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High-temperature series expansions are used to examine the dependence of critical-point ex-
ponents upon lattice anisotropy (different interaction strengths in different directions in the
lattice). The two-spin correlation function C2(r) is calculated to tenth order in (1/kzT) for
the Ising Hamiltonian

xy (g

&9) &f'y)

for a wide range of anisotropy parameters R =J~/J~ and for both the sc and fcc lattices; here
the first summation is over all pairs of nearest-neighbor sites whose relative displacement
vector r;& has no g component, while the second summation is over all other pairs of nearest-
neighbor sites. Hence for R=O, both the sc and fcc lattices reduce to the two-dimensional
square lattice, while in the limit R- ~, the sc becomes a one-dimensional linear chain and the
fcc becomes two noninteracting three-dimensional bcc lattices. The series for C2(r) are then
used to obtain series of corresponding lengths for the specific heat, susceptibility, and second
moment. Analysis of these series yields results consistent with the universality hypothesis
of critical-point exponents. Specifically, it is found that when lattice anisotropy is introduced,
the critical-point exponents studied (the susceptibility exponent ~ and the correlation length ex-
ponent v) do not appear to change from their values for an isotropic lattice. The problem of
next-nearest-neighbor interactions is treated using similar methods in Paper II of this series
(and briefly discussed in this paper).

I. INTRODUCTION

Much recent activity in the field of critical phe-
nomena has focused on characterizing, in terms of
critical-point exponents, the properties of thermo-
dynamic and correlation functions near a critical
point.

Concerning these exponents, one question that
has been asked is: "Are there relations between
exponents associated with different physical quanti-
ties?" Many rigorous inequalities and various non-
rigorous scaling hypotheses have been proposed to
answer this question. These hypotheses lead to
the well-known scaling laws which allow one to ex-
press any exponent in terms of no more than two
other exponents.

An even more fundamental question, however, is:
"Upon precisely what features of an interaction
Hamiltonian do the individual critical-point exponents
depend?" The universality hypothesis has been
designed to deal with this second question. The
universality hypothesis makes predictions concerning
when exponents should or should not change as a
parameter in the system Hamiltonian is varied.

Aside from its own inherent interest, we are
motivated to study the question of universality be-
cause many of the heuristic arguments proposed for
the validity of the scaling hypotheses are also the
bases for the universality hypothesis. ' Thus a
failure in some predictions of the universality hy-
pothesis might indicate possible weaknesses in the

justifications usually presented ' for scaling. One
must calculate at least Geo exponents in order to
test the scaling hypothesis, whereas the univer-
sality hypothesis may be tested (partially) if one
can calculate a single exponent for different values
of some parameter in the Hamiltonian.

In this work we apply high-temperature series-
expansion techniques in order to test those predic-
tions of the universality hypothesis that deal with
the presence of (a) "lattice anisotropy" (i.e. , dif-
ferent coupling strengths in different lattice direc-
tions), and (b) "further-neighbor interactions "We.
have treated these two specific problems because
of the following reasons (each of which is discussed
more fully in later sections).

(i) Exact results consistent with universality exist
for two-dimensional models with lattice anisotropy
but not for the corresponding three-dimensional
models. Since certain of the so-called two-expo-
nent "scaling relations" (which are actually not
consequences of the homogeneity hypothesis) are
believed to hold in two dimensions but not in three, '
it is important to see if a similar breakdown occurs
for the universality predictions.

(ii) Analysis of rather short high-temperature
series expansions for a quantum-mechanical Heisen-
berg model with next-nearest-neighbor interactions
indicates an apparent serious violation of the uni-
versality hypothesis (next-nearest-neighbor interac-
tions are treated in Paper II of this series). " We
would Like to know whether this violation is real or
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due to knowledge of an insufficient number of terms
in the series.

(iii) Analyses of high-temperature series for
next-nearest-neighbor Ising and classical-Heisen-
berg models have led various authors to conclude
that the universality hypothesis is obeyed (Paper
II)." We feel that some of this analysis is biased
in favor of universality and that more extensive
analysis is needed.

(iv) For certain magnetic materials which have
further -neighbor interactions or lattice anisotropy,
experimenta, l results are at variance with the pre-
dictions of high-temperature series expansions for
the corresponding models without further neighbors
or lattice anisotropy. It is important to determine
if this disagreement is due to a breakdown in the
universality hypothesis or is due to other reasons
(such as the inability of the experimentalist to reach
temperatures near enough to the critical tempera-
ture to measure the true exponent) (see Sec. IC and

Paper II)."
In the remainder of Sec. I we define precisely the

models that we have considered, state the predic-
tions of universality for these models, and review
the relevant research literature. In Sec. II we

describe the techniques we have employed to analyze
the new high-temperature series expansions we

have obtained. Results of this analysis are pre-
sented in Sec. III. Our results and conclusions are
summarized in Sec. IV. In Paper II we will consider
the problem of next-nearest-neighbor interactions. "

A. Models Treated and Predictions of Universality

A large portion of the models that are of experi-
mental interest can be described by the classical
Hamiltonian'

D

X, =- Q )~ d;,.S",-S;. , (1 . 1)
r", r' e=|

where the vectors r, r' label sites on a d-dimen-
sional lattice of N sites, 8;. is the &th component of
a spin vector in a D-dimensional spin space, and
8";.denotes an exchange constant. For D= 1, 2, 3,
and ~ the Hamiltonian (1.1) reduces to the Ising,
plane rotator, cia.ssical-Heisenberg, and spherical
models, respectively. '

Since current evidence ' strongly favors the con-
jecture that the critical-point exponents are inde-
pendent of spin quantum number 8, we have con-
sidered only the classic gl (S = ~) Hamiltonian (1.1).
Thus essentially the only parameters upon which
critical-point exponents might depend are (i) the
lattice dimensionality d, (ii) the spin-space dimen-
sionality D, (iii) the "lattice anisotropy" or depen-
dence of t;; upon the direction of r —r', (iv) the
'spin-space anisotropy" or dependence of J;;

upon n, and (v) the range of interaction or depen-
dence of J; ,». upon j r —r '! .

The universality hypothesis would predict that
critical-point exponents depend upon (ii) and (iv)
only through the symmetry of the ordered phase,
so tha, t one can assign an "effective D" to an arbi-
trary anisotropic interaction (as Jasnow and
Wortis' concluded from high-temperature series
expansions). As stated above, it is the purpose of
this work to study the possible dependence of criti-
cal-point exponents upon (iii), lattice anisotropy,
and (v), the range of interaction.

Specifically, we have calculated high-temperature
series expansions for the two-spin correlation func-
tion Cz(r ) for two interaction Hamiltonians chosen
to test (iii) and (v), respectively,

f (D) .f (D) d P S(D&f &D)

nn nnn

~& S',."S,"'+R' ~~ S"' S"' & 3
&iJ&

w~ere If =d. /d„and ft '=d, /d, .
In Eq. (1.2), the Ising model, the first summation

is over pairs of nearest-neighbor sites whose rela-
tive displacement vector r, , has no g component,
while the second summation is over all other pairs
of nearest-neighbor sites. We treat the simple
cubic (sc) and the face-centered cubic (fcc) lattices.
Note that in the limit R- 0, the sc and fcc lattices
reduce to noninteracting planes (d= 2); in the limit
R- ~, the sc lattice reduces to an array of nonin-
teracting chains (d= 1), and the fcc lattice reduces
to two noninteracting bcc lattices (d = 3).

In Eq. (1.3) we have isotropically interacting D
dimensional classical spins. The first and second
summations are over nearest-neighbor and next-
nearest-neighbor pairs of lattice sites. We treat
the sc, bcc, and fcc lattices which reduce, respec-
tively, in the limit R - ~ to two noninteracting fcc,
sc, and sc lattices. "

For K, „the universality hypothesis predicts
that the critical exponents depend on J„, and J, only
insofar as these parameters determine the effec-
tive dimensionality of the system and the nature of
the ordered state.

Consider first the case J„,~0, J, ~ 0, for which
the ordered state is described by a nonzero value
of the total magnetization. For finite nonzero values
of R the exponents are predicted to be constant and

equal to their R = 1 values. At R =-0 the exponents
are predicted to change discontinuously to their
values for a two-dimensional system. In the limit
R- the exponents for the fcc lattice should main-
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For the Ising model on a plane square lattice the
exponents o. (specific heat), '7

P (spontaneous mag-

(a) S.C.

