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Multiple-scattering theory is employed to determine the one-electron Green's function in
the presence of a uniform external magnetic field and a dilute random arrangement of atomic
potentials. The oscillatory part of the density of states is extracted and used to compute
thermodynamic quantities. Explicit expressions for the frequency shifts and the amplitude
diminution caused by inserting impurities into the free-electron gas are obtained.

I. INTRODUCTION

The de Haas-van Alphen (dHvA) effect has long

been a useful tool for the investigation of extremely
pure metals. In recent years it has been applied
to the study of controlled dilute alloys in an attempt
to elucidate the electronic properties of these rel-
atively simple disordered materials. One is pri-
marily interested in the effect of alloying on the
frequency of the dHvA oscillations, since this quan-

tity depends directly upon the electronic states in

the vicinity of the Fermi energy.
There have been several theoretical studies of

the dHvA effect in dilute alloys. The earliest was
the pioneering work of Dingle, which was essen-
tially a phenomenological treatment of the effect of
impurity scattering on the amplitude of the oscilla-
tions. Dingle argued that the result of such scat-
tering was to broaden the Landau levels (the quan-
tized energy levels of an electron in a spatially uni-
form magnetic field). Since the dHvA effect arises
from the passage of such levels through the chemi-
cal potential of the system, the broadening of the

otherwise sharp levels manifests itself as a dimi-
nution in the amplitude of the oscillations. awhile

correct in spirit, Dingle's treatment gave no pre-
scription for calculating the lifetime causing the
decrease in amplitude. Furthermore, it did not
deal with the frequency shifts produced by alloying.
Heine did consider the question of what would hap-
pen to the frequency as impurities were added to
the perfect crystal. His approach was a fundamen-

tal one, insofar as the effects of alloying in the ab-
sence of an external field were concerned, but did

not attempt to deal with field-dependent effects in
a basic way.

Bychkov4 attempted to apply multiple-scatter ing

theory to the problem. His work was limited to
the case of a zero-range potential, and in any event
was not concerned with the questions of frequency
shifts. His expressions for the lifetime associated
with the dHvA oscillations differ from those derived
here and in Ref. (5) by the presence of apparently
extraneous factors. Brailsford' discussed the
question of frequency changes and amplitude reduc-
tion using what was essentially a ruse to avoid
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dealing with the multiple-scattering problem. He
states that his formalism is not appropriate to sit-
uations where one has real or virtual bound impuri-
ty states. Since one can pass continuously from a
weak-scattering limit to a strong-scattering virtual-
state situation, it is difficult to delimit the domain
of validity of Brailsford's theory.

In this paper we employ standard multiple-scat-
tering theory to determine the one-electron Green's
functions in the presence of a uniform external
magnetic field and a dilute random arrangement of
scatterers of arbitrary strength. The calculations,
therefore, are in a strict sense only appropriate
to a system which reduces to a free-electron gas
as the concentration of the scatterers goes to zero.
We express the frequency shifts and the lifetime
in terms of the phase shifts produced by an individ-
ual scatterer. Because of our assumption of a
spherical unperturbed Fermi surface the calcula-
tions are not immediately applicable to common
experimental situations, which usually, for signal
strength purposes, deal with small pieces of the
actual distorted Fermi surface. An attempt is
made to remedy this defect of our work in an in-
tuitive manner.

II. FORMALISM

The primary difficulty is the construction of a
suitable approximate way of performing the average
of 1 . Lax introduced the following procedure:
satisfies the equation

v'= &+ VGp'=Z v, (1+Got'),

where the second form follows from the decomposi-
tion (1). Defining

9', = v, (1+GO%'),

one finds that

g=p v'

(10)

which in turn may be inverted to yield

G = Go+ Go~G

On the other hand, 9 may be expressed in terms
of the total transition operator using the expression

g = Go+Go%'Go .
Since ( g ) = G and Go is not a statistical object, it
follows that

Go + GOZG = Go+ Go ( V'
& Go,

which can be manipulated to yield

where 8, denotes the position of the sth impurity.
The calculations will be performed using con-

ventional multiple-scattering theory, " which will
be briefly reviewed here. The unperturbed and
perturbed Green's functions are defined by the ex-

.pressions

G,(z) = (~ —e,)-', g(z) = (z -II, —v)-', (2)

respectively, and the density of states at energy
E is given by

p(E) = —v 'Im TrG(E+f5),

where G(z) = (8(z) ), the angular brackets denoting
an ensemble average over the position of the im-
purities, and 5 is a positive infinitesimal. It is
conventional to express the averaged Green's func-
tion G in terms of a self-energy operator Z, de-
fined implicitly by the equation

