-" " (5. 18)

with g &0. To judge the significance of this we
perform the inversion for the sc lattice to obtain

, f
'

t

" "'cosl8, cosm83cosn83 d8, d82d83

J [2(3 —cos6, —cos&2-cose3)f -t)/2 '

(5.19)
The standard reduction developed by Montroll
may now be employed: The denominator is rewritten
using the gamma function identity

1(t)z ~=f e f' dt (5. 20)

and the definition

(5. 21)f„(x)=~ ' 1 e"""cosngde

of the Bessel function of imaginary argument is
utilized to yield

g„(r)=[r (1 ,'q-)t -' f ?,(f)f.(t)f„(f)e "t""dt .
(5. 22)

(5. 23)

This integral has been evaluated numerically using
Simpson's rule over a finite range, and an asymp-
totic expansion for large argument, over the re-
maining interval. The reduced Green's function
(r/a)"g„( r)/g„(5) is displayed in Fig. 8 for q = 0
(as before) and q =0. 0427. The two plots a,re very
close, as are the asymptotic values (1 —e,) =0.925
and 0.923, respectively. We have examined g„(r)
only for the sc lattice, since the corresponding in-
tegrals are more awkward to compute for the bcc
and fcc lattices. However, since q is rather small
we expect the reductions in relative asymptotic
amplitudes for the bcc and fcc to be quite similar
(i.e. , about 0. 2%). To within the precision of the
numerical extrapolations for these lattices, we may
therefore take the relative amplitudes from the q =-0

case. (Note again in Fig. 6 that the differences be-
tween the various plots lie vithi~ the uncertainty
limits. ) The tables of Mannari and Kawabata2' give
go( 0 ) for all three lattices. Use of the defining
recurrence relation

1.0
sc

0.

0.6—
L.

bcc

0.8

0.6

1,00 0

fcc

0.8

0.6—
I

1.5 2.0 2.5 5.0
I I

1.0 r/a
FIG. 7. Dependence of. the function 0(r) = (r('/s(x) on distance (y/a) for the sc, bcc, and fcc lattices. Note that the

maxima and minima correspond exactly with those of the correlation function shown in Fig. 6.
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1.05 r"

I

1,00x- asymptotic
value 0925

TABLE XIX. Estimates for the parameter & [see Eqs.
(5. 1)-(5.5) and subsequent text]. Note that Dp = lim„„
(-/ ) 8,(-:).

4~= 0,95i-

tf Q9Qi-
+

I

l

0.85~

~q=
0.04 2 7

q=0.0

asymptotic
value 092

Lattice

fcc
bcc
sc

qgp(~)

0. 344 661
0. 393 204
0. 516 386

qDp

0. 337 614
0. 367 553
0.477 465

0. 020
0. 065
0. 075

0.801
1

1

1.5
.J
2.5

r/a

FIG. 8. Short-range behavior of (x/a) '"g„(r)/g, (0) for
q=0 and g=0. 0427. Note that the two curves almost
coincide and, in particular, their asymptotic values are
closely similar.

mants [since r, (T) is expected to be at most weakly
singular at T,]. However, these approximants are
found to be rather poorly convergent at the critical
point, although they do verify the amplitude consist-
ency relation

(r, /a), F„(A,)'"'-"'= 1 (6. 3)

[see (5. 13) and (5.14)] then yields 9,(5) which,
by symmetry, is independent of 5. Table XIX lists
these q =0 data and the corresponding estimates of
the reduction e. The reductions correspond to 2.0,
6. 5, and 7. 5% for the fcc, bcc, and sc lattices,
respectively. (For application these values could
well be increased by 0. 2% to allow for the nonzero
value of g but, as mentioned, the available precision
and knowledge hardly justifies this. ) The corre-
sponding estimates of Fisher and Burford hence ap-
pear to have been too small by differences of 3.6,
3. 9, and 4.9%, respectively. (The corresponding
changes in their numerical work will be mentioned
below. ) From the values of e we can, via (5.5),
Table XVII, and (5. 3) estimate the amplitudes D and
D [see (5. 1) and (5. 2)]. Our estimates for D are
listed in Table XXI, which also contains the revised
estimates for the S =-,' Ising model.