X. (d=S)

0
(Sq limit)

oa
R

(Linear chain limit)

X (d =2) &&

(b) F.C.C.

tain their three-dimensional values while the expo-
nents for the sc lattice should jump discontinuously
to one-dimensional values. Since in one dimension
the singularity at T, = 0 is not of the power law type
the exponents are not defined in this case [cf. Eq.
(3.4)]. The predictions of universality for X,
are summarized in Fig. 1.

For other combinations of signs of J„, and J,
similar predictions hold for the appropriately stag-
gered counterpart of the function whose exponent
is being considered. For example, if Fig. 1 refers
to predictions for the exponent of the bulk suscepti-
bility then for J'„, ~0, J, ~ 0 this same figure (with
R- -R) would apply io the exponent for the stag-
gered susceptibility appropriate to a layered anti-
ferromagnetic system described by a net magnetiza-
tion per spin that alternates in sign along the z di-
rection.

For K,„„the universality hypothesis predicts that
the exponents are completely independent of R '-=J, /J,
(with of course the same understanding as above that
we consider staggered quantities when the signs of
Jt and J2 are such that the ordered state has an anti-
fer romagnetic structure).

The remainder of the present work is devoted to
R, „; the Hamiltonian (1.3) will be treated in II.

B. Previous Work

1. E~ac t Solutioyss

netization), "
q (correlation-function decay at

T= T,), ' @ v (correlation length), "7' and y (sus-
ceptibility) ' are claimed to be independent of the
interac, tion strengths in the x and y directions (a.s
long as they are nonzero and finite). This invari-
ance has also been shown to hold for n on a variety
of other planar two-dimensional lattices (lattices
with no crossing bonds). ~ "

The only nontrivial three-dimensional model
which is exactly soluble is the spherical model. '
In Appendix A we show that for this model the ex-
ponents y and v are independent of lattice anisotropy
a~d next-nearest-neighbor interactions.

2. Extrapolations from Se'ies Expansions

Of the various theoretical techniques for deter-
mining the properties of thermodynamic and corre-
lation functions none has been as successful near
the critical point as the method of extrapolation
from exact series expansions. " ' So far as we
know, however, this technique has not until now
been applied to the problem of lattice anisotropy.

C. Relevant Experimental Results

CrBr, is an insulating ferromagnet which is well
represented by the spin--,' Heisenberg model with
interactions in the xy plane approximately 17 times
stronger than the interactions in the z direction.
accent experiments on CrBr3 ' have indicated that
y = 1.215 + 0.02 in contrast to the appreciably larger
estimates for y from high-temperature series ex-
pansions for the corresponding isotropic model
(E = I).

In Paper II, after reviewing the results of our
analysis, we will discuss a possible reason for this
apparent disagreement between theory and experi-
ment.

Recent experiments on the layered antiferromag-
net, K2NiF4 have indicated that it can be described
by a nearest-neighbor Heisenberg system with
coupling between planes at least 270 times smaller
than the intraplanar interactions. Unfortunately
we will not have much to say about this interesting
system because due to the smallness of J, jJ„„much
longer high-temperature series than those we have
obtained would be necessary to obtain useful infor-
mation (cf. the discussion in Sec. II F).

D. Present Work

X(d=~)

0
( Sq limit )

v

( B,C.C. limit )

Using the technique of bond and vertex renormal-
ization, we have calculated the coefficients in the
high-temperature series expansion for the two-spin
cor relation function,

I"IG. 1. I'redictions of the universality hypothesis for
&&~&, for (a) sc and (b) fcc lattices. The exponent g is
predicted to change discontinuously at R=O (sc, fcc) and
at R = ~ {sc).

C,(r") =Q g„(r)x",
n=0

(1.4)

through order g&, for X, „.Here x=—1jksT. The
coefficients g„(r ) were then utilized to calculate



PARTIAL TEST QF THE UNIVERSALITY HYPQTHESIS:. . .

series of corresponding lengths for the reduced
zero-field isothermal susceptibility,

y., -=BC,(r )-=Z a„x"-s-',
r" n=O

for the "second moment, "

—g i
~i 2C (r) —Q~ I, n &-(sv+w&

r n=o

near x =x„where x, =- I/k~T, and I is the critical-
point exponent for f.

A. Ratio Method

The simplest method and the one first used to
obtain exponents from series expansions" is the
ratio method, which has its theoretical foundation
in a theorem of classica1. analysis by Darboux.
This theorem states that if

and for the reduced zero-field specific heat, f(x) = (1 —x/x, )-'y(x)+g(x), (2. 3)

It is by now conventional to obtain estimates for
critical-point exponents by making extrapolations
based upon a finite number of exactly calculated
terms, and many ingenious methods have been
proposed to render this step possible. '3'0 In this
Sec. we discuss the methods we have used to pro-
vide predictions for y and v; where appropriate we
note the advantages and disadvantages of these
methods. We a1.so briefly consider the problems
associated with making estimates for exponents
which change discontinuously when a parameter in
the Hamiltonia ls varied.

In what follows we mill consider generally that
we know N terms in the expansion

f(x)=Z a„x",
n=0

(2 1)

where f is a physical quantity such as the suscepti-
bility or specific heat and x = I/k~T. In addition it
18 aSsuDled that

where E= (x, —x)/x, = (T —T, )/T, in this work.
The coefficients g„(r) were obtained not in the

general form of polynomials in 8 butwere calculated
separately for each value of R considered. For
this purpose we modified a computer program used
by Ferer, Moore, and Wortis to treat nearest-
neighbor isotropic lattices. ' Rather strong
cheeks on the calculation were made by verifying
that in the limits R-0 and R- ~ the computer
program generated the series for the corresponding
isotropic problem (see Sec. IA).

For purposes of comparison we have also cal-
culated 20 coefficients in the high-temperature
series expansions of g& and p, ~ for the exactly sol-
uble spherical model. These coefficients were
generated directly from the exact solution (see Ap-
pendices A a.nd B).

To the best of our knowledge the present work is
the first treatment of $C, ~„using high-temperature
series expansions.

The series for g&, p, 2, and CH may be obtained
from NAPS.

and $(x) and $(x) are analytic ln the disc I XI x~,
then the asymptotic form of the coefficients in the
expansion of f (x),

a„" '=a„(l+O(l/n)),

18 given by

(2.4)

xc x=0

X(X+ I) ~ ~ ~ (~+~ —I)
n. tx," (2. 5)

Forming the ratios p„of successive terms one
finds

gn 1 X —1 1 1" = —+ —+0 ~
Qn „g xc 'pl xc

(2 6)

Thus a plot of p„versus I/n should asymptotically
approach a straight line with intercept x,' at I/n = 0
and with a slope equal to (X —1)/x, . We can thus
form a series of estimates for 1/x„

(2.7)

Once we believe we have an accurate estimate of x,
we can then obtain a series of estimates for A. :

X„-=I -yg(1- p„x,"') . (2.S)

It is important to estimate the effect of an error
in x,"' on the accuracy of the fX„)obtained from Eq.
(2. 8). I.et

x,"'= x, + &x, . (2.9)

Using p„- I/x„ the error in A„due to an error in
x,"' is found to be

The result (2. 10) is at first sight rather alarming
because it says that the error in X„ increases with
the length of the series. However, from (2. 7),
&x, -l/n so that as expected we should obtain better
estimates for A. mith longer series.

The important point is that if me estimate an x,
we must be careful about extrapolating the series
(X„). Specifically (2. 6) and (2. 10) yield

f (x)- (1 -x/x, )-' (2. 2)



and if the amplitude of the first correction term in

(2. 11) (due to an error in x,"') is greater than the
amplitude of the second correction term [due to
higher-order terms in (2.4)], a spurious trend will
be introduced. Forming linear extrapolants we
would then find

One virtue of (2. 18) and (2. 19) is that estimates of

X„are found that are independent of those for x, and

vice versa. However, the estimates for A„seem to
converge more slowly than the corresponding esti-
mates from (2. 8) with an accurate value of x, . On

the other hand if x, is known accurately we can form

(2. 12) X =lim A.„=—lim b„x," (2. 20)

and the estimates for A. would be worse, not better.
Another consideration concerning the convergence

of the series is the effect of singularities on the
negative real axis. These singularities, which are
usually related to the existence of an antiferromag-
netic phase transition in the system for which all
exchange constants are of sign opposite to those of
the system under consideration, ' cause the
series (2. 7) and (2. 8) to oscillate (with decreasing
amplitudes as n- ~) around their limiting values.

