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A spin-infinity Ising model is presented in which there is a hierarchy of spin groupings, for
which the interaction potential satisfies exactly the scaling hypothesis that group-group inter-
actions involve only the group mean spin. The calculation of the critical exponents for this
model is reduced to the solution of an eigenvalue problem which appears to be numerical trac-
table. The value of the critical exponent g appears as a parameter of the model and formulas
for the critical exponents &, p, v are presented. Assuming g=0 for three dimensions, we
obtain ~ = 5, p = 1.30, and v = 0. 65.

I. INTRODUCTION AND SUMMARY

Since Widom introduced his homogeneity argu-
ments and Kadanoff introduced the scaling idea,
there has been considerable interest as to whether
they are valid for the d-dimensional, spin-s, near-
est-neighbor Ising models near their ferromagnetic
critical points (d ~ 2). The two-dimensional Ising
model results agree very well with these ideas,
but the question is open for d ~ 3. The fundamental
idea (in the scaling picture) is that, near the criti-
cal point where the spin-spin correlations are very
long ranged, it does not matter whether we consider
the fundamental interaction to be that of a single
spin with its neighbor or that of a group of spins
with a neighboring group of spins, since all those
spins in the group would usually be aligned anyway.
The consequence of this line of reasoning has been
to derive a series of equations which relate any
critical index of divergence (or convergence) of the
various thermodynamic variables at the critical
point to the behavior of, at most, two fundamental
ones and the dimensionality of the system. These
results then allow values to be deduced for all the
critical indices once any two independent ones are
known. The trouble was, until recently, that sca, ling
arguments provided no way to obtain numerical
values for any of these. Recently, Wilson has
shown how to compute (by means of a series of
scaling-idea type of approximations) the va, lue of
one independent index (he assumes that the scatter-
ing intensity index q = 0) for an Ising-like continu-
ous-spin model. The value he obtained of y= l. 22
for the three-dimensional case is close to the ac-
cepted' value of y= 1.25 for the Ising model.

In this paper we clarify, refine, and extend the
work of Wilson. We introduce a ferromagnetic
spin-inf;nity Ising model for which Wilson's key
approximations are exact. The structure of the
spin-spin interaction is such that there exists a
hierarchy of groupings of the spins, such that at

each level in the hierarchy the spin-spin interac-
tions can be broken into the intragroup spin inter-
actions and an interaction between the mean spin
of the group with the mean spins of the other groups.
The lattice structure of the groups is the same as
that of the original spin lattice. As one reaches
levels of the hierarchy in which each group consists
of a large number of spins, the behavior of the
mean spin, except for amplitude, should cease (in
the critica, l region) to depend on precisely which
layer of the hierarchy one is on and depend only on
the hierarchy structure. Thus, there exists an
intrinsic scaling behavior for our family of models.
We will show for our model how to obtain in a
numerically feasible way the various critical in-
dices.

In Sec. II we show how we were heuristically
led to define our model in one dimension and show
that it is indeed a ferromagnetic Ising model. We
describe some of the general results that apply to
models of this type.

In Sec. III of this paper we show how the scaling
ideas can be applied to reduce the properties of
the model to the discussion of a recursively defined
family of functions of a single real variable. We
also derive an expression for the field-free mag-
netic susceptibility in this model.

In Sec. IV we extend our model to higher dimen-
sion (d 2). Again, a recursively defined family
of functions of a single real variable results. The
defining recursion formula now involves (2' —I) in-
te grations rather than the single integration re-
quired for d = 1 and required in Wilson's approximate
solution for his model. In addition, a slightly dif-
ferent model is introduced which requires only a
single inte gration.

In Sec. V we investigate the behavior of our re-
cursively defined family of functions. We argue
that for T & T, the mean spin will be normally dis-
tributed and we calculate the order of magnitude
of its variance. At the critical point this variance
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FIG. 1. The spin grouping
hierarchy used for our one-
dimensional model.
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must hold, where 5 is the magnetization index along
the critical isotherm. We next investigate the
region immediately above T~ by perturbation the-
ory in (T —Tc) and derive an eigenvalue equation
whose dominate eigenvalue is denoted by 2~. In
terms of this eigenvalue we obtain

~ = (2-n)i~, (1.2)

where y is the zero-field susceptibility index.
From (l. 2) it easily follows' that the correlation-
length index is

v=1/t; . (1 3)

Finally, the numerical calculations of Wilson ' in
his approximation are reported, which correspond
fairly well to the ordinary Ising model results.

II. CONSTRUCTION OF ISING MODEL WITH SCALING
PROPERTY

In this section we will construct a family of Ising
models which possesses a rigorous scaling prop-
erty. The ideas involved are very similar to those
of Wilson. Our approach is to construct a model
where Wilson's type of procedures are exact,
whereas in his approach Wilson used his proce-
dures as approximations to a nearest-neighbor
Ising model. Our approach will permit us to draw
conclusions about a particular family of Ising mod-
els and the relevance of these models to nature and
to other models can then be discussed separately
from the procedures of solution. For ease of pre-
sentation, we will first discuss one-dimensional
models and generalize to arbitrary dimension in a
later section, even though we are well aware that
we would not expect a phase transition in one di-
mension and that many of our procedures are
somewhat artificial when applied to one-dimen-
sional systems.