The Hamiltonian of the system is the sum of Ho,
the nonrandom "unperturbed" part which in the
present case describes the motion of an electron in
a uniform external magnetic field, and V, the
random potential describing the interaction of an
electron with the impurities. The potential V can
be decomposed into a sum of contributions from
each impurity:

V(r) =Z, v(r —8,) =Z,v, ,

g.,=t, (I+G, &~ &„), (12)

where t, is the single-atom t matrix satisfying the
equation

t, =v, +v,Got, .
In Hefs. 6 and 7 it is shown in detail how Eq.

(12) may be iterated to yield (V; & as the solution
of an infinite coupled chain of equations. The re-
sult of these discussions is the following. Let
( ~ ~ ~ ), and ( ~ ~ ), „denote restricted ensemble
averages, the first being one in which the position
of the sth atom is held fixed, while in the second
both the sth and the Qh atoms are fixed. Then the
first two of these coupled equations are

(v')=NO ' f (v', &, d R, , (14a)

(V', &, = f,(1+n-'G, Z(V „)„,d'R, ), (14b)

where N is the total number of impurities, 0 is the
crystal volume, and we have assumed (as is ap-
propriate to the small concentration limit) that all
averages can be effected by integrating over the
position of the impurities. The second of these
equations is closed by making the approximate
identification

G(z) = (~ —H, —Z)-', (4)
in which case Egs. (14a) and (14b) may be combined
to yield
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(&&=n ft, (1+G, (V'&)d'R, ,

where n = NA is the density of impurities. Com-
bining (8) and (16) one finds that the self-energy
operator is given by the expression

(r+al Golr'+a&="*-"" "'&rl Gal "&
putting a = —r' one finds

&rl Gol r' &= exp[ —2i ny'(x x')—j (r —r'I Go
I
0 &

(22)

Z=nft, dR, . (i7)

We now apply the multiple-scattering theory just
outlined to the problem of an electron moving in
an external magnetic field and the field of a (very
dilute) random arrangement of impurities. Since
we are interested here in the dHvA oscillations,
which depend upon the field in a highly nonlinear
way, it is necessary to treat the magnetic field ex-
actly. We take the magnetic field to be in the z
direction and work in the gauge in which the vector
potential is given by A= (- By, 0, 0). The eigen-
functions and eigenvalues of

H, = (I/2m) [p - (e/c)A]'

are very well known. In positional representation
the eigenfunctions are

& r
I v, k. , k, &

= (2n )- ' e*'"'"""'u ( y —y ) (19)

where u, (y) is the harmonic-oscillator function

u (y)=(2n/v)' '(2"v )
' 'e "H [(2n)' 'y]

(20)
in which n = eB/28c and yo = k„/2n. The eigenval-
ues are simply

E(v, k„, k, ) = (v+2) h&u+8 k, /2m, (2i)

where &u = eB/mc.
The Green's function Go(z) is given in terms of

the kets Iv, k„, k, & by the usual expression

&r I Golr'&

= (2m) f dk„dk, Z„(r I v, k„, k, ) (v, k„, k,
I

r')

x [z —E(v, k„, k, )] ~ . (2i)

Certain useful properties of Go may be established
with the aid of gauge invariance arguments. Let
a be any constant vector. If Q(r) is an eigenfunc-
tion of Ho with eigenvalue E, then Q(r+a) is an
eigenfunction of H~ (with the same eigenvalue),
where Ho is Ho with r replaced by r+a. But re-
placing r by r+a is equivalent here to making the
gauge transformation

A- A' = A —Ba, i = A —v(Ba, x) .
This implies that

P(r+a)=e " '»"y'(r),

where Q' is some eigenfunction of Ho corresponding
to the same eigenvalue E. But since expression
(21) involves a sum over all eigenfunctions, it fol-
lows that Go satisfies

or finally

&rlGolr &=e '""'""""'E(r- ')

where J' is some unknown function.
The atomic t matrices have an analogous struc-

ture. In coordinate space they satisfy the equation

t, (r, r ') = v(r —R,)5 (r —r ') + v (r —R,)

xf e ' ""'&'" "'E(r r")t—,(r", r')d r",
(24)

where we have used (23) for Go. Direct substitu-
tion shows that t, may be written in the form

t, (r, r') = exp[i(r —r') ~ (nx R,) —in(xy —x'y ))

x t (r —R„r' —R,), (25)

where a= ak and t satisfies

t(r, r') = v(r)5(r —r')+v(r)

x fe '"'' " 'E(r —r")t(r", r')d r . (26)