As has been pointed out, these oscillations can
be reduced by considering the estimates"

which may converge more rapidly.
Again we note the error in Xn due to an error i'

is essentially the same as in (2. 10) since the ex-
ponents we will consider are usually of order unity.

C. Pade App&oximants

The Pads approximant (PA) Pn(x) to a function
g(x) is defined as

E D

P,"(x)=Z;P„x" X", q, x',
n=0

(2. 22)

and the extrapolants

nX„—(n —2)z„, for X.

The theoretical basis for (2. 13) has been given by
Guttman.

There is another method, used by various au-
thors, "' in which one forms the "ratios"

and then uses (2.7) with p„replaced by p„.
In Sec. II E we will discuss a method more ef-

fective than those described above for reducing the
effect of unphysical singularities.

@. Park's Method

Park's ' method is essentially the ratio method
applied to a "logarithmic derivative" of the original
series to be analyzed. If

f(x) -(1 —x/x, ) ",
then

dlnf(x) x 1 ", 1= ~ Q —x"=Qf „x" . -
d ln x x~ 1 —x/xq „1 xq n=1

(2. 17)
Therefore we expect

x, = lim (x,)„—= lim b„
b„,g

where the coefficients p„and q„are determined by
requiring that the first sV+D terms in the expansion
of PD in a Taylor series in x match the correspond-
ing number of coefficients in the expansion of g(x).

If f(x)- (x, —x) " as in (2. 16) and we define

g(x) = —ln f(x)—
dx

(2. 23)

then the PA's to g(x) might be expected to have poles
at x = x, with residues of —X.

The power of the PA method is that if the function
to be analyzed has exactly the form

(2. 24)

then the PA can represent (d/dx) lnf(x) exactly (so
long as D & f and iV & I —1) independent of how well.
separated the singularities are. Furthermore, be-
cause it can represent the function exactly we can
determine the physical singularity (i.e. , the near-
est singularity on the positive real axis) even when
there are nonphysical singularities that lie closer
to the origin.

In general, however, the function under consider-
ation does not have the form (2. 24), in which case
very little is known a p~"io~i about the ability of the
PA to represent the function. In fact it is possible
that further PA's (obtained by increasing the number
of terms in the series) may not give more accurate
values for x, and X, but may better approximate the
function in regions of the x plane near singularities
other than the one of interest.
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Given these problems the method does seem to

work. It seems to work best when the singularity
of interest factors, although it need not be the
closest singularity to the origin, i.e. , for functions
of the form

f(x)=(x, -x) 'e(x), (2. 26)

D. Forming Series with x,= 1 ("T, Renormalization")

As seen earlier a small error in the estimate of
x, can lead to significant errors in the estimates
for the critical exponents, We now describe a method

which circumvents this problem by forming a new

series which has critical point x, = 1,.
Consider two series

f(x) =Z a„x", (2. 26)
n=0

where hatt(x) is not necessarily analytic for !xi ~
I x, l

[cf. Eq. (2. 3)].
In cases where PA's are unreliable for estimating

exponents the PA's are still extremely valuable in
determining the general positions of singularities
so that the series may be intelligently analyzed using
other methods.

where

x(y) =1, y(x) = (2. 36)

Note that any singularity near x= —I/l! will be
transformed away from the origin and will have a
reduced effect on the asymptotic behavior of the
Ilew series.

lf f(x)-(x, -x) 't en

E. Transformation Techniques

In many cases convergence of a series is slowed
by the presence of singularities close to the physica
singularity. '0'ss 'o In other cases, the physical
singularity is not closest to the origin so that we
cannot find x, or A. from the ratio method or Park's
method —two methods which we would like to use
because convergence theorems exist for them. It
would thus be helpful if we could obtain a new series
with the same exponent for which the singularities
are more favorably located.

In order to achieve this we consider a new series

g(y) = f(x(y)) = Z &.y", (2. 36)

g(x) = Q b„x"
n=0

(2. 27)

for two quantities f(x) and g(x) which both have a
singularity at x =x„ = ooost(y —y, ) ——y) (2. sv)

f(x)- (1-x/x, ) ",
g(x)-(1 —x/x, ) ".

(2. 26)

(2. 29)

a -~ (! +1)~ ~ ~ (!!., +~ -I)/x"nl -n'1 '/x,"I"(X,)

(2. so)

=g /ft g 1 2 (2. 33)

By Appell's comparison theorem we then have

I (x)- (I-x)"1-'2 . (2. s4)

Thus we have obtained a series [Eq. (2.32)] with
known critical point x, = 1. We can now apply any
of the methods des cr ibed above to the new series
for h(x). Of course this technique is of value only
if one of the exponents X&, A3 are known, or if the
quantity X& —A.2 is of interest. Later we will see
cases when both of these statements apply.

I „-X,(!!.,+ I) ~ ~ ~ (!,+11 —I)/x,"n!-n" '/x,"I"(X,) .
(2.31)

Now form the generating function

with y, =x, /(1+ bx,). We note that in addition to the
physical singularity at y =y, we have introduced a
spurious singularity at y =I/tt (cf. Fig. 2). How-
ever, the position of this singularity is known ex-
actly and we can reduce its effect by considering

"&est
&(y)=-

h
-y f(x(y)), (2. ss)

where X"' is an estimated value for ~. Estimat-
ing a value X in no way prejudges the results of
the calculation but merely determines how quickly
the series will converge.

The transformation (2. 36) is only one of many
possible transformations that can be used. The
only important restrictions on the transformation
are that {i) the transformed function have a sin-
gularity with either the same exponent or one that
is simply related to that of the original series and
(ii) that co=0, where

y=Q c„x". (2. 39)

The second condition assures that we can find g(y)
'to ox'del N i11 y g1ven f{x) to order N ill X.

Once the transformed series is obtained it can
then be treated with any of the methods described
above. The various combinations of techniques
that can be used are shown in Fig. 3.

We wi)l make extensive use of the transforma-
tion (2. 36) to reduce the effect of the antiferro-
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Im x)k
(a) lnf(x) a, R xo

Inc a- b=-c, R=O (2. 41)

Xgf

- 0.05 0.05

"c

Re x

so that A. changes discontinuously at R= 0, aproperty
that the true f(x) should have if universality holds.
Asymptotically the coefficients of the expansion
for (2. 40) are

AR a(a+ 1) ~ ~ ~ (a+ n —1) c(c+ 1) ~ ~ ~ (c+n —1)
x",(R) n t x",(R) n!

AR n' c 1

Im yii
d(R) I"(a) x",(R)r(c) '

(2.42)

In order to see the true asymptotic behavior of the
series we must have the first term of (2. 42) much

greater than the second, which implies
+ Yaf

I

—0.05
T

0.05

Yspur

Re y

I (a)
I'(c)A R

(2. 43)

FIG. 2. Example of transformation method (x~=-x~
=1). If the transformation (2.36) with 5=1 is applied to
a function with physical singularity at x=x,=1 and an
antiferromagnetic singularity at x=x& =-1 as shown in
(a), the transformed function has the analytic structure
indicated in (b). In (b) the antiferromagnetic singularity
in the transformed plane (y plane) is now at y=y~=~
while a spurious singularity has been introduced at y

ygygp 1~ The effect of the spurious singularity can be
reduced by using Eq. (2.38).

magnetic singularity discussed in Sec. IIA.

F. Analysis of Series Expansions which Depend on a Parameter

Thus as R decreases we need an increasing num-

ber of coefficients to determine ~ correctly. For
example if b= 1 we need ten times as many coef-
ficients for R = 0. 1 as for R = l. 0.

Although (2. 40) is only a model function and it
is possible that conditions more favorable than
(2. 43) will hold in reality, the above considerations
do show the problems involved in analyzing series
for functions that have exponents that change dis-
continuously when a parameter is varied.

In practice it will be necessary to have a criterion
for determining for what values of R the techniques
of series analysis we use will be valid and thus yield
reliable results. The idea which first comes to mind is
that if a number of different methods each yields
consistent results which are in agreement with one
another, then there is a good chance that the result

An important question we must ask is: "Over
what range of the parameter R can we expect to
get reliable information about x, and ~?" Although
we will not be able to answer this question exactly-
we would need an expression for the form of the
function f(x)—some elementary considerations give
an idea of what might be expected in general.