The first step in our approach is to introduce a
linear array of Ising spina —1& v, & 1, j=1, 2,
3, . . . , 2 . These are the spin infinity or classical
spins. The reason for making the total number a
power of 2 will become apparent later, as will the

becomes infinite, relative to its previous scale of
size. We then derive an approximate linearization
of the recursion relation, and solve for the be-
havior of the free energy at the critical point. We
find that for our model the scaling relation

5 = (d + 2 q)/(d——2+ q)

use of continuously distributed rather than discrete
spins. A change of spin variable is desirable now

so that one group will involve only two adjacent
spins at a time, the next group will involve two
adjacent sets of two spins, and so on. Figure 1
illustrates the kind of grouping contemplated. Ex-
plicitly we define

s o=(1/v 2)(va~ 1
—va )

m= 1, . . . , 2' '. (2. 1)
s 2= (1/W&)(va -1+va~)

This transformation is easily seen to be an ortho-
normal one. Each of the new variables involves
two, and only two, adjacent spins. We may define
recursively successively higher and higher levels
of such variables. We therefore define

-0.5L
Sl~I, 1= 2 Q v/',

pl

(2 3)

a total of 2 new variables. In order to understand
the behavior of these variables, it is convenient
to reexpress them in terms of the more familiar
momentum transformed spin variables. Thus we
introduce (/V= 2 )

/V-1/2 p ani4/
C ~8 Vg )

or

1 2q=0 N' N'

N -1/3 Q -Pfi&q)
v& — ~ e p.

(2. 4)

(2. 5)

by the standard procedure of Fourier inversion.
Upon substituting (2. 5) into (2. 1), we obtain

(2~)-1/2 ) -4riam
g

asi4 1)
(2. 5)

(2~)-1/a+ -4wiqm
( awi4+ 1)S,p

From this starting point we can derive by use of
(2. 2) that

s ...= (1/v 2)(s, 1, —s, ,)
m=1, . . . ,

2~-~-~

s~, 1+1 = ( /~~)(sam 11+s-am, , i)
(2. 2)

for I = 0, 1, . . . 2-2. Each of these transformations
of variables is again orthonormal. The final set
of variables which we choose is
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s~, = (2' N) ~ ~5'exp(- 2' viqm)p, [exp(2' viq) 1]-
)-1

x Q [1+exp(2"miq)],

s,=(2' N) ~ L&exp( —2' viqm) p.,

x g [1+exp(2 "wiq)] ~ (2. 7)

The norm of each level (indexed by I) of variables may be computed as

2I.-l-i

5~ s~ )= —g, (,g ~FQ 5 exp[ —2 ' pi(q+ q )m]pq pqi

x 'Q f [1+exp(2 'wiq)] [1+exp(2 ' miq')]) [exp(2' ziq) —1][exp(2"viq') —1], (2 3)

or summing over I we get

21 -1-l
s', = —„„,5 ) &(I, q, q') p, ij,,

m 1 a a

x g f [1+exp(2" viq) ] [1+exp(2 ' viq')]] [exp(2' viq) —1] [exp(2' ' viq') —1], (2. S)

where

5(l, q, q') = 1 if 2' (q+ q') = integer

= 0 otherwise. (2. 10)
(u, V )=D&(q~)'" (q-0), (2. 16)

order 2 '. From their analysis of the spin-spin
correlations near the critical point, Fisher and
Burford conclude (among many other things) that

For the l = 0 level, there are two types of nonvan-
ishing 5's. They are

which yields (a.s y, , is periodic with period 1)

5, s2
o

= g~, [p., p. , sin vq —~ Im(p, p, o 5, ) sin2mq] .
(2. 11)

In the hope that they are representative, we will
study only the diagonal (q+q'=1) terms. From
(2. S) these are, for l~ 1,

2L-1-) l 1s, =
~) [g cos (2"zq)] sin'(2' mq) p., p,

m=1 q A,=O

(2. 12)
or, for very small q

(2. 13)

Now we also know that

&~(~~ —~&.i)'=Z. » (~n)uq, I,= v'Z, q' ~, u,
(2. 14)