The next step in the calculation is the determina-
tion of the matrix elements of the self-energy oper-
ator in the representation defined by the basis set
(19). Using Eqs. (17), (19), and (25) one finds that
the required matrix elements are given by the ex-
pression

( v~ k» ~ k» I
Z

I lj~ k», k .) = (2n7l') f d r d r d R

xe'~ u„(y+yo) t (r —R, r' —R)u„(y'+yo), (27)

where the phase factor is

y = (r —r ') ~ (n x R) —i n(xy —x'y')

—(xk„+zk, )+ (x'k,'+ z'k.') .

Replacing r —R and r' —R by r and r', respectively,
the expression for the matrix elements (27) takes the
form

n(2v)~ f d'rd3r'd'R

xe" u„(y+R, +y, ) t(r, r')u„(y+R, +y,')

where P is now defined by

y = 2nR, (x'- x) + x'y' —xy+ (x'k„'+ z'k,')

—(xk„+zk, )+R„(k„' k„)+R,(k,
' k.) .--

Performing the A„and R, integrations shows that
the self-energy is diagonal in k and k,:

&,, k„, k, I
Z

I
p, , k„', k,

'
&

= ~(k„-k„')~(k, - k,')Z„„(k„,k,),
where

Z„„(k„,k, ) = n fd r d r' f ds
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x exp[ik, (z' —z) + in(x'y' —xy) + 2ins(x' —x)]

xu„(y+s) t(r, r')u„(y'+s) (28)

and we have introduced the integration coordinate
s=A, +yo. The integration over s can be carried
out exactly. One finds that

f ds exp[in(x'y' —xy)+2ins(x' —x)] u„(y+s)u (y'+s)

= (~ ~ ~ ) exp[in(xy' —x'y) ,'np——]

x I.„" ' (np') [(x- x')+i(y —y')]" (29)

where p~=(x —x') +(y —y'), L", is the associated
Laguerre polynominal, and (~ ~ ~ ) represents a fac-
tor which equals unity when p = p, . Now because of
the axial symmetry about the z axis, the operator
t that occurs in (28) is invariant under simulta-
neous rotationof r and r' about thataxis. Allof the
factors in (29) are also invariant under such a ro-
tation except for the last which behaves as e""
where 8 is the rotation angle. Consequently Z„,
vanishes unless p, = p. Our final result for the
self-energy matrix elements is, therefore,

where

Z(p. , k„, k, .)

= 6,„6(k„—k„')5(k, —k,')Z(p, k„, k,), (3O)

= n fd'r d'r' exp [ik, (z —z') + in(xy' —x'y) ,' np']-—
x t (r, r')L, ', (np') . (31)

All of the preceding results, including the one
concerning the diagonal nature of the self-energy,
have been exact. Further progress is facilitated
if it is recognized that the problem is replete with
large and small parameters, and that we are in-
terested at present in obtaining only those field-
dependent quantities that are oscillatory in charac-
ter. We first note that the range of integration in
(31) is determined by the range of t. Since this is
of the order of atomic dimensions, it follows that
for the purpose at hand the term proportional to n
in the exponential can be dropped. Furthermore,
it is known that the dHvA oscillations arise from
states of large Landau number. The Laguerre
polynomial may then be approximated by

L', ( )= ze'I' Z,([2(2p, + 1)z]'~'),

where Jo is the zeroth-order Bessel function. The
self-energy matrix element (31) then takes the
form

Z(p, k. , k, ) = n fd'r d'~' e'"" "'

&,(2pn"'(p+2)'") t(r, r') . (32)

But the addition formula for Bessel functions is

j (2pn' (p+ —,')' )=Z J (k r )J (k r') e'~"
p-»co

(33)
where r, = x +y and Q is the azimuthal angle of r,
and we have defined a wave vector by k~ = 2n(2 p, + 1).
Combining (32), (33), and the two-dimensional
plane-wave expansion

e"~' =Z J,'(k, r,)e"',
P=» oo

and making use of the cylindrical symmetry of t,
we find for the matrix elements the expression

Z(g, k,) = n f d rd r'exp[ik, (z —z')+ik, (y —y')]

xt(r, r') . (34)

