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We prove that at low enough temperature al1. translationally invariant equilibrium states for
the Ising ferromagnet are a superposition of only two extremal states, i.e. , the positively
and negatively magnetized pure phases. In particular this proves, at low temperature and in
two dimensions, the identity of the spontaneous magnetization and the Onsager s value Mo
= I.1- (shP)-']"'

I. INTRODUCTION

Consider an Ising ferromagnet enclosed in a box
A in a square lattice. Assume that if 0 is a spin
configuration, then its energy is given by

1
Ho(0') = — Z (r( ar,

n=l, 2, . . . ; x„x„.. . lnA. (4)

%e shall be interested in t'he set of functions((I„.a„„)wllicll call be wl'ltte11 [for a sllltaM8
choice of p~(T)] as

(0„, (r„)=lim (0„, 0, )~, n=1, 2, . . .
g~ (o

where P«» denotes, as usual, the sum over the
nearest-neighbors pairs in A. %e have put the
strength of the interaction 8= ——, for simplicity,
and the external magnetic field A=O, since we are
interested in the two-phase region.

Suppose also that fixed spine q- are placed on the
lattice sites adjacent to the boundary of A and de-
fine

1 1 1
P~(O)= ——Q a(0'I ——'Z 0'( T( — Z T(T~ r (2)

where the second sum runs over the couples of spins
(0;, T;) adjacent to the boundary; the last term in
(2) is 0 independent and has been added only for
convenience.

lf fr ~(T) is a probability distribution over the set
q-, we define the probability of a spin configuration
o as

P(a) Q (e- Nlr(rr)/Q 8- ((rrr(s')
) P (T)

T 0

It will be more convenient to introduce instead of
P(a) the set of correlation functions

((r„, . o„)~ =Z, a„~ a„P(a),

for all g„.. . , g„ in the lattice, and furthermore
are such that

(a„,„a„„)=-((r„, (I„„) for all a .

A set or correlation functions verifying (5) and

(6) will be called an e(luilibrium state at tempera-
ture P-'.

At P large enough it is known that there are at
least two different equilibrium states, which will
be denoted as (a„, o )' and (a„, a ) . These
states can be obtained by choosing in (5) the dis-
trlbutlon p(((T) 'to be, 1'espec'tlvely,

f ~(T) =II(&„,,1,

i.e. , by fixing the boundary spins to be all up or
all down. These states have very special physical
properties, ' which explain why they are usually
called the up-magnetized and the down-magnetized
pure phases; for instance,

(a., o„&'=(- 1)" (o„, a

(o„, o„)'=lim (o„, ~ a„)„,
It 0+
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&o„, ~ cT„) =llm (o„~ a )„,
h p

fP t

~-o
(6)

where f(P, h) denotes the free energy in external
field n', =0, and (o„, o„&„the corresponding
equilibrium state which is unique and analytic in

P, h when h4 0.
We shall prove that, if P is large enough, any

translationally invariant equilibrium state
(o„, o„) [i.e. , any set of spin correlation func-
tions verifying (5) and (6)], is such that, for some
0&a&1,

It has been shown that the set of states given by
(5) and (6) exhausts all translationally invariant
equilibrium states, even if one allows for other
reasonable definitions of equilibrium states; hence
(9) provides a, satisfactory answer to the question
of how many pure phases can coexist in the Ising
model at low temperature. As discussed in Ref.
3, formula. (9) also implies that at least at low
temperature and in two dimensions

(10)

We shall restrict ourselves to the two-dimen-
sional Ising model. However, unless explicitly
stated, the results and techniques easily extend to
all dimensions.

Let A be a square box and let 7. be a fixed set of
values for the spins adjacent to the boundary of A.
If 0. is a spin configuration in A we assign to cr the
relative weight e ~Z"-'

The configuration OU y can also be described in
a different way: For each lattice bond having op-
posite spins at its extremes we draw a unit segment
cutting the bond, perpendicularly, at its midpoint.

We thereby associate to 0 U 7 a set of lines which
separate regions with spins + from regions with
spins —. For convenience we shall deform slightly
these lines when one of the following two circum-
stances happens:

or
+

i. e. , that the Onsager's value for the spontaneous
magnetization is the right limit of the derivative
of the free energy. The validity, at large P, of
formula (10)has beenrecentlyalso provedby Martin-
Lof. ' The results of this paper provide a slight
improvement of the region of P in which (10) has,
so far, been verified.