Hence, in some sense, at least for small q, (that
is, with regard to the long-range behavior) the sum
on the left-hand side of (2. 13) and (2. 14) are very
similar. The sum on the left-hand side of (2. 14)
differs from the usual Ising energy only slightly

~~~ J v j ~j+1 2 ~Zj(~y ~j+I)' —&Z& ~'; (2 15)

From (2. 12) it is evident that the variables in the
1th level mainly concern momenta with q of the

with a possible nonzero exponent g and a finite am-
plitude D. Putting this consideration of the magni-
tude of the p. , near the critical point (if any) together
with (2. 13) and taking account of the cutoff in the
sum due to higher terms for q =2 ', we are led to
consider a model Hamiltonian of the form

~Z~ 2 '""' Z (s,)' —
2

Z
1 2s g t", .

&=o

(2. 17)
The considerations which have led us to this form
have been somewhat heuristic; however, we will
be able to derive exact consequences of (2. 17).

A picture of the structure of (2. 17) can be ob-
tained from Fig. 1. The spins, grouped by an in-
teraction line on level zero, are coupled by the in-
teraction —2(v, —v6), for example. Those spine in
level-zero groups, which are joined together by an
interaction line at level one, interact as —,

' (v, + v,
v7 —v8), with various strengths, and so on through

the higher levels.
It is easy to see that every v~ v, interaction is

ferromagnetic. First we note that before a cer-
tain level (value of I) is reached, vj v~ will not ap-
pear at all. The first time it appears, v, will be
in one s2~ 1, 1 and v„. in the next s2~, , 1. Thus, in
the first level of appearance l the interaction willbe
(for J&0) of ferromagnetic sign. In every subse-
quent level, vz and v~ will appear only through s
and so have the antiferromagnetic sign. Thus we
may, by summing a geometric progression, com-
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pute the spin-spin interaction in terms of the level
of first appearance as

—J vgvt 2 —2
2 l (3-t) ) 23-tI (2. 18)

where we have taken the limit L, - ~ in writing this
expression. As long as rl & 2 the total v& v„ interaction
is ferromagnetic. It is also to be noted that the

v& terms have been arranged to cancel exactly.
Due to the quadratic nature of the interactions, al-
though our Hami1tonian is not translationally invari-
ant, it has at least spin symmetry, i.e. , if v&-- v& for all j, R is unchanged.

An important consequence of the fact that all the
interactions are ferromagnetic is that the Lee-Yang
theorem, ' as extended by Asano, by Griffiths, and

by Suzuki and Fisher, holds for this model. Vari-
ous important consequences follow from the the-
orem. ' Consequently, for any positive tempera-
ture the free energy as a function of magnetic field
is analytic, provided H 0 0. It appears plausible that
that the result of Gallavotti, Miracle-Sole, and Rob-
inson, which shows that the free energy is analytic
for H= O„provided T is large enough, can be ex-
tended to our model. For although our potential
is not translationally invariant, it can be uniformly
bounded by one that is, and the spin-infinity Ising
coupling is physically more difficult to order and
hence less likely to produce a singularity in the
free energy than ls the spin -p case which they
treated. Thus, on general grounds we expect our
model to behave (both the one-dimensional model
and the higher-dimensional models described in
Sec. IV) as any other more or less short-ranged
interaction ferromagnetic Ising model as regards
the appearance of a critical point and the general
appearance of the phase diagram.

According to the crltel'ioI1 of TtloIIlpsoI1 {sta'ted
only for spin ——,

" Ising models), there would not be
expected to be any long-range order for any positive
T as long as q& 1. This result follows since two
spins separated by ~ j -k I cannot enter with an /

smaller than logo~ j-k~ and thus, by (2. 18), the in-
teraction must fall off like I j-k i" 3. We would re-
gard the spin-infinity Ising model as no more likely
to develop order than the spin --,' model. The prob-
able lack of long-range order for our one-dimen-

sional model is consistent with the known similar
lack in the arbitrary-spin, nearest-neighbor,
one-dlmenslonal Ising model.

We note that in higher dimensions, d, discussed
in Sec. IV, Eq. (2. 18) will generalize to

J vgvI
2l (P+fl-t) ) 28+fl t) 1 t (2. 19)

In this section we consider the standard partition
function for the Hamiltonian of Eq. (2. 17). It is
given by

ol -I-I o

a f fa=xp"( —iaido p 'p" Z
l'=0 m=1

Iv I

2L (t) -3)
+ —pd „,—Q v', g d v, . (3.1)

It is convenient to replace the finite integral in (3. 1)
with an infinite one. Thus let

f +1 +oo

dv;= dvI V(I —v,.)
-1

] 1 2L (tI-3)

dv, exp —
2

ff I 2„& v; —
2

P{v;)

(3 2)

where U(x) is the unit step function and K= pZ.
Equation (3. 2) defines P(x) by equating the inte-
grands. With this notation, Eq. (3. I) becomes