Using the notation t(k„k„)to denote the forward
scattering matrix elements of t for a wave vector
with components k, and k„, perpendicular and paral-
lel, respectively, to the z axis, the self-energy ma-
trix elements take the simple form

Z(p, , k,)=nt(k„k, ) . (35)

The operator t satisfies Eq. (26) and in principle
is itself a function of the external field because of
the n in the exponential and the field dependence of
F. However, as was discussed above, the exponen-
tial involving o. is very close to unity for all reason-
able fields and can therefore be ignored, at least
insofar as we are only interested in oscillatory
field-dependent quantities. It is shown in Ref. 10
that the quantity E(r —r') is equal to the zero-field
Green's function plus a correction term of order
(k~/E)'~~, which can also be dropped, since we
are interested in energies of the order of the
Fermi energy. I', of course, also contains oscil-
latory terms, and therefore the t matrix itself has
an oscillatory part. It can be shown that these
terms can only lead to small corrections to the re-
sult derived below. The upshot is, therefore, that
for the purpose at hand the operator t can be re-
placed by the zero-field t matrix with no appreci-
able error. We shall henceforth drop the tilde and
interpret the t matrix in this way.

We now calculate the zero field and the oscilla-
tory part of the density of states. Since the self-
energy is diagonal the Green's function (r I G l

r')
is given by Eq. (21) with the substitution z- z —Z.
Using the orthonormality of the Hermite polyno-
mials, we find for the density of states (per unit
volume)

p(E) = —(n/2v') 1m'„ f dk

x [E—(p, + 2)h(u —k k, /2m —nt(k„k~)] ' .
(38)

We introduce the following notation:

E=k e/2m, k(a= 8 eo/2m,
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p(E) = ——,'CimZ (- 1) dk, dx
p- oo OC( 0

k2 n~ k 2~~1/2 -1
E'0

(36)
In this expression the variable x plays the role of
the square of a wave vector whose direction is per-
pendicular to the z axis. It is convenient to change
the integration variables to the pair (k, k, ), where
k =k, +x. One finds

p(z) = —-', c)mZ (- 1)' k dk exp '
)P 0 0

E'0

x exp [e —k —n~(k)]
2' ik 2 -1

E'0

The inner integration is trivial for p =0; for non-
zero p it may be carried through once it is noted
that insofar as the oscillatory terms are concerned
the important values of k are of order the Fermi
wave vector, which implies that the asymptotic
limit (k /&0-~) may be taken. This approximation
neglects field-dependent but nonoscillatory terms.
The result is that for the purposes of the present
paper one may write

p(&) = p, (&)+p(&), (40)

where p0, the zero-field density of states, is given
by

and

p (E)=- Clm f k dk[e —k —nv(k)] '
Q

(41)

1/2
p(E) = —C ~ & (-1)'p "'

P=1
()0

2

&&Im & —k —n7 k cos — —— kdk .2 27tpk m

&0 4
0

(42)
While our primary purpose is a discussion of the

dHvA oscillations, it is interesting to contrast the
expressions for the zero field p0 and for the oscil-
latory p. Equation (41) may be written in the form

t(k„k„)= (e'/2m)~((k, '+ k, ')'"),
where we have noted that for a spherical scatterer
the forward part of the t matrix is a function only
of the magnitude of the wave vector. Then we have

p(E) = ——,'&oCImZ~ f dk,

x [e —(p+-,')(.o —k, —nr((k, +k~ )'~ )] ',
(37)

where C= mn 3h 2. The sum over p. is evaluated us-
ing the Poisson sum formula, the result being

where the partial derivative sign is meant to indi-
cate that one does not differentiate with respect to
the energy dependence of y.

The limit of this expression as n-0 is of course
the free-electron density of states. Of greater in-
terest is the part of p0 proportional to the concen-
tration of impurities. We find that

Bn BE J
lim = —C—Im 7(k) [&+i' —k ] 'k dk .

(44)
It is easy to show that (44) is equivalent to

m
' —Im TrGQt=- n Im TrGQtGQ,

-1

~p(Z) =v 'Z(2I+I)
dE (46)

where the 5, are the phase shifts.
The point to be noted is that while the final re-

sult for the impurity contribution to the zero-field
density of states involves only on-energy-shell
quantities, obtaining this result by a momentum-
space integration involves the forward part of t
for all wave vectors. In particular, the off-energy-
shell matrix elements of Imt enter in an important
way. On the other hand, the rapid osicllations of
the cosine factor in Eq. (42) (k /@0 =10, if k is of
the order of a Fermi wave vector) ensure that one
gets significant contributions to the integral only
in regions where the first factor is rapidly varying,
i.e. , only near the region where & —k —Rene = 0.
This means that p will also depend only upon on-
energy-shell quantities, but not necessarily those
entering into p0.