Finally, Fig. 9 is a direct plot of (r/a)I',"(r )/
(5) for the Ising and Heisenberg models; for

reference (r j)ag (ttr )/hatt( 5 ) is also shown. For all
three models the plots of the correlation functions
drop increasingly below the g = 0 Green's function.
This is a direct (although not very precise) indica-
tion that g &0 for these three-dimensional models.

VI. SCATTERING APPROXIMANTS

to within 1% [see (4.1) and (4. 21)]. As a numerical-
ly more satisfactory alternative to the use of direct
approximants to the r, (T) series, we have employed
the best approximants for A(K) and f(K) [see (4. 1)
and (4. 21)] already listed in Tables XI and XIV, and
calculated r&(T) from

(a/rt) "= [2df(K)/K] " A(K) (with d = 3) . (6.4)

This procedure, of course, guarantees (6.3) and
was found to be very satisfactory. Near the critical
point one finds

(T)/ =( /). (I- [(TIT.)-1]+" ] (6 5)

where the values of (rt /a)„c, and (a/rt), "are
listed in Table XX. It is interesting to compare
these values with those for the S=-,' Ising model
where (r&/a), varied from 0. 440 to 0.464 and c from
0.457 to 0.491 as q went from 12 to 6. '

We have not derived any series for the true cor-
relation range tt(T) [defined by I'"(r ) -e "" as r- ~
for T & T,], as did Fisher and Burford for the sim-

$ = — Ising1

2
"o " $= m Ising

$= co Heisenberg

Laplace

We are now in a position to calculate the scattering
curves using the Fisher-Burford approximant (2.16).
This may be conveniently rewritten as

(k, T) = — ' ~ ], (6.1)
(tata) s+ tria sK'( k )

where the "effective interaction range" rt(T) is
defined through

txci

+ 0.95
Sa

r

a
0.90—

0.85—

0.80
1.0

I

1.5
i

2.5

+
joN

sc lattice

I

r/a

Xa(T) = [rt(T)ttt(T)] " "' . (6.2)

The form (6. 1) has the advantage that the prefactor
(a jrt) " remains finite at the critical point.

To estimate rt(T) via (6. 2) one may form its
series expansion and examine direct Pade approxi-

FIG. 9. Variation of (x/a) I'~(r)/I'~(g) with distance for
the sc lattice for the three models: S= 2 Ising, 8= Ising,
and S= ~ Heisenberg. In addition, (x/a)g p(r)/g p(6)
plotted. Note that the curves for the three models fall
beneath that for Green's function. This is evidence that
q &0.
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Spin Lattice

fCC

bcc
Sc

fcc
bcc
Sc

fcc
bcc
sc

fCC

bcc
Sc

fCC

bcc
Sc

(a/~, ),';"
4. 17
3. 94
3. 55

4. 543
4. 359
3. 971

4. 668
4. 494
4. 139

4 ~ 752
4. 589
4. 243

4. 833
4. 679
4. 331

0.482
0.496
0. 523

0.462
0.471
0.494

0.455
0.464
0.484

0.451
0.459
0.478

0.447
0.455
0.473

0.43
0.46
0.45

0 ~ 46
0.46
0. 47

0.45
0.46
0.47

0.46
0.45
0.47

0. 44
0.44
0.47

TABLE XX. The critical-point parameters for x~(T). ical shaf&e functions P(T) and $(T) are given by
(6.6) and (6.7) with Table XXI.

We recall, in addition, that values of the critical-
point spin-spin correlation functions I",'(r ), defined
in (2. 3)and (2. 6), are listed in Tables XVII and XVIII
(see also Fig. 6). From these, via(3. 8), follow the
values of the critical-point energy. Estimates for
the specific-heat exponent ~ and other exponents
are reviewed in Sec. IVC.

VII. DISCUSSION

Using the work summarized at the end of Sec. VI
we now review the graphical and numerical predic-
tions for the critical scattering.