Z= ... exp -K . 2-l™ ~ s., la
l=o m=1

pL 3I
E P(vI) g dv, . (3. 3)

2 ~=1 =1

I.et us now solve Eq. (2. 1) to reexpress vI in
terms of the variables s, o and s,o. We obtain

and hence the interaction will decay as z" ". Fer-
romagnetic interactions are maintained for q & 4+ 1.
For any dimension we will require that q & 2, how-

ever, to yield a finite total interaction strength.

III. REDUCTION OF PARTITION FUNCTION TO
FUNCTIONAL EQUATION

pL -1- l

(aa„,ai, ) xpI-tap, ap '" "'
,2 ,(a, , i'

l =1 l =1

1 gL-1 1—KQ (s o)' ——2 P ~ (s„o+s„,o) +P ~ (4, o
—s, o)

m- 1 m=1

If we define

f, (x) = j'"dy exp[- Sty' ——,'q, (x+ y) --.' q,(x- y)],
(3. 5)

l

where

q, (2"'x)= J (x)

and define

(3.8)
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Q, (x) = —2 in[I, (2"-""x) I,(O)],

then

(3.7) &i.z, -i d», r. (-exp
2 QL 2(2-n)l/2 2(2-'n)I /2 (3. 1 1)

J

(2' ")' [Io(0)]'

l =0 m=1

or the free energy per spin wil 1 be

E/N= —/2T ln-z
N

L»1

2 - 'g 1n2 - kT 2 ' 1n Il 0
N l ~0

It will now be observed that Eq. (3. 8), aside from
the factor in front of the integral sign, the replace-
ment of v, by (s 2/2' 0' "), and the replacement of
I. by I —1, is identical to (3. 3) because of the re-
cursive nature of the definition of our variables by
Eq. (2. 2). Consequently, if we define recursively
the functions

I( (x) = f dy exp[ —Icy2 ——,
'

Q, (x+ y) ——,'Q, (x —y) ]

(3. 9)

/ T t' 1 2' si ~, dR, ~,exP @l 2(2- n)L/2 ( 2-q)L/2

(3. 12)
It is to be noted that these re suits, except for the

last integral and the introduction of q are identical
to those of %ilson4 for one dimension.

If we add a magnetic fie ld inte raction to the Ham-

iltonian (2. 17) of the form
N

—mH 5; v/-— —mHN /2s, 2 i (3. 13)
9=1

then the integral in (3. 11) and (3. 12) is modified to
be

Q...(x) = —2 in[I, (2" ""x)I,(0)],

where Qo(x) is given by (3.6), then

II i (2 -")' [I,(O)]' }

(3. 1O)
1/2 A

1i2" ~ 2S1,L~1dS1,L-1exP+ MHPN s 1& L-1 2 @L 2 (2-P)L/2 2(2 ")L/2

(3. 14)
One can deduce by the usual statistical mechanical
formula that for T( ) T(, and H = 0 the magn etic sus-
ceptibility is

2 N f ~ (Si L i) eXp[- 2QI, (2 Si L i/2 )] Si g i
f exp[- 2 Qr(2 si, g-2/2 )]ds i, z, i

(3. I 5)

0(2w2 n&)- (3.16)

Since the minimum q for a system of this size is
O(2 ), Eq. (3. 16) corresponds correctly to the
assertion that g is, in fact, the scattering intensity
critical index of Eq. (2. 16), which was its intended
role.

IV. EXTENSION TO HIGHER DIMENSIONS

There are many ways to extend the results of

For a finite l( (T ) T,) the function Q~ must be such,
de spite the factor in its argument w hich tends to in-
finity, as to produce a distribution of finite width
for (s, /, ). At the critical point (if any), the re-
quirement that the Qi (x) tend to a limit would lead
to the conclusion that

Secs . II and III to higher dimension. In this sec-
ti on we will present only the simplest ones, and
that on only the hypercubic lattices (plane squa. re,
simple cubic, etc. ) . We could have based our
analysis of the one -dimensional model on trip lica-
tion (see Fig. 2) instead of duplication as we did.
One would expect that as larger funda. menta 1 groups
of spins are taken the results approach those of the
nearest -neighbor Ising model more closely . Our
method for the construction of a model is to take a
nearest -neighbor Ising model on a re gular latti ce,
and to group the spins into cells of two or more
spins in such a w ay that the cells have the same
lattice structure as did the origina 1 latti ce . The
interactions betw een spins in the same cell are re-
t ained and those between spins of diff erent cells

level

2 I I I

I I I I I I I I I I

O I I I I I I I I I I I I I I 1 I I I C I I I I I I I I

$pl$$4 4 4 ~ ~ ~ 4 4 4 ~ ~ 4 ~ 4 4 ~ ~ 4 ~ 4 4 ~ 4 4 ~ 4 4

FIG. 2 . An al ternate hierarchy group-
ing for a one-dimensional model.



ISING MODE L WITH A SCALING INTERAC TION 262V

FIG. 3. A grouping of a two-
dimensional lattice of spins which
is structurally equivalent to Fig.
1.

are replaced by an interaction between the mean
cell spins, just as in the one-dimensional case.
This procedure is the repeated grouping of cells
into higher level cells.

We believe that it is necessary for each funda-
mental cell to retain the full dimensionality of the
original lattice in order for at least the rotational
symmetry of the original lattice to be retained.
For example, one might consider breaking up the
plane-square lattice as in Fig. 3, however, this
model can be easily shown to be identical to that of
Fig. 1. We will discuss this alternate breakup
further at the end of this section.

To illustrate our extension to higher dimension,
we will break up the plane-square lattice as shown
in Fig. 4. The first step is to introduce an ortho-
normal change of variable which diagonalizes the
intracell interactions. In the two-dimensional