We evaluate the integral in (42) by expressing
the cosine as a sum of exponentials and distorting
the contour to the appropriate 45' line in the com-
plex-k plane. Since the integral along the new
contour yields field-dependent but nonoscillatory
part of the density of states,

p(Z)= C~ ReZ (-I)'P "'exp

(46)
where in this expression we have dropped prefac-
tor terms proportional to the defect concentration
n and z=7 evaluated at k=&'

The final step in our calculations is the use of
Eq. (46) to find the oscillatory part of the free en-
ergy, from which the dHvA oscillations in the sus-

where GQ is here meant to denote the free-electron
Green's function. Anderson and McMillian" have
shown explicitly that the second form [which is equal
to Tr(G —Go), where G is the exact Green's function
in the presence of a single impurity] yields the usu-
al Friedel formula for the change in the density
of states per impurity
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ceptibility may be obtained. Denoting this part of
the free energy by F, one has the usual formula

5"=—(2/P) f in[1+ e '" '1p{E)dz

or

F=2 f [1+e'" ']'Z(z)dz,

where P = 1/kT, p, is the chemical potential, "and

I.O

0.8

0.6

0.4

0, 2

I I I I

E 3 /2

2'(E)= p(E)dz= —C ~ ImZ (-1) p4 2 p=1

2vip(e —nV) iv
x exp

~

~

E0 4
(47)

In this last equation we have again dropped prefac-
tor terms proprotional to n. We have also ignored
the fact that formal integration of Eq. (46) yields
a spurious term arising from the lower limit of in-
tegration, or ultimately from the fact that we have
only an asymptotic formula for p and not one valid
for all energies. In any event, no oscillatory
terms would arise from the neglected term, even
if it were carried along in the calculations.

The integral in (47) may be done by closing the
integral in the upper half plane. One picks up
poles at E= p+ (2m+1)v/p, where r is an integer.
To sufficient accuracy the value of 7 at the poles
can be obtained by keeping only the first two terms
of a Taylor expansion around p, . The result of
summing over these poles is our desired formula

(iC ~e'
I 'p

( y 3/2 cos[2vp(p, -n)/eo/-4v1
~2p 2/ /, , sinh[2v'p(1 —b. ')/8~pj

xe '~" /"" (48)

where we have written n7 = 2m(b, —il')/k and

dropped a small imaginary contribution to the argu-
ment of the hyperbolic sine. The quantity 6' de-
notes (db/dz)„, where one differentiates with re-
spect to the full energy dependence of h.

The quantity b, —iI' is proportional to the forward
part of the t matrix on the energy shell. An ex-
plicit expression is

s —ir= — ~ (2l+1) e &sin5, ,
2vn8 ~) $6)

Hlk0 t=0
(49)

where k0 is the Fermi wave vector. The lifetime
7O is defined by so= (nvo) ', where o is the total
scattering cross section per impurity and v is the
Fermi velocity. Comparing (49) with the standard
formula for the cross section shows that'

r=-,'(ff/~, ) .
The expression for 6, which is the quantity that

causes the frequency shift on forming the alloy, can
be written in a variety of ways. An interesting one
expresses it in terms of the frequency shift which

I I I I I I I I

0.2 0.4 0.6 0.8 I.O I.2 1.4 I.6 I.8

~o (radians )

FIG. 1. Ratio of g to the rigid-band Fermi energy shift

5p for a situation in which only s- and p-wave phase shifts
do not vanish. pz is the impurity-host valence difference
and is used to express g~ in terms of &0 via the Friedel
sum rule.