A. Universality

In the critical region the approximant (6.1) as-
sumes the scaling form~

x(k, T) =5)(v /k)/(ka) (7. 1)

tt(T) =1+-,' qua(T) . (6. 7)

pie-cubic 8 = —,
' Ising model. Accordingly, we can-

not form any high-temperature series for g(T) and
g(T). Following the arguments of Fisher and Bur-
ford for the bcc and fcc Ising lattices, however, we
satisfy ourselves by setting

(6.6)

where Q, is chosen to yield the correct critical-
point decay amplitude D determined in Sec. V. In
fact, one finds that little is lost except at high tem-
peratures if g(T) is merely set equal to g, . Note
by (2. 18) that $(T) is always fixed from

with x&(T):-Fq,(&T/T, )" and the scaling function

(7. 2)

which, when y - ~, varies as
(a |t&[-I --a+. . . ] (7 3)

with D„= (1+-,' ref&, )&f&,"D. We have noted (in Sec.
IV 8) that the exponents 7i and v are apparently in-
dependent of lattice and spin and are hence "uni-
versal" for the three-dimensional isotropic Heisen-
berg models. However, the critical temperatures
E, and the amplitudes D and Eq„above, have a

Last, the equation determining Q, is

y,"= D (r, /o),'-"(I +-,' q y,'); (6. 8)
TABLE XXI. Values of the critical-point scattering

parameters,
this has been solved numerically by the Newton-
Raphson method with the results shown in Table
XXI. This table also lists the revised estimates
for the S = —,

' Ising models.

Summary

Heisenberg
spin Lattice

fCC

bcc
4. 40+ 5
4. 27+ 5
3. 92+ 5

0. 913+ 10
0. 910+ 10
0. 906+ 10

0. 118
0. 110
0. 100

To summarize the outcome of our numerical
work: The reduced scattering intensity y(k, T), de-
fined in (2. 7), for wave number k and temperature
T= (4/ha K) )T„can be calculated for the fcc, bcc,
and sc lattices, and general spin (specifically: S=-„
1, —,', —'„and ~), from Eq. (6. 1) in which (i) the
nearest-neighbor lattice spacing is a; (ii) the effec
tive interaction range r, (T) is determined by (6.4)
using Tables XI and XIV or, in the critical region,
from Table XX; (iii) the inverse correlation length
v&(T) is given by (4. 20) with 2v = 1.405 and using
Table XIV or, in the critical region, Eq. (4. 21)
and Tables XV and XVI; (iv) the exponent q =0.0427
is determined by (2-q) v = r = 1.375; (v) the effective
wave vector K(k) is defined by (2. 17); (vi) the crit

Ising S= 2

(revised)

fcc
bcc
Sc

fCC

bcc
SC

fCC

bcc

fcc
bcc
SC

fcc
bcc
SC

4. 32+ 5
4. 11+6
3.71+ 6

4. 19+6
3.97+7
3.51+ 7

4. 00+7
3.75+ 9
3.19+ 9

3.34+ 20
3.11+30
2. 64+30

4.446+ 9
4. 305~ 15
3.98 ~2

0. 908+ 10
0.896 + 15
0. 875+ 15

0, 103
0. 075
0. 043

0, 80+ 5
0.79~ 9
0 ~ 75+ 8

0. 903+ 3
0. 903*4
0.897+ 5

0. 0054
0. 0042
0. 001

0.16
0. 16
0. 14

0.897+ 13 0. 078
0.883+ 18 0. 055
0.849+ 18 0. 022

0. 879 + 15 0. 049
Q. 862 + 20 0. 031
0. 803 + 25 0. 0059
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FIG. 15. Variation of the inverse scattered intensity
with momentum transfer across the Brillouin zone. The
inverse of the scattered intensity is plotted as a function
of momentum transfer (k„a=k~a=k, a) for (a) various
values of T/Ta on the sc lattice with spin 8=- ~ and (b) for
T=T and T=2T for all the spin values 8=2, 1, 2,
and ~. Note the displacement of the neutral point It%, T)
=1 from k„a=7(/2 to smaller values of k„a; this displace-
ment being more pronounced for T closer to T~ and for
smaller spin values.

0. 17). Conversely, for at /0 with significantly
larger values than these, the scattering should fit
quite well to a Lorentzian or Ornstein-Zernike
form. (A guide to the calculation of the detailed
scattering function is given in the summary at the
end of Sec. VI. )