plane-square case, we need to diagonalize the
quadratic form:

c = ( i, i — i, a) + ( ~, a
2 2

For the breakup (Fig. 4) for the plane-square lat-
tice, the c g are given by the v; equations of (4. 2).
The intracell interaction energy will be given by

E =-P„e„(s„-p)', (4. 5)

where the &, are given by comparison with (4. 3)
for the plane-square-lattice case. Following (2. 2)
we now introduce recursively the orthonormal
transf ormations

en m~+.s= ~~ ea5eam-a', r,
cel 1 m

n- d/2
ma l+1 2 ~ 2m-8, l

ce 11 m

(4. 6)

for l=0, 1, . . . , L, —2, &=1, . . . , 2"—1, and there
are 2"' " vector values of m, As before, the
final set of variables will be

(2" " vector values

of m, 2d ' values of n,
f=O, l, . . . , L, -l)

n -0.5'SlI. 1=2 i -g&g ~

(4.7)

ln a manner similar to (2. 17) we introduce the Ham-
iltonian

( a&1 ayaa) ( ly1 apl)

The one transformation which does this is (d is the
dimension, 2)

-0.5d
(vi, s + vi, a + va, i + va, a)

-0.5d
(vi, i —vi, a+ va, i —va, a) ~

-0. 5dva= 2 '
(vs, s+ v&, a

—va~& —vaja),

-0.Sd
'va 2 (vl, l vl, a va, l+ va, a) i

(4. 2)

~c 251+ 282+ 4~3 ~ (4. 3)

We may now define (total system size is now taken
as N=2" )

, p= +~ e
O, a va g (2 ' vector values of m),

cell m

(4. 4)
~m, 0= 2 ~ &2m-g,

cell m

where there are 2d spins per fundamental cell. Re-
expressing (4. 1) by (4. 2) we have

The partition function will again be

Z= f f (gdv&) e a

I I

I

I 9 3

I

I
L

I

I

I

I

I

I
I

)
I

I

(4. 9)

where I3 is a vector index which runs over the fun-
damental cell. The index a, = 1, . . . , 2" —1 indexes
the variables which enter into the intracell energy.

FIG. 4. The spin grouping hierarchy used for our two-
dimensional model.
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If we introduce the change of variable

n-ft/2 5
V2i%-g a ~~O. d80. So. III 0

where the sum on n is extended to n =. 0 and s0, -,0
=-s-, o. Then we may write (4. 9), using the notation
of Sec. III, as

+ 00 I, -l
Z= . . . g(ds-, g ds. o-)eI(pf Z-5~ 2 "'"&Q F~ e.(s„-,)2

l =l Q1 fM
w 00

—Z 2 Z e.(.„.-,)2 2-' Z Z 2"-'J (5 2-"' d&„...-, ],I Oi m E fX

q, (2"'x)= 2'-'Z(x),

and defining

q, (x) = —2"in[I o(2' ""-""x)/fo(O) ],

(4. 13)

(4. 14)

Sd~L 1~ d 0z=(a' '"z,(0))~ II „:,,', )aa C0 m

I -2

x exp 2-I (2-Q& 5 5 u n pm, (+()

L=O Dl

2d/2
—2 'Z Q. ..i' ), (4. 15)

where P is defined in an analogous manner to (3. 2)
to absorb the v, terms. %e may now integrate sep-
arately over the variables associated with each cell.
This possibility leads us to again introduce

2&-1

r (x ) f . .f(=II dx.,)

2d-1 2 -1
)( exP[-KZ e~x2~ —2 'E qo(K d/(~x~) j, .

0/ =1 g fM=0

(4. 12)l

f)(xo) =
+ 00 '2"-1

~ ~ ~ dx

2"-1 2&-1

x exp[ —K Z E~x~ —2 Z q)(Z doux~) ]
0;=1 5 0.=0

q„,(x)= —2 In[I, (2' '" '"x)/I (9)]

'(4. 16)

(4. 17)

where qo(x) is given by (4. 13). (It is to be noted
that on the plane-square lattice, and indeed on all
the hypercubical lattices the d)i, = a 1. ) The parti-
tion function is now given by

r„l
Z- H {(2'""f,(O))2'" '-"'

3=0

+ 00
g//2 ~

2 ~1,I -1 d~ 1,L,-l
q2 --

(2-Q&//2 (2-'Q&/2 (4 16)
2 - 2

The susceptlbll3ty for T & T, H = 0 is given by

I

which is again form invariant. Thus, as before,
we can define a sequence of functions recursively
and evaluate the partition function in terms of them.
We therefore introduce, in analogy to (3.9) and
(3.10),

2pl)/ f ~ ( scull) e p[ ,-2 qI ( sl II 1/ " )) 1,1--1
/&I f )+~ e [ 2-a q (2d/2s /2(2"Q)L/2)]ds (4. 19)

We included in Tables I and II are the param-
eters dg „for the plane-square and the simple-
cubic lattices.

The factors in these tables allow one to write out
explicitly E(I. (4. 16) for two and three dimensions.
It will be further observed that Table II can be
gotten from Table I by writing each horizontal row'

twice and doubling its length by writing it a second
time on the same row first with the same signs
and next with the signs reversed; a similar con-
struction will extend to all the hypercubical lattices.

In the breakup of the plane-square lattice of
Fig. 3 the dimensions are not treated in a sym-
metrical manner, since one direction is selected

for the original spins and another for the first level
grouping. This breakup procedure can be extended
in an obvious way to any number of dimensions.
Now there are d levels required to involve all the
spins treated in one unit cell before. Thus for
this breakup we introduce the Hamiltonian

2Ld-1-ff

2-u(2-Q)/d Q (s )2
fit, 2 il

2L (n-0-2)

("-2&/.

Since the structure of this breakdown is, for any
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0, 0

0, 1
1, 0

1, 1

1
1

—1
—1

1
—1

1
—1

TABI.E I. 4 & ~ for the plane-square lattice.

1
—1
—1

1

the type (4. 23) and (4. 24). ln the solution of his
equa, iOns, , Wilson found values of v = 0.61 and

y = 1.22 (q = 0) for the three-dimensional case, which