would occur if the rigid-band model were applica-
ble. If we imagine that the impurities have a va-
lence difference of 5z, and if 6p. denotes the rigid-
band shift in chemical potential that would occur
with a density n of such impurities, then it is easy
to show that

h= —5 p[Z(2l+1) cos5, sin6, /Z(21+1)5, ], (50)

where the Friedel sum rule

5@=2@ 'Z(2l+1)5,

has been used to express 5z in terms of the phase
shifts. While the actual values of the phase shifts
depend upon the detailed nature of the scatterer,
one can assume that in some situations only s and

p scattering will be significant and plot the second
factor in (50) against, say, 50 to see how close the
result is to the rigid-band prediction. Such a plot
is shown in Fig. 1 for the cases 5z= 1 and 2, the
valence difference entering in the determination of
5, as a function of 50. We note that Eq. (50) pre-
dicts that the shift is not the same as the rigid-band
result, and in fact, for the current calculations is
always smaller. The experimental observations on

simple metal hosts and impurities are usually con-
sistent with the rigid-band model. However, we
note that (a) most of the data deal with the 5e = 1
case, for which the departure of our result from
the rigid-band predictions can be small, and (b)
much of the published data would apparently also
be consistent with a somewhat smaller slope of
frequency vs impurity concentration than the rigid-
band model would predict. We would encourage
experimentation on systems for which the host-
impurity valence difference is as large as possible.

In those cases where one has a resonance for
some I one would not expect that the resonant
electrons" would contribute to the oscillations.
Equation (49) certainly show that a deep filled shell
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(e. g. , the d electrons associated with a copper
impurity) do not cause a shift in the oscillation fre-
quency. The same conclusion holds in a situation
where the resonance is exactly at the Fermi level.
But according to Eq. (49) a. partially filled shell
(e.g. , a transition-metal impurity not at the center
or ends of a row in the Periodic Table) will con-
tribute to the frequency shift.

Equation (48) shows that the presence of the im-
purity atoms will cause a shift in the temperature
dependence of the oscillations, which is most easily
described as being due to a change in the effective
mass of the electrons involved in the oscillations.
In view of the definition of the cyclotron frequency
co, the effective mass can be written in the form

It is perhaps important to note that the change from
m to m* in the temperature dependence has nothing
whatsoever to do with the change in the zero-field
density of states. That change is given by the
Friedel result (45) and, in fact, Eq. (51) predicts
that in a situation where a resonance is exactly at
the Fermi level, and hence one has a large increase
in the zero-field density of states, the effective
cyclotron mass m* will decrease.

At the present level of analysis it is impossible

to relate, with any rigor, the results of this paper
with observations involving the small pieces of
highly distorted Fermi surfaces that often occur in
real systems. Nonetheless, the following would

appear to be a not implausible extension of the
theory: According to Eqs. (50) and (51) the elec-
trons (more accurately, the part of the spectral
density) that is involved in the dHvA effect is
characterized by the dispersion relation

Ii k /2m =E —b, .
The quantity —6 thus plays the role of an energy
shift (of the participating electrons) that is pro-
duced by making the alloy. Following Heine, 3 one
would therefore argue that the change in area of a
part of the Fermi surface which in the absence of
impurities would be characterized by a cyclotron
mass m, would be

5S = —2mm, h/8

To the extent that this is valid, we would expect
that same relationship between our theory and the
rigid-band model as was found above for the per-
fectly spherical Fermi surface.

ACKNOWLEDGMENT

I wish to thank Professor W. I . Gordon of Case-
Western Reserve University for several informa-
tive discussions on this subject.

Supported in part by the National Science Foundation
and the Advanced Research Projects Agency.

CAlfred E. Sloan Foundation Fellow.
Recent experimental references, which include a com-

plete bibliography of earlier work, are I. S. Goldstein
et al. , Phys. Rev. B 2, 1442 (1970); J. H. Tripp et al. ,
ibid. 2, 1556 (1970).

R. B. Dingle, Proc. Roy. Soc. (London) A211, 517
(1952).

V. Heine, Proc. Phys. Soc. (London) A69, 505 (1956).
Yu. A. Bychkov, Zh. Eksperim. i Teor. Fiz. 39, 1401

(1960) [Sov. Phys. JETP 12, 977 (1961)].
A. D. Brailsford, Phys. Rev. 149, 456 (1966).
M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev.

85, 621 (1952).

'L. Schwartz and H. Ehrenreich, Ann. Phys. (N. Y. )
64, 100 (1971).

See, e.g. , Robert H. Dicke and James P. Wittke,
Introduction to Quantum Mechanics (Addison-Wesley,
Reading, Mass. , 1960).

~E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc.
(London) A210, 173 (1952).

~ Paul Soven (unpublished).
~ P. W. Anderson and W. L. McMillan, in Proceedings

of the International School of Physics "Enrico Fermi"
(Academic, New York, 1967).

~2Equal, in the extremely dilute limit, to it;s value in
the host material; J. Friedel, Advan. Phys. 3, 466 (1954).

This expression was obtained by Brailsford, Ref. 5.