Because the coefficients of the series we obtain
are polynomials in R (or I/R), the finite series
for f(x) will be little changed from the R= 0 (R= ~)
series when R is very small (very large) For.
these values of R it will thus be unreasonable to
expect to get accurate predictions for A if the ex-
ponent changes discontinuously at R = 0 (sc and fcc)
and R = ~(sc)."

More specifically consider the model function Ratio
method

Original
series

3P

Transformation
methods

"Tc Renorma I i za t ion

Park's
method

Pade'
method

f(x) =e (RA+ e«), (2. 40)

where a, 5 & 0, and e = [x,(R) —xj/x, (R), with x,(R)
a continuous function of R. For (2. 40)

FIG. 3. Various combinations of methods that we have
used to analyze series expansions.
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FIG. 4. (x,)„vs 1/n. In (a) and (b) the series (x,)„and the
extrapolants either both increase or both decrease, indicat-
ing nonasymptotic behavior. In (c) and (d) the series (,)„
indicate possible asymptotic behavior. This test, de-
scribed in Sec. II of the text, is thus a "necessary but
not sufficient" condition for asymptotic behavior.

will be reliable. W e will see, however, that there
are a number of cases when there is consistency
but the results should not be believed.

If the results obtained from series analysis are
to be valid w e must have enough terms so that the
series has settled down to its asy mptotic behavior .
That is, we must have some coeff icients a„for n & rn,
where a lower bound on m is given [cf. Etl. (2. 7)]
by

(x,)„=x,[1+O(l/n )], n & m. (2. 44)

(x,'*"")„=n(x,)„-(n —1)(x,)„,.
Assume first that

(x,)„=x,+ C/n',

where C and q are constants . Then

(2. 45)

(2. 48)

+ (gXextrar) (2. 47)

In other words, if the series has settled down to its true
asymptotic behavior, corrections to (x,)„are of
order 1/n or smaller. (Note that the converse is
not necessarily true. ) We can easily test to see if
(2. 43) holds by forming the linear extrapolants

where the upper and lower direction in the inequa1, i-
ties correspond to the + in (2. 48).

From (2. 48) we then have the following "rule":
If the estimates (2. 44) and (2. 45) for (x,)„and
(x',""~)„, respectively, are either both increasing
or decreasing or if the estimates (2. 48) are con-
stant, then the series has not yet settled down to
its asymptotic behavior. This is illustrated graphi-
cally in Fig. 4.

III. ANALYSIS OF SERIES

A. Pade Approximants

In order first to obtain an idea of the analytic
structure of the functions being cons idered we cal-
culated PA's to (d/dx) lny(x), (d/dx) ln[x-'lt~(x)/
y(x)], and (d/dx) in[it&(x)/x]. The constant term
in the expansion of p~(x) vanishes, implying a zero
in it&(x) and thus a pole in (d/dx) lnp, 2(x) [and (d/dx)
1nlt3(x)/)j'(x)] at x= 0. Because we are not interested
in the behavior at x = 0, we have considered the
logarithmic derivatives of the seduced functions
x ' pa(x) and x '

p~ (x)/g(x) indicated above. These
logarithmic derivatives will be analytic at x = 0.

For the range of Rwe have considered (0. 01&R & 100)
(sc), 0. 01 &R (fcc), the PA's consistently indicated
that the singularity nearest to the origin is on the pos i-
tive real axis (the ferromagnetic singularity at x = x,).
The only other singularity, the presence of which was
consistently indicated by the PA's, is on the negative
real axis (the antiferromagnetic singularity at
x=x„). For the sc lattice, the zero-field free en-
ergy G(T, H= 0, J„„J,) has the symmetry property

G(T, H = 0, J„„J,) = G(T, H = 0, —J„„—Jx), (3. 1)

indicating that x„=—x,. However, for all R (sc)
the PA's consistently indicated x„slightly greater
than x,. This slight disagreement may be due to
the fact that the singularity at x = x„ is believed
not to factor, '7 '" and is thus less amenable to
PA analysis than the singularity at x,e" For the
fcc l.attice, Etl. (3. 1) holds only in the limits
R = 0 (stluare} and R = ~ (bcc) while at R = 1 it is
believed that x„(R)= ~ (i. e. , the nonexistence of
an antiferromagnetic transition). '~ " We thus ex-
pect that x,(R)/x„(R) increases monotonically from
0 at R= 1 to 1 at R= 0 (R= ~). This behavior was
confirmed by the PA 's although it became increas-
ingly diff icult to estimate x„as R approached 1.

Selected results of the PA analysis for the expo-
nents y and 2v are presented in Tables I-IV. From
these results we might conclude

Thus we have y= 1.25, 2v= 1.30 (3.2)

0, q=1
extrar) && 0 ~ & I

&~0, q& 1 (2. 48)

for 0, 2 & R & 5 (sc) and

y= 1.25, 2v —1.28 (3.3}

for Q. Q8&R (fcc). The currently accepted values
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T&BLZ I. Estimates (in units of 10 ) for the critical-point exponent y from PA's to (d/d~)lnxb;) for the sc Ising model
for various values of the parameter R. Here and in all PA tables which follow, the notation "0"indicates that either the
closest singularity to the origin was not on the positive real axis or that there were two singularities on the positive
real axis very close to each other making determination of an estimate of the exponent difficult. For 0. 2 R& 5 the PA
tables show good consistency and indicate p(R) =-y(R= 1) =1.25. For other values of R the tables are in general less
consistent, especially for R» 1.

Ising, sc, R = 0.01
2 3 4 5 N 1

Ising, sc, R = 0.05
2 3 4

D
2 158 187
3 196 172
4 ].44 157
5 177 161
6 ]86 166
7 165 152
8 160

156 150
147 154
160 165

0 161
163

160 171
149 164
158

D
2 152
3 170
4 133
5 141
6 125
7 135
8 133

167 138 131
157 127 134
138 137 136
137 133 139
136 137
131

1.35 137
138 135
134

127

Ising, sc, R=0. 10 Ising, sc, R = 0.20

(c) D
2 145 152
3 153 ].47
4 127 128
5 128 128
6 128 128
7 127 112
8 123

129 123
120 125
128 126
128 90
127

236 127
].27 126
126

(d) D
2 137
3 138
4 123
5 122
6 125
7 124
8 124

138
137
122
123
124
124

123 120
119 122
125 124
124 124
124

124 124
124 131
125

125

Ising, sc, R=0.40
2 3 4 5 6

Ising, sc, R=0. 60
3 4 5

(e)
2 129 127
3 127 129
4 124 123
5 ].23 124
6 125 125
7 125 125
8 125

123 123
123 123
125 124
125 125
126

125 125 126
125 125
126

D
2 126
3 125
4 124
5 126
6 126
7 125
8 125

125 124 126
124 124 126
125 125 125
126 125 125
126 125
125

126
126
125

125
125

125

N 1

D
2 125 124
3 124 124
4 125 123
5 127 126
6 126 102
7 125 125
8 125

Ising, sc, R —-0.80
3 4 5 6

126 125
100 125
125

125 127
123 126
125 125
125 125
125

125
(h) D

2 125
3 124
4 125
5 127
6 126
7 124
8 125

124 125 127
124 124 126
123 125 126
126 126 125
1].8 125
125

126 124
118 125
125

Ising, sc, R = l.00
3 4 5

125

Ising, sc, R=1.25
2 3 4 5

Ising, sc, R=5/3
2 3 4 5

D
2 125 124
3 124 124
4 125 123
5 127 126
6 126 102
7 125 125
8 125

125 127
123 126
125 125
125 125
125

126 125 125
101 125
125

D
2 126
3 124
4 124
5 126
6 126
7 125
8 ]25

124 124 126
1.24 123 126
123 125 125
126 125 125
126 125
125

126
126
125

125
125
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TABLE I. (Continued)

Ising, sc, R=2. 5p
2 3 4 5 6

Ising, sc, R=5.0p
2 3 4 5

2 126 123
3 123 124
4 124 124
5 124 124
6 126 127
7 126 126
8 126

124 124
124 124
124 0

0 125
125

126 126 125
127 126
125

2 123
3 119
4 122
5 125
6 124
7 125
8 127

118 127 125
121 125 121
128 124 124
125 125 124
125 125
123

123
124
125

126
128

127

(m)

N 1
Ising, sc, R = 10.00

2 3 4 5

(n)

Ising, sc, R = 50.00
2 3 4 5

2 108 112
3 111 107
4 111 118
5 129 127
6 127 130
7 123 122
8 122

131 134
134 131
125 124
124 124
124

119 122 126
121 118
124

2 48
3 80
4 104
5 103
6 101
7 141
8 142

0 0 157
0 0 149

111 137 133
101 133 138
104 123
143

147 132
166 143

17

112

Ising, sc, R=100.00
2 3 4 5

2 28 0
3 61 0
4 95 105
5 100 91
6 102 109
7 168 0
8 0

0 152
0 188

165 139
145 200
126

173 161 117
164 179

26

are y(R=1):—1.25, 2v(R= 1):—1.28 for all cubic
lattices. Although one can always question whether
the PA's are converging, we feel that the apparent
invariance of y and v over the range of A indicated
above is significant. It would be hard to understand
why the PA estimates should "lock in" on the
y(R = 1) values if the series were not asymptotic,
especially since the PA method is believed to work
for 8=1.