are not very different from the commonly accepted
values.

V. SOME PROPERTIES OF THE SOLUTION TO THE
FUNCTIONAL EQUATION

number of dimensions, equivalent to the structure
of the Hamiltonian studied in Sec. ID, the results
can be transcribed to our present case. Thus, we
define

U(1 —v,')

1 1 —2L(~d 2) 1
exp ——If t„„,~~, ~~

——P( ~) (4. 21
E,(s) = f e '"0 I, ( x)odxo

If we convert to the variables

(5.1)

In the previous sections we have defined a fam-
ily of models and expressed their solutions in
terms of a sequence of functional iterations. In
this section we will deduce some of the properties
from these equations. We will use Eqs. (4. 16)
and (4. 1V) as the basis for this section. The con-
sequences of (4. 23) and (4. 24) a.re quite ana. logous.

First let us consider the high-temperature re-
gion where K is very small. Let us compute from
(4. 16)

Q.(2"'x)=I (x) .
We obtain the recursion formulas

(4. 22)
v;= Z dg. x. ,

I,(x) = f dy exp[—Ky2 ——,
' Q~(x+y) ——,

' Q„(x—y)]

(4. 23)

then we have

Q...(x) = —21n[I (2"-""-""'"x)/I„(0)] . (4. 24)

The partition function is given by

Ld-],

[
(12-0. n)5/d I (0)]21,g

x exp( —2 ' Z [sv&+Q, (v;)]- '2E Z (v-„- v„)s[
bonds

(6. 3)
From (4. 1V), we also have

F (20.5&0.5n-1
)

+Co 1/2 "
~1.Ld-f d~i, Ld-1x e P 2 @Ld 2F2- )L/2 2(2- )L/2

OQ

(4. aS)

The results of this breakup procedure, by virtue
of the resultant structure, equivalent to a one-
dimensional system with a long-range force, re-
duce the calculation to essentially the equations of
Sec. III. There is an immense computational ad-
vantage in that only one integration per iteration
is required rather 2 —1 as in the other breakup.

It is instructive at this point to note the similar-
ities and differences to the work of Wilson. The
structure of his recursion relations is extremely
similar. The only difference arises in his for-
mula. corresponding to (4. 24). Wilson's result is
(4. 23) coupled with (4. 1V). Basically, his recur-
sion relation attempts to advance d levels at one
step. Our results show that, at lea, st in the con-
text of our models, a better procedure would be
either to use a more couplex recursion relation,
such as (4. 16) with (4. 1V), or to ta.ke d steps of

= f '" dxexp(-s 2'"'0'" ' x)I, (x)

n1- 0. 5d -0.5 ft f a~ e -sx y I ~1-0+ 5d-0. 5'

TABI.E II. dg ~ for the simple-cubic lattice.

0, 0, 0
0, 1, 0

1, 0, 0

1, 1, 0

0, 0, 1
0, 1, 1
1, 0, 1
1, 1, 1

1 1
1 1
1 1
1 1
1
1 —1
1 —1
1

2 3

1
1 1

—1 —1
—1 —1

1 —1
1 —1

—1 1
—1 1

1
—1

1
—1

1
—1

1
—1

5 6 7

1 1 1
—1 —1 —1

1 —1 —1
—1 1 1
—1 1 —1

1 —1 1
—1 —1 1

1 1 —1

0

= 2' '" '"I,(0) f dx exp[—sx —2 "Q„~(x)]

(6.4)
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Thus we obtain, for the Laplace transform of the
step /-/+1

J "dxexp[-sx —2 "Q„1(x)]

=2' ''" f(0)' j'" "f(rr2 "2(f ")l

of K as 1 —~ need not be entire.
As a result of this argument, we conclude, for

K small enough,

f,(x) exp[- 2"""x'/[2&(2(K, l)]+ ~ ~ ~ }. (5. 9)

As long as ~ »(2(K)& 0 we deduce from (4. 19) that
the magnetic susceptibility is

xexp[-Z [2""' '"svg+2 Q, (v2)] 1=m PN&(2(N, L)/2 (5. 10)

—2 K Z (v2 —(&;) }. (5. 5)
bonds

We observe from (5. 5) that

f& 1(x) = exp[- 2 Q( 1(x)] (5. 6)

corresponds to a distribution which is the sum of 2

independent identical distributions, except for the
E-dependent part, and a change of scale on vg.
Since f0(x) is a distribution possessing all moments
(and mean zero), it follows from (5. 5) that so also do

all the higher f, (x). For K= 0 we have exactly f((X0)= ( g dx. )

All the calculation difficulties are now concealed in
the calculation of &(2(K, L). At the critical point we
expect &(2(K, L)» 1.

In order to obtain an approximate idea concerning
the solution of (4. 16) and (4. 17), we will replace
them by a linearized form which, while not a really
good approximation, should preserve most of the
essential features and is much more tractable. To
this end let us expand Q, (x) to second order about
x0 in (4. 16). We then have

dxexp[- sx —2d d Q„,(x) ]

0.M+ O. 5n-1 +00

2((-» d (2-'i2
f, (o)

Pl
x exp[-2'" " sx- 2 "Q0(x)]} (5. 7)

8-1 ad-1

x exp[- K Q 5: x'„—q, (x,) —q", (x,) Q x ],
(5. 11)

where use has been made of the orthogonality of the

(d(& ). We may now do the integrals in (5. 11) analyt-
ically as it is a product of independent Gaussians.
The result is

In the limit when l is very large, we can expand
r 1/3

&~+'Ql k&Oj
(5. 12)

2& 2(»-2-d&1 5 2(0 2 d& + --)]

(5. 8)
where Ka K4 . . . are constants of order unity ob-
tained from the F0(s) function. To obtain the scale
of the resultant distribution we substitute s
= 2 '5'" "s. This leads us to conclude at once that
the transform of (5. 7) tends to a pure Gaussian in
s, in the limit of large I and K=O. This form cor-
responds to a Gaussian distributionfor f, (x) andthe
conclusion is independent of the details of the origi-