We have not undertaken a detailed comparison of
these conclusions with available experimental evi-
dence. It is appropriate, nonetheless, to mention
a few salient experiments. Recently, Popovici '
has reexamined the data from earlier two-axis-
spectrometer critical-neutron-scattering experi-
ments on iron by Bally ef, al. ' in the light of general
criticisms by Als-Nielsen concerning the impor-
tance of proper inelasticity corrections. The new
analysis" indicates y = 1.345 + 0.02, 2v = 1.38 z Q. 04,
which values are somewhat lower than the Heisen-
berg model estimates, although much closer to them
than to the Ising values of y = 1.25 and 2v = 1.285.
(Of course, iron cannot, in any case, be regarded
as a good example of a system with localized Hei-
senberg spine. ) By direct fit to the scattering at
T„Popovici ' concludes that g = Q. 10+0.05. In
view of the residual uncertainties involved in the
inelasticity corrections this is in quite reasonable
agreement with our results. Last, after the cor-
rections, Popovici still observes the maxima at
fixed k above T, which were earlier reported. ' The
location of the maxima, however, is now in quite
close accord with our predictions (for low spin)
whereas in the first analysis the maxima were much
too pronounced. Despite these encouraging results
there is a clear need for other detailed experiments
on ferromagnets.

Although the direct observation of g through a
scattering experiment is rather hard it is worth
stressing that indirect evidence indicating its posi-
tivity follows from the inequality

2 —7I & d(d —i)/(e+ l), (v. 5)

in which d is the dimensionality and 6 is the standard
exponent describing the critical isotherm

(IM I-
I
Hl'~' at T= T,). This inequality has been

proven quite rigorously ' on the basis of sym-
metry with respect to field inversion and the posi-
tivity and monotonicity with field of the spin-spin
correlation functions of a ferromagnet near T, . The
evidence for most real ferromagnets' indicates
strongly that |) 4. 7; the inequality then unequivo-
cally implies g ~ 0.05. Difficulties in observing the
effects of positive g in scattering experiments must
thus be attributed to lack of precision and to the
technical problems of making proper resolution
and inelasticity corrections or, partly, to the shape
of the scaling function being such that non-Ornstein-
Zernike behavior is only evident very close to T, .

For an antiferromagnet in the classical limit
S=~ our present calculations can be taken over di-
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rectly if one merely replaces 8 by I Jl and k by
k-ko, where ko is the zone-corner wave vector at
which the antiferromagnetic-Bragg-scattering peak
appears below T,.' For finite 8, quantum effects
spoil this precise symmetry but, at least for the
larger values of 8, we may expect the results to
be fairly similar to those for the ferromagnet. (We
remark that for S & ~ the antiferromagnetic critical
temperatures are higher than those of the corre-
sponding ferromagnets. 8) Accordingly, the neutron
scattering experiments by Corliss et al. on
RbMnF, are of particular interest, especially since
the simple-cubic, nearest-neighbor S=-,' Heisenberg
Hamiltonian is known to describe this material
rather closely. The exponents reported by Corliss
ef, al . were y = 1.397 a 0.034 and 2v = 1.448 a 0.016,
which are somewhat higher than our estimates, al-
though probably not really inconsistent with them.
Close to T, pronounced deviations from a Lorentz-
ian line shape were observed; these were well
fitted by the simple approximant D/[(y&a)
+(ka) ] "~ with q=0. 067 +0.009, which is consis-
tent with (2 —q)v = y. This approximant was intro-
duced earlier ' and is not as accurate as the one
developed here (Sec. Vl) but is probably satisfactory
for estimating q close to T,. Again, although the
observed and calculated ranges for q do not quite
overlap we do not feel that the discrepancies are
very significant. Experiments by Schulhof et al.
on the antiferromagnet MnF2 yielded y=1. 24+0. 02
and 2v= 1.27+0. 03. These values are much lower
than for RbMnF, and, indeed, essentially coincide
with the Ising-model values which would be expected
to apply to a significantly anisotropic system.
However, deviations from Lorentzian scattering
were again observed leading to the estimate q =0.05

a 0.02; this is consistent with the theoretical esti-
mates for both Ising and Heisenberg models.
Finally, we may mention the experiments by Nor-
vell et al. ' on the Ising-like antiferromagnet,
dysposium aluminum garnet (DAG) which lead to the
even lower values @=1.16+0.04 and 2v=1. 22
+0.02. These may, however, be associated with
the important role of the long-range dipolar inter-
actions in this material. Nevertheless, the nonzern
value g = 0. 12 +0.10 was observed.

In summary there is quite good experimental
evidence for most of the qualitative features of the
critical scattering predicted by our calculations; in
addition, the quantitative agreement is quite fair.
There remains, however, scope for more extensive
and detailed comparisons [for example, with the
absolute magnitudes of x&(T)] and for further ex-
periments, especially on ferromagnetic materials.
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