For R outside the range where y and v appear
constant, the residues of the PA's become less
consistent in general, although there are values
of R for which one might attempt to estimate y and
v. For example from Tables I(a) and III(a), we
might conclude y„(R = 0. 01)—l. 6, y„, (R = 0. 01)
= 1.4. However, below we will show that for
Rg0. 2, a 5 (sc), & 0. 08 (fcc) we probably do not
have enough coefficients in the series to see true
asymptotic behavior.

The increasing number of coefficients it takes to
see asymptotic behavior is illustrated by the PA's
for the spherical model for which y,„„,= 2 for all
finite R. While the residues of the PA's to (d/dx)
ln y(x) converge rather rapidly for R= 1, it takes
considerably more terms to see asymptotic be-

havior for R=0. 2 (cf. Table V). Exactly the same
behavior will be true of the estimates for 2v (cf.
Appendix A).

B. Park's Method and "T, Renormalization"

In order to determine trends in our series we
used Park's method for which convergence theorems
exist'0 (as opposed to PA's), and for which we do
not have to choose a, value of x, (as opposed to the
ratio method).

Application of Park's method directly to the
seriesfor X, pa, or p2/g is not useful because the
antiferromagnetic singularity [for all R except
R =1 (fcc)] causes the series to oscillate [cf. Fig.
5(a)]. While the amplitude of these oscillations
should decrease as n- ~, as illustrated by the
spherical model estimates, Fig. 5(b), our series
for X, „„(Ising) are not long enough to yield ac-
curate estimates using Park's method on the original
series.

We can obtain useful results with Park's method
if we first eliminate the effects of the antiferro-
magnetic singularity by using the transformation,
Eq. (2. 86), with I/O= I x,",' ~, where x'„*' is an esti-
mated value for x„. For the sc lattice, accurate
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TABI,E II. Estimates (in units of 10 ) for the critical-point exponent 2v from PA's to (d/dx)lnfx P24)/X(~)] for the
sc Ising lattice for various values of the parameter R. For 0.2 R 5 the PA tables show good consistency and indicate
2v(R) =—2v{R =1) =—1.30.

2v: Ising, sc, R =0. 01

2 3

2v: Ising, sc, R=0. 05

3 4

(a) D
2
3
4

6
7

161 197 183 184
213 190 184 183

12 186 189 188
181 199 188
171 184
188

185
187

D
2
3

5
6
7

155
179
115
151
154
154

174
168
154
184
154

159
110
162
156

170
154
146

156
139

N 1

2v: Ising, sc, R = 0. 10 2v: Ising, sc, R = 0, 20

(c)
149 159 148
160 154 20
140 118 148
104 137 139
142 138
140

148 141
140 100
130

138
(d) D

2

3

5
6
7

141
143
138
136
133
132

151
142
146
132
130

139
145
139
131

135
132
129

133
102

2v: Ising, sc, R =0.40 2v: Ising, sc, R =0.60

(e)

N 1

D
2

3
4
5
6
7

132 132
132 132
132 132
130 130
130 124
130

132 130 130
132 130 130
132 130
130

130
D
2

4
5
6
7

129
128
130
130
130

128
129
130
130
130

130
130
130
130

130
130
130

130 130
130

2v: Ising, sc, R=0. 80

2 3 4

2v: Ising, sc, R =1.00

(g) D
2
3

5
6
7

127 127 129 130
127 127 130 131
130 130 130 130
129 130 130
130 130
130

130
130

130
(h) D

2
3

5
6
7

127
127
129
130
130
130

127
127
130
130
130

129
130
130
130

130
130
130

130
130

130

2v: Ising, sc, R=1.25

2 3 4

2v: Ising, sc, R =+3

D
2

6
7

127 127 129
127 127 130
129 130 130
130 130 130
130 130
130

130 130
131 130
130

130
D
2

3

5
6
7

129
128
130
130
130
130

128
129
130
130
130

130
130
130
130

130
130
130

130 130
130

2v: Ising, sc, R=2, 50 2v: Ising, sc, R=5. 00

D
2
3
4
5
6
7

133
131
131
130
130
130

131 131
131 131
131 130
130 130
136

129 130
130 131
130

130
D

3

5
6
7

140
151
133
132
130
131

147
127
128
130
131

132
128
126
131

130
130
131

130
129
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TABLE II. (Cogt jgged)

2589

N 1

2v: Ising, sc, R =10.00

2 3 4

2v: Ising, sc, R =50. 00

2 3 4

(m) D
2

3

5
6
7

208 105 125
124 141 128
136 132 131
137 131 132
133 130
132

129 131
0 132

131

132
(n) D

2

3

5
6

0
114
165
162
186
136

0
197
161
165
149

15
140
116
132

0
124
128

76
129

2v: Ising, sc, R =100.00

D
2

3
4
5
6
7

0 0 136 0 0
107 264 164 108 117
181 200 345 115
212 186 132
391 164
137

estimates for x",, ' followed from )x,",' (
= x, ', where

the x',"were obtained from the PA analysis. For
the fcc lattice adequate, but slightly less accurate,
estimates of x'„" were obtained directly from the
positions of the antiferromagnetic singularities as
indicated by the PA's.

(a —2.00

—I.60

yn

y(R=1)

—0.80

y (R =1)

(bj —I. 80

—1.60

—I.40

yn

—I.20
IIGI

I I I I I I I

4 5 67810 20

n

FIG. 5. Park's-methodestimates for y for the (a)
Ising model and (b) spherical model on the sc lattice.
The presence of the antiferromagnetic singularity at x
=x~ causes the estimates y„ to oscillate. Although the

. Ising model estimates do not appear to be converging, the
estimates for the spherical model, for which we have
longer series, are clearly converging to y~«t=2.

The estimates for y and 2v obtained by applying
Park's method to the transformed series are shown
in Figs. 6-9. For R& 1 the behavior of the estimate.
fy„}are quite similar for the sc and fcc lattices.
For R«1, extrapolation of the first few estimates
for y would indicate a two-dimensional (-1.75) value
for the exponent. Later terms, however, "bend
over" and extrapolation of these estimates would
indicate possible d=3 behavior. Similar observa-
tions hold for the estimates (2v„}except here it
would appear that for a given R more terms are
needed to see asymptotic behavior than for the
{y„}. When A&1 the estimates gy„}, $2v„}for the
fcc lattice continue to indicate d= 3 exponents with
the same consistency as for R= 1, while for the sc
lattice there is considerable curvature toward the
R=1 values.