nal distribution. (This argument is a variant of the
central limit theorem of probability theory ).

Let us now consider the inclusion of the K-depen-
dent terms. For the spin-~ Ising model the origi-
nal distribution f0(x) is bounded in the sense that it
vanishes for x greater than some fixed value. Thus
if we expand (5. 5) in powers of K (for l = 0) and inte-
grate we get an entire function in K. If we then
move this series into the exponent we will get K-de-
pendent terms in the ((; of (5. 8) (again for l = 1).
As the width of the sum of two (or more) finite dis-
tributions is again finite, we may repeat this pro-
cess with full confidence to any l we choose. It
should be noted, however, that the limiting function

Thus, by (4. 17) we have

q (X) 2dq (21-0, 5d 0, 50
)

2d-1

+qlt (21-0.5d 0.50 )&( Q ln ' „(), (5. 13)
z&.+q", o

where the condition Q, (0) = 0 is maintained. To
complete the linearization, we expand the ln terms
in (5. 13) and obta, in

q (X) 25 q (21-0.5d-0. 50
)

+ r [Q", (2 '"-'")—q', (o)1, (5. 14)
where we define

8 -1
r, =2'-' Q (K~.)-'. (5. 15)

oi =1

For d = 2 and 3, Eq. (5. 14) becomes

Q...(x) =4Q, (2 "" )+2. 5[@,"(2 ""
) —@,"(0)]/K,

(5. 16)

q ( ) q ( / . . 0) [Q ( / ' +"'
) Q (0'']

(3K)

respectively. Here we have used r2= 2. 5/K and
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I'3 ——29/(3K) .
As we remarked at the end of Sec. III our iden-

tification of g as a critical point scattering intensity
exponent depends on the Q, tending to a finite limit.
We shall seek such a solution. Suppose that

Q, (x) = 5 a, ,x~", (5.17)

where we select powers differing by 2 because
those are the ones linked by (5. 15). Then we must
have

~d+(2'+)t) {2-p.5d p, 5q)
Qq, 2 q=Qq &2

+F~ag „„(2k+X+2)(2k+ A. +1)2' ~""'
t

(5. 16)

As we seek the limit a&,2,„=a», we can derive

A= 2d/(d —2+g) . (5.20)

With this choice, if A. is an integer, then a poly-

2d»(3+) ) (2-P. M-P. Sq)

(2k+~+2)(2k+X+1)i 2'~"&"-""-""' ' '

(5.19)
Now for (1 —0. 5d —0. 5q) & 0, which we anticipate
to be the interesting case, the a„must diverge as
Q-~ like 2'~"'" ' with constant sign, unless they
are identically zero. The divergence implies a
series sum of infinity. This cancellation will oc™
cur for (define k =0 for that one)

nomial solution results; otherwise, an infinite
sequence of negative powers of x with finite co-
efficients diverging like (2k). and alternating in
sign results. According to Carleman's theorem'
there will be, at most, one function in the cut
(- ~ & x '

& 0) plane defined by this formal series
solution. The important property of this solution
is that for large x it behaves like x", where X is
given by (5. 20). Also, it is in the large-x region
that we expect approximation (5. 14) to be best
since there, Q

' «Q.
It might be wondered, since Q, (x) =A, x is a

solution of (4.16) and (4. 17), whether at the critical
point when the coefficients of 2' ""x in (5. 10) goes
to zero, if the result might not be simply', x
withA, «2' "", instead of the solution we have
just given. It will turn out that, for large x at
least, this type of solution is impossible since,
following the procedures described below, we
would then find an infinite magnetization per spin,
which is impossible for our spins of finite mag-
nitude.

In terms of this solution which we expect to be
characteristic of the critical point, we may now
investigate the behavior of the magnetization as a
function of the magnetic field on the critical iso-
therm. First, we have seen that the limiting func-
tion Q, depends only on the temperature and not
on the magnetic field, as the field only interacts
via s2 1. 2. Thus we have, from differentiation of
(3.12) as modified by (3.14),

(N)yy 2 I sl I, -1 expI'mHJ (N)' sz z, &
—2 Qz (2 s& z, , /2' "'

)]ds& z, &

J exp rmHP(N) sg g ] —2 Q (2 sy g y/2 ) jdsg g
(5. 21)

~/N H"'"" . (5. 22)

Thus, for our model, we have derived the relation
for the magnetization index 5 along the critical
isotherm

5= (d+2 —q)/(d —2+@), (5. 23)

provided the denominator is positive, which is the
usual result of scaling. The substitution of our
solution of approximation (5.14) into (4. 19) leads,
as expected, to (3.16), confirming the exponent
7/ ~

It can be shown that the reason Wilson's model
changes to a gaussian model for d& 4 is because he

where M is the magnetization. If we transform to
the integration variable y=(N) '

s& z, q, then, pro-
vided (1 —0. 5d —0. 5q) &0, the region of large
argument of Qz becomes important, and then, using
our solution of approximation (5. 14) a.nd the sad-
d1.e point method we obtain

chose P(x) =ax +x . If he had chosen, say P(x)
=ax + Ixl', then the change would have come at
d &6. These results follow from application of
(5. 14) for large x. The essential difference seems
tobe that while it is true that the shaping influence of