We have also applied the "T, renormalization"
method to the transformed series and used then
Park's method with x, = 1 [cf. Eq. (2. 2G)J. AI-
though one might expect faster convergence because
x, is now known, the estimates {2v„}are not qualita-
tively different from those obtained by using Park's
method on the transformed series (cf. Figs. 1G and

11).
It is interesting to compare the results of the

above analysis using Park's method with those for
the spherical model. Comparing Figs. 6 and 12
we see that for a, given R the estimates (y„}are
more erratic for the spherical model than for the
Ising model. For R «1 this may be due to the fact
that the d= 2 Ising model displays a phase transi-
tion while the d= 2 spherical model does not (al-
though it does have a singularity at T=G). For
R»1 there is also no reason to expect a similarity
between (y„}„, and ly„}„„„„„becausethe expres-
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III. Estimates (jn units of 10 ) for the critical-point exponent y from PA's to (d/dx)lnX(x) «r the fcc Ising
model for various values of the parameter R. For 0. 08& R the estimates are consistent and indicate y(R) =—y(R =1)
== 1.25.

y: Ising, fcc, R=0.01

6 7 N 1

Ising, fcc, R = 0.02

(a) D
2

3

5
6
7
8

153
175
134
147
167
139
136

171
160
141
140
140
130

141 134
131 137
140 140
140 140
140

138
145
138

141 130
139

0) D
2

3
4
5
6
7
8

147
159
128
133
97

129
127

157 131 125
a 50 a23 127
131 130 129
130 129 130
129 130
125

128 130
132 128
128

123

Ising, fcc, R = 0.04

6 7 N 1

y: Ising, fcc, R=0.08

(c)
2
d

5
6
7
8

139 142 123
142 140 128
122 124 124
125 124
123 124
124 124
124

125 123
124

(d) D
2
3

5
6
7
8

130 131 121
131 130 122
121 123 124
124 125 132
124 123 125
140 125
125

122 124
121 127
125 124
125

126
125

125

N 1

Ising, fcc, R=0.20

2 3 4

Ising, fcc R=0. 60

2 3 4

(e) D
2

3

5
6
7
8

123
126
124
125
125
125
124

126
125
125
125
125
125

125 125
125 126
125 125
125 125
125

125 125 125
125 125
125

(f)
2

3

5
6
7
8

122
126
125
125
125
125
125

126 125 125
125 122 125
124 125 125
125 125 125
125 125
125

125 125
125 125
125

Ising, fcc, R=1.00

2 3 4

y: Ising, fcc, R=~

2 3 4

(g)
2
3
4

7
8

126 124
125 125
125 124
125 125
125

126 126 125 125 125
126 126 125 125
126 125 125
124 125
125 125
125 125
125

(h) D
2
3

5
6
7
8

121 126
126 125
125 119
125 125
125 125
125 130
125

125 125
118 124
125 125
125 125
125

125 125 125
125 125
125

N 1

Ising, fcc, R = 5.00

3 4

Ising, fcc, R = 100.00

(i)
2

3

5
6
7
8

122
126
125
125
125
125
125

126
126
124
125
125
125

126 125
121 125
125 125
125 125
125

125 125 125
125 125
124

(j)
2

3

5
6
7
8

121 126 126 125
127 126 126 125
126 119 125 124
125 125 125 125
125 125 125
125 125
125

125 125
125 125
125
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TABLE IV. Estimates (in units of 10 ) for the critical-point exponent 2v from PA's to (d/dg)lnb; p~b)/XQ)j for the
fcc Ising lattice for various values of the parameter R. For 0.08 R the estimates are consistent and indicate 2v(R)
=—2v{R =1) —= 1.28. Although the cause for the apparent 2% difference in the PA estimates for 2v between the sc and fcc
lattices is not clear, the difference is probably spurious because it does not appear when other techniques of analysis
are used.

N 1

2v: Ising, fcc, R =0. 01

2 3 4

2v: Ising, fcc, R =0.02

(a) D
2

3

5

6
7

156 179
185 172

81 162
158 170
158 159
159

161 126
146 159
166 155
162

159
D
2

3

5
6
7

151
166
120
143
145
144

164
159
145
156
144

148
125
150
146

156
143
137

145 143
131

N 1

2v: Ising, fcc, R = 0. 04 2v: Ising, fcc, R =0.08

(c) D

3

5

6
7

143
149
131
132
135
134

148 138 140
145 121 133
132 138 130
130 134
134

134
119

D
2
3

5
6
7

134
~36
130
119
130
130

136
134
128
130
130

132
126
131
130

131
130
129

130
131

130

2v: Ising, fcc, R=0. 20
2 3 4 N 1

2v: Ising, fcc, R=0. 60
6,

(e)
D
2

3

5
6
7

125
129
129
129
129
129

129 129
129 129
129 129
129 129
129

129 129
129 129
129

D
2

3
4
5
6
7

0
128
128
128
128
124

128
128
128
128
120

128
128
125
128

128
128
128

128 128
128

2v: Ising, fcc, R =l. 00 2v: Ising, fcc, R= 5

(g) D
2
3

5
6
7

130 129
129 127
128 128
128 128
128 128
118

128 128 128
128 128 128
128 12 8
126

128
D
2
3

5
6
7

0
128
128
128
128
128

128
128
128
128
128

128
128
128
128

128
128
128

128 128
128

N 1

2v: Ising, fcc, R=5. 00

3 4

2v: Ising, fcc, R =100.00

D
2

3

5
6
7

122
127
128
128
128
128

127 128 128
129 128 128
128 128 128
128 128
128

128
128

128
D
2

3

6
7

121
127
129
128
128
128

127
130
128
128
128

128
128
128
128

128
128
128

128
128

128

sions for the values of y are totally diff er ent for the
two models:

~Istng ~ (y/p) 82 J'/kgyt

spherical ~ 1
[s+ (2z/u r)-']'"

C. Other Tests; Conclusions about y(R) and v(R)

For the sake of completeness we have applied
the ratio test to the original series with an x, esti-
mated from the Park's and PA analysis. We have
also tested for the asymptotic nature of the series
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TABLE V. Estimates for the critical-point exponent y (in units of 10 ) for the spherical model on the sc lattice from
PA's to (d/dx)lny(x). For R=1, the estimates yz D =2.00 for N+D& 11 while for 8=0.2, ~ ~ —= 2. 00 for N+B& 15; this
illustrates the fact that longer series are needed to obtain reliable estimates for y when R differs appreciably from 1.

N 1 2
spherical model, sc lattice, R=1.00

6 7 8 9 10 11 12 13 14 15 16 17 18

(a) D
1
2

4.

5
6
7
8
9

10
11
12
13
14
15
16
17
18

119 169
137 146
147 0
156 0
179 186
184 188
186 0
189 221
192 203
194 198
196 200
197 199
198 201
198 200
199 200
199 200
199 200
199

132 198
154 169

0 181
129 185
188 191
186 199
229 204
196 183
181 194
199 199
199 198
200 200
200 200
200 200
200 200
200

154
175
187
176
196
205
200
199
200
200
200
200
200
200

199
180
223
203
199
199
199
199
200
200
200
200
201

167 201 178
183 187 189
201 199 198
198 198 199
198 198 199
199 199 200
200 200 200
200 200 200
200 200 200
200 200 200
200 200
200

201 185 201 190
192 193 195 196
200 199 200 200
200 200 200 200
200 200 199 200
200 200 201 200
200 200 200
200 200
200

201 194 201 196 200
197 197 198 198
200 200 200
200 200
200

N 1 2 3 4
spherical model, sc lattice, R =.0.20

6 7 8 9 10 11 12 13 14 15 16 17 18

(b) D
1
2
3

6
7
8

9
10
11
12
13
14
15
16
17
18

143 242
165 229
291 186
348 174
136 143

0 138
139 139
139 139
236 316
259 211
195 292
191 340
191 192
192 191

0 0
171 176
191 190
190

227 120
243 128
172 122
194 104
118 173
139 152
138 0
133 166

0 232
0 170

346 216
308 175
119 213
192 192
166 203
180

129
125
133
120
149
159
177
187
197
198
198
199
199
198

121
141
124
126
193
171
200
210
198
198
198
200
199

108 247 206
119 213 231
126 278 420
122 341 285
166 196 182
177 187 190
209 197 197
203 197 197
198 199 199
198 199 199
197 198
198

279 278 179 182
278 279 182 179
244 233 156 120
235 251 137 153
200 187 203 193
193 195 196 197
200 200 198
200 200
198

160 152 211 204 228
147 159 204 209
173 171 173
171 173
201

using the test described in Sec. IIF. All of these
tests are consistent with the conclusions of Secs.
IIIA and III B that for 0. 2 ~R ~ 5 (sc) and 0. 08 ~R
(fcc) we have enough coefficients to see true asymp-
totic behavior and that for these values of R the ex-
ponents y and v maintain their R = 1 values. For
values of B for which we do not have enough coef-
ficients to see asymptotic behavior we have no direct
evidence for invariance of y and v. However, from
the way in which the estimates {y„}and {v„)are
bending toward the R= 1 values, it seems likely
that y(R) =y(R =-1), v(R) = v(R= 1) for all finite R,
as predicted by the universality hypothesis.

The appearance of marked curvature in the series
analysis estimates of critical properties for Hamil-
tonians which depend on a parameter has also been
noted by other authors. ' '7~

D. Cntical Temperatures

In Fig. 13 and Table IV we present estimates for
T,(R)/T, ' (R), where T, (R) is the meanfield theory
(mft) value of T, and where T,(R) has been esti-
mated from PA and Park's method analysis. %'e
note (i) that T,(R)/T, "(R)& 1 for all R, consistent
with Fisher's'6 exact result that T, " is an upper
bound on the exact T„and (ii) that the mft esti-
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mates become worse as the effective coordination
number decreases, i. e. , as the lattices become
"less three dimensional. " —I.60

—
I . 70

—I.50

Ising
S.C.

— I.60
R= 0.005

0.01
0.02 —I.40

yn

0.04

—I.50 0.08 —I.30

R = 0.01
0.03
0.05
0.07
0.09
0.2

0.4
I.O

25

lo

Isi

I I I I I

I I I I

6 78 IO

1

n

(b)

—I.40

—I.30

y(R=1)

—2.00

—1.90

—I.80

—I.70

—I.60
yn—

I .50

—1.40

—I. 30
y(R=1)

—I.20

—I. IO

0.2
100

I I I I I

I I I I

6 78 IO

1

n

y(R=1)

FIG. 7. Estimates for y for the fcc Ising lattice. Details
described in caption to Fig. 6.

IV. SUMMARY

We have calculated series expansions for 3C,

for the two-spin correlation function for both the
Ising model (D = 1) and the exactly soluble spherical
model (D= ~). To the best of our knowledge the
present work is the first treatment of X, ,„„using
high-temperature series-expansion techniques.

A detailed analysis of the series for the Ising
model indicated that the exponents y and v are con-
stant over a, wide range of the parameter R —=J',/J„,
[0.2-R~ 5 (sc), 0.08 ~R (fcc)j. Outside of this
range of R we have evidence that we do not have
enough coefficients to see the true asymptotic be-
havior of the series. From the curvature of the
series in the nonasymptotic region, however, it
appears quite likely that y(R) = y(R= 1) and v(R)
= v(R = l) for all finite R as predicted by the univer-
sality hypothesis The s.eries for C„were not
regular enough to allow for predictions concerning
the exponent n.
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FIG. 6. Estimates for y for the sc Ising lattice from
Park's method applied to series which have been trans-
formed to reduce the effects of antiferromagnetic singu-
larities. We note that the transformation has eliminated
all trace of the oscillations present in the estimates from
Park's method applied to the untransformed series (cf.
Fig. 5). The absence of the oscillations allows one to
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APPENDIX A: SPHERICAL MODEL

The spherical model34 is defined by the Hamilto-
nia, n

1 ~
+aaharicai a ~ ~ii i j + + il

i
(Al)
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where H is an external field. The spins ai can take
on the values —~ & ai & ~, with the restriction

N

O, =N,
i~1

(A2)

—I.70

where N is the number of sites on the lattice.
The zero-field correlation function for a d-dimen-

sional hypercubical lattice with arbitrary exchange
constants, J; —=J, &

with I =—ri —r, , is given byv'

with x—= 1/kaT. Here ~=—(+„(u~, . . .,~,) and r
—= (x„vz, . . . , r„)denote d-dimensional vectors. The

quantity z, is defined implicitly by the equation
+2Ã

R = 0.005
II II4
O.08
0.2

l00

I I I I

I I I I I

4 5 6 7 9

—l. 50

—I.40

—I. 50
2v'( R = I )

—I.20

—1.10

FIG. 9. Estimates for 2v for the fcc Ising lattice. De-
tails described in caption to Fig. 6.
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R= 0.0l —1.80

—1.70
0.05
0 07 1.60

O. I —I.50

0 2 — 1.40

0.4
1.0

l, 50
= — --2p(R=1)

—I.20

and S(~) is defined by

S(~)-=g;J; cos(u. 1). (A5)

Following Joyce, "who treated long-range forces,
it is easy to show that the predictions of univer-
sality in Sec. IA apply for the exponent y.

To verify the universality predictions for the ex-
ponent v it will be useful to prove a relation among

fcc sc

TABLE VI. Estimates for Tc(R)/P~ t(R). Confidence
limits on T~(R) are such that the errors in these estimates
are in the last significant figure. The superscript mft
denotes mean field theory.

(b) —2.40

—2.20

R =25

—2.00

l6.6
12.5
IO. 0

5.0

l .66

I I I I I

I I I I

5 6 7 9

A

—1.60

—1.40
2v(R=1)
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FIG. 8. Estimates for 2v for the sc Ising lattice. Details
described in caption to Fig. 6.

0.0
0.005
0.01
0.02
0.04
0.08
0.2
0.6
1.0
1.67
5.0

100.0

r, (R)
~mf t(R)

0.5673
0.602
0.620
0.653
0.6859
0.7323
0.7464
0.8129
0.8162
0. 8142
0.8040
0.7949
0. 7868

0.0
0.01
0.02
0.04
0.06
0.08
0. 1
0. 2
0.4
0.6
0.8
1.0
1.25
1.67
2. 5
5.0

10.0
25. 0
50. 0

T, (R)

graft (R)

0.5673
0.587
0.602
0.617
0.635
0. 648
0.6575
0. 6948
0.7279
0. 7434
0.7500
0.7518
0.7497
0.7413
0.7168
0.648
0.560
0.449
0.379
0.0



PARTIAL TEST OF THE UNIVERSALITY HYPOTHESIS:. . . 2595

the even moments.

p..=-Z.- C.(r) Irl'™ I=o» 2 ~ ~ ~ ~ (A6) —l.70

The relation we derive will also (i) allow us to
express p,2 in terms of y so that an independent
analysis of the second-moment spherical-model
series becomes unnecessary and (ii) allow us to
explain the origin of nonphysical singularities which
arise when high-order moments (p„ t & 2) for the
Ising, planar, and Heisenberg models are analyzed.

In order to prove the relation between moments
we first note the formal identities

R = 0.005
0.02
0.04

0.08
0.2

100

I

5

I I I

I I I

6 7 9

fl

—I.60

—I.50

—
I 40

2 v'p

—I.20

2v (R=1)

(')-
i ea

—I.70

FIG. 11. Estimates for 2v for the fcc Ising lattice.
Details described in caption to Fig. 10.
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&

R =5.Q

—2. I 0

We then have from Eqs. (AS), (A6), and (A7)

(A7)

R =25.0 (b)
—2.20 y( R=1)
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FIG. 10. Estimates for 2v for the sc Ising lattice
from the "T~ renormalization" method applied to trans-
formed series. Even though ~~ is known in this method
the estimates do not seem to be converging any faster
than the estimates obtained from Park's method. In
particular we again note the curvature for R«1 (sc, fcc)
and R»1 (sc).
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FIG. 12. Estimates for y for the spherical model on
the sc lattice from Park's method applied to transformed
series.
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TABLE VII. Susceptibility series for the spherical model, sc lattice, for selected values of J'„„and j~.

J'„~=1.00, jr=0. 01

0.1000000000D 01
0.4020000000D 01
0.1216020000D 02
0.3280320000D 02
0.7922403198D 02
0.1711748160D 03
0.3385337318D 03
0.6091592832D 03
0.9998897100D 03
0.1534427358D 04
0.2243783441D 04
0.3388609881D 04
0.5791530898D 04
0.1097586219D 05
0.2186994819Q 05
0.4085154346D 05
0.6640637063D 05
0.9360080998D 05
0.1063265566D 06
0.1130962659D 06
0.2118234666D 06

O. 1000000000D 01
0.4400000000D Ol
0.1528000000D 02
0.4928000000D 02
O. 1498528000D 03
O. 4378880000D 03
0.1253775616D 04
0.3542528000D 04
0.9921427994D 04
0.2763909632D 05
0.7650986435D 05
0.2105867878D 06
0.5763413278D 06
0.1568823815D 07
0.4251365918D 07
0. 1147696605D 08
0.3088440349D 08
0.8288911223D 08
0.2219148598D 09
0.5927849552D 09
0.1580113429D 10

J~ = 1.00, Jg = 0.40

0.1000000000D 01
0.4800000000D 01
0.1872000000D 02
0.6912000000D 02
0.2443968000D 03
0.8432640000D 03
0.2859746304D 04
0.9584640000D 04
0.3179061734D 05
0.1046139494D 06
0.3417115044D 06
O. 1109379318D 07
0.3582365962D 07
0.1151506712D 08
0.3686555329D 08
0.1176123136D 09
0.3740422746 D 09
0.1186241918D 10
0.3752510581D 10
0.1184329183D 11
0.3730027619D 11

n=0
1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

J„„=1.00, Jg = 0. 60

0.1000000000D 01
0.5200000000D 01
0.2232000000D 02
O. 9152000000D 02
0.3610528000D 03
0.1396096000D 04
0.5301915904D 04
0.1989478400D 05
0.7384612795D 05
0.2718650522D 06
0.9935476916D 06
0.3609360835D 07
0.1304322086D 08
0.4692395194D 08
0.1681414460D 09
0.6004033476D 09
0.2137234234D 10
0.7586655783D 10
0.2686279532D 11
0.9489885444D 11
0.3345536949D 12