the recursion re1ations spreads out from x=0, it
does not spread fast enough to overwhelm the ef-
fect of the initial P,(x) at those va, lues of x which
are important for any fixed II 4 0.

Next, we wish to investigate the behavior near,
but slightly above, T, in order to determine the
rate of divergence of the susceptibility. In this
analysis we follow the methods of Wilson. We
assume we are near T, and seek to linearize the
recursion relations (4. 16) and (4. 17) in this re-
gion. First, in (4. 16) we expand the integral to
first order in (K-K,) which yields

+40 8-2
f, (x,) = ". (II )dx.

R =2
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2 -1
x exp[-K, L' e x —2'QQ, ( ~& d- x )]

n=1 Ol =0

2 -1
X[I -(K-K,) g ~„x'.+O((K-K, )')] .

(5. 24)
If we also expand the solution as

(5. 25)

Q$+1(x) Q (x) + (K Kg) ~ $+1(x)

2-1
=e.(x) —(K-K.) ( & ~. (& '.&. —& .'&, )

Q, (x)=Q.(x)+(K-K.) & (x),

then substitution into (5. 24) and (4. 17) yields, to
first order in (K-K,),

q, (x) =q, (x)+(K-K,) 2"q, (x) . (5.32)

Thus, for very large l where

'(l K (K-K)) (5.34)

we must have the relation [from (5. 32)-(5.34) j
2" "Z(K K,) =g-((K -K,) 2') . (5.35)

Repeated application of (5.35) leads to the conclu-
sion that (in the absence of pathological behavior
of g)

However, we can also derive from (5.6) and (5.9)
that

q, (x) = 2'-' 2'"'&' x'/&, (1,K, + (K -K,)) . (5.33)

2d-1 2 -1
+2 "~)[&g, (~& dl x )&

—(~R, (5 d~ x, )&,] j
8

y O((K —K,)'), (5.26)

( ) A &2 n)lc

Now by (5.34) and (5. 10) it is concluded that

r=(2-n)/~,

(5. 36)

(5. 37)

where ( ), means the expected value where Q, is
used for Q, in the exponent of (5. 24) with K-K, =O,
and evaluated at X0=21 0 5d 0 5nx. The brackets
( )0 means the same thing except x0= 0. U we de-
fine

q, (x) = Z (x) —n(x),

where we define

2"-1

a(x) = ~F' e.((x.'&, -&x.')0)

(5. 27)

or

2"-1

(q, . (Q d; „x„)&0] +O(K-K, ) (5. 29)
0l=0

qi, i = T(qr)

gives, to leading order in (K-K,), a linear re-
cursion relation in the q, 's. Now the behavior
of such operators is well known. We expect there
to be an eigensolution corresponding to a unique
maximum eigenvalue 2 . As the iteration pro-
ceeds, this term will dominate and we will have

(5.30)

q~(x) = 2"q. (x) . (5.»)
Now as the difference between q, and t, does not
grow in l, we can neglect it compared to the dom-
inate term (5.31). Thus, substituting back into
(5. 25), we obtain, to first order in (K -K ),

8-1
+2'P [& Q(Z d" „x )) —(fl (G d; x.)),],

8 u =0 +=0

(5. 26)
then

2"-1

e.i(x)=2" ~& [&q~ (~ dl, x )),
0l =0

where y is the usual index of divergence of the
high-temperature magnetic sus ceptibility. It fol-
lows then (Fisher') that the correlation-length
divergence index is given by

~ = r/(2 n) = I/K- (5. 36)

o. = 2-d/K,

'(d 2+ 9)/~-, —

~= —,'(d+ 2-9)/g .
(5. 39)

We will not discuss the numerical aspects in this
paper. All the calculations that have been actually
carried out have been done by Wilson and the pro-
cedures used by him are described in his paper. '
He has approximated the recursion procedure by
using (4. 23) with (4. 17), thereby taking d steps
at once. He has obtained the following two solu-
tions:

To summarize this section, for our model, a
value of g is assumed. From the recursion re-
lations (4. 16) and (4. 17) [or (4. 23) and (4. 24) in
case of the alternate breakup] the Q, 's are de-
termined as a function of K and, in particular,
y2(l, K). At the value of K for which y2(l, K) di-
verges to + ~, we solve for the critical function
Q,(x). From Q,(x) via (5. 29) we construct a linear
operator. The maximum eigenvalue of this opera-
tor is denoted by 2, where f is a function of q and
the dimension. (In the case of the alternate break-
up, an eigenvalue of 2 ~" is obtained. ) From g, 9,
and the dimension d we can compute y, v, and 5 by
(5. 23), (5. 37), and (5. 38). We see no reason to
suppose that the remainder of the scaling relations
do not hold so that the specific-heat index n, and
the magnetization index P, and the gap index &
would be given by
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g = 4, v=0. 9033, y= l. 5808,
(5.40)

@=0, v=0. 61, y= l. 22,

K=K, 2'5, ~& (s,)'„
where we must choose

(5. 42)

which are in rough agreement with the values ob-
tained for the nearest-neighbor Ising model by
other methods (d=2, v=1. 0, @=1.75; d=3,
v = 0.643, y = 1.25). He has also approximated
[Eq. (3.2)] I'(x) by ax'+x'.

Wilson' has also computed the following solution
for the breakup of Fig. 3, again using I'(x) approx-
imated bv ax + x

v =0.6496, y = 1.2991,
(5.41)

P=0. 3248„a=0.0513 .
Note added in proof. It has come to our atten-

tion that the breakup (4. 23) and (4. 24) is equivalent
to a special case of Dyson's' hierarchical model
defined by

(5.43)

Thus, Dyson' has proved that long-range order
exists, for T low enough.
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