.J~= 1.00, 4~=0. 80

0.1000000000D 01
0.5600000000D 01
0.2608000000D 02
0.1164800000D 03
0.5011648000D 03
0. 2116352000D 04
0.8772668416D 04
0.3592601600D 05
0.1455264743D 06
0.5846665933D 06
0.2331879934D 07
0.9245542154D 07
0.3646527156D 08
0.1431831018D 09
0.5599865979D 09
0.2182507920D 10
0.8479648201D 10
0.3285431461D 11
0.1269732505D 12
0.4896025363D 12
0.1883962215D 13

J~ = 1.00, jg = 1.00

0.1000000000D 01
0.6000000000D 01
0.3000000000D 02
0.1440000000D 03
0.6660000000D 03
0.3024000000D 04
0. 1347600000D 05
0.5932800000D 05
0.2583540000D 06
0.1115856000D 07
0.4784508000D 07
0.2039385600D 08
0.8647354800D 08
0.3650348160D 09
0.1534827960D 10
0.6431000832D 10
0.2686222845D 11
0.1118919705D 12
0.4649022634D 12
0.1927243552D 13
0.7972767769D 13

( 1)m sR 88 mx»', s~', ~,S(O) —S(~)

(A8)
This is the relation we shall need below.

For I= 0 and m = 1 we have, respectively,
I"'="=

x z, S(O) -Sg) (Ae)

p,z-- —Q jf~ l~~, z
——const X . (Alo)x; jz,,S (0) —S(O)P

Thus with pa-(x, —x) " "we find that all univer-
sality predictions for y also hold for v. "

From (A10) it is also clear that in using the
spherical model as a test for series-expansion
techniques it is necessary only to investigate X
and not pa. For example, use of Park's method,
Eq. (2. 19) on the series for X and yz/y would yield

jdentiealry for all n.
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n=0
1
2
3

5
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20

J„q= 0.20, Jg = 1.00

0.1000000000D 01
0.2800000000D 01
0.5680000000D 01
0.9856000000D 01
0.1668160000D 02
0.2920960000D 02
0.5013529600D 02
0.8136540160D 02
0.1304916429D 03
0.2166363996D 03
0.3575965512D 03
0.5600355785D 03
0.8682408620D 03
0.1417101314D 04
0.2316483209D 04
0.3527943262D 04
0.5295303090D 04
0.8671618397D 04
0.1433245557D 05
0.2109637650D 05
0.3018589857D 05

J„q = 0. 10, Jg = 1.00

0.1000000000D 01
0.2400000000D 01
0.3720000000D 01
0.4032000000D 01
0.3927600000D 01
0.5616000000D 01
0.8532624000D 01
0.7374643200 D 01
0.2813127480D 01
0.9238339008D 01
0.2603923006D 02
0.1123437745D 02

—0.3590524881D 02
0.1336741287D 02
0.1670060458D 03
0.1564591416D 02

-0.4799452845D 03
0.1807791666D 02
0.1673950167D 04
0.2067189144D 02

—0.5587456344D 04

J~=0.02, Jg=1.00

0.1000000000D 01
0.2080000000D 01
0.2324800000D 01
0.6722560000D 00

—0.4424314126D —01
0.1773291520D 00
0.3538011514D 01
0.4424314126D —01

—0.8807007336D 01
0. 1050653311D—01
0.2500537812D 02
0. 2421616551D—02

—0.7548059316D 02
Q. 5458708962D - 03
0.2381846907D 03
0. 1210169916D—03

—0.7761945761D 03
0. 2648018136D—04
0.2592224104D 04
0.5732845938 D —05

-0.8825608726D 04

p,4(x) -(x- xo)(x- x,) ", (Ai2)

Finally we consider higher moments. Analysis
of the Ising, planar, Heisenberg, and spherical-
model series indicated a first order zero on the
negative real. x axis. Pade approximant analysis
indicated that in addition to this zero there was a
physica, l singul. a,rity on the positive real axis but
at a greater distance from the origin. For example
p.4 ha,d the form

-=B,X'(x- x,) ~(x), (A. 16)

with A(x) analytic for x
l xol

Thus p, 4 has a first order zero at x=xp. Similar
considerations for higher-order moments of the
spherical model also indicate the presence of non-
physical first-order zeros.

with x, & —xp &0. Furthermore X= y+4v as pre-
dicted by scaling. ' We feel that the presence of the
nonphysical zero can be understood by examining
the exact solution for the spherical-model moments.

Consider p. 4 for the spherical model. From Eq.
(A8) we find

I.O—

0.8
FCC

i (x)=(i/x) [B~(xx) +B (xx)'I

= x B~jP I Bq/B~X(x) + x], (Ais)

0,6
C

T mft
C

with B2 and B, constants. Now if X(x) were a con-
stant then p4 would clearly have a first-order zero
at B2/(B~X). Under a very reasonable assumption
this will also be true with the real X(x). Specifical-
ly assume that

(A. 14)

is analytic for x ~ xo (Ref. 80) where xo is defined
implicitly by

0.2—

I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0

R 1/R

g(xo) + xo = 0 .
We can then write

(A. 15) FIG. 13. T,/P, vs R or |,1/R) for the sc and fcc
lattices. The confidence limits on T~ are smaller than the
size at the points in the figure.
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Although we do not have exact solutions for mo-
ments for the Ising, planar, and Heisenberg mod-
els, we feel that the origin of the observed zero
for these models is qualitatively the same as that
for the spherical model.

APPENDIX B: SELECTED SERIES FOR THE SPHERICAL
MODEL

The susceptibility series for selected values of
J„and J, for the sc spherical model is given in
Table VII.
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The electrical resistivity of the five PdCo alloys, ranging in concentration from 2 to 7. 5 at.%
Co, has been measured over the temperature interval 1.4-77 K. At temperature T, well be-
low the magnetic ordering temperature T, , the incremental resistivity of the alloy Ap{T}
= p&»„(T}-ppd(T) can be expressed in the form Dp(T) =A+ J3T . A. is found to vary linearly
with concentration c, having the value 1.27+0. 03 pQcmjat. %%u~Co, whil eBccc", an dn= —0.75
+ 0. 05. On the basis of a localized "s-d" model, an expression for 0 p(T) at temperature
T«T~ is derived; its application to the present data yields I Vl {the "potential" integral) =0.44
a 0.01eV, while the coefficient of the T term involves the s-electron-local-moment exchange
coupling lJ~ ~~I l, the "giant-moment" spin 8, and the Fermi wave vector k+. Using satura-
tion-magnetization measurements in conjunction with ferromagnetic-resonance data enables es-
timates of S to be made; by combining the present data with previous measurements on PdCo
by Schwaller and %ucher, l4,„&„~lis evaluated; k~ is obtained by using an effective-mass
treatment of the s band. These estimates enable values of the acoustic spin-wave stiffness D
to be extracted from the experimental data. D is found to satisfy the equation a=Doc", with
D0=11KA2 and n=1. 00+0.05, in the range 2-7, 5at.% Co.

INTRODUCTION

The properties of the ferromagnetic phase of
dilute transition-metal alloys, typified by the
giant-moment systems PdFe and PdCo, have re-
ceived much attention over the past few years;
the former system perhaps more than the latter.
Initial measurements by Veal and Rayne~ on the
PdFe system revealed at temperatures T«T,
(where T, is the Curie temperature) a 7~ ~2 con-
tribution to the specific heat. Similar subse-
quent measurements by several investigators
confirmed this, both in thy PdFe ' and the PdCo

systems. This contribution to the specific heat
eras attributed to the presence of energetically
low-lying spin-vrave-like excitations in the ex-
change-coupled impurity-moment-d-band system
of the alloy. Later magnetization ' and NMR
measurements 'also established a T ~ contribution
to the magnetization in the low-temperature
regime; this result reinforced the above conclu-
sions regarding excitations from the ordered
ground state. Confirmatory evidence for this as-
signment was also furnished by lou-temperature
neutron-scattering measurements on PdFe alloys;
these @&ere successfully analyzed in terms of