II. FORMULATION OF PROBLEM AND MAIN PROBLEMS

and we shall draw instead

J+- or—l+

After this modification the drawn lines split into a
certain number of disjoint self-avoiding contours.
There will be 4 contours A„.. . , A, which begin
and end on the boundary (k= 0, 1, ), and h contours
y„.. . , y„which do not touch the boundary and are
therefore closed (h= 0, 1, . . . ). We denote by lyl,

I A I the length of. a contour. The lines
and y». . . , y„separate regions of opposite spins.

From the definition of the contours it immediate-
ly follows that

H, (o) = ——,
' (number of bonds with spins at their

extremes)

+~~l&; +~~ly~l

hence, if we define

&,(A) = ~.exp[- P(~; I
1,

I
+~,

I y, I )1,

where (&» . . . , &„y„.. . , y„) is the set of con-
tours associated with a general configuration 0
when, on the boundary of A, the spins are fixed to
be 7, we find that [see (3) and (4)] for x, , . . . , x„
in A

&o., o.„&„=~,t ~(7) &o.,

&o, ~ ~ cr„& „

=3 o„a„exp[-p(Z, l x, I +Q, I y, I)J
Z, (il)

It is convenient to introduce the translationally
averaged correlation functions

1+ &ox'y
' ' ' o~ ~pg

=
~ p ~

~ &ox' +a
' ' '

ox&+ a &p~ (15)

(o„, o„)=lim (a„, a„)~, . (16)

This result, together with the remark that

o. ),,=~t~(~ )&o., o ), ,
.

will imply the main result of this paper expressed
by (9) if the following theorem holds.

Theorem 1. If P is large enough, one can find a

where the sum runs over the a's such that x, +a,
x„+a are all in A. The reason why it is con-

venient to define (15) lies in the following fact':
Proposition 1. If &o„, o„„)is a, set of transla. —

tionally invariant correlation functions as in (5)
and (6), then one can find a suitable sequence of dis-
tributions pA(v) such that, for all x, , . . . , x„,
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family of numbers z~, such that 0 & n~, & 1 and

such that

/1(o„, &T ),=43,, , (o., o, )'

+(1 —o4, ) (cr„o ) +II/(v, A, x4, . . . , x„), (18)

and for all y

i ((7, A, x„.. . , x„)
~

& C(P, x, , . . . , x„, A), (19)

where C(P, x&, . . . , x„,A) is a translationally in-
variant function tending to zero as A- ~.

A clear physical picture of what is behind the
above formal discussion can be obtained by reading
the texts of the two lemmas of Sec. III and then
Sec. IV. One essentially can say that, at large P

(say, J3& ln3) if the system is large enough, the
"long" contours X„.. . , X, are very far from all
but a negligible fraction of translates of x„
x„, therefore, if g, , . . . , H, „are the disjoint re-
gions into which A is divided by I, , . . . , A.~, then
a translate xi+a, . . . , x„+a of xi, . . . , x„, is al-
ways in the "middle" of some 0, , and therefore

III. TWO COMBINATORIAL LEMMAS

I,et A be a square containing L points and fix
the spins z around A; consider, for each spin con-
figuration o U w, the open contours X„
The following lemma says that P;lA; I cannot be too
large if we assign to a spin configuration 0 the
weight [see (12)]

(20)~[- t)(& I~;I .& Iy, I)]
i

Lemma 1. Suppose the spin configurations are
given the probability (20). If J3& ln3,

f (3., L"') = P(E
~
~,

~

& I"') «(L), (21
i

where e(L) is a function independent of the choice
of 7 and tending to zero when L- ~.

Proof: We have

= (o„, a„), according to whether the spine
adjacent (from the inside) to the boundary of g, are
+1 or —1.

~( L4/3)
4/3

)t.i ~ ~ ~ ~ 3 )1/3 g i llli I «9 Il Pis ~ ~ ~

exp[ —8(Z; I ~, I +Q, I y, I )]
Z, (A)

(22)

Suppose we define for a region 8 of the lattice

g(g) Q e-sf:(I (I$
r is ~ ~ ~

five
8

(23)

We shall need also the following inequality:

$(xl exe(- $
. , $1)1(x,l;(3e ')'

(27)

where the sum runs over the set of disjoints sets
of closed self-avoiding' contours (y„.. . , y„),
n=0, 1, . . . , contained in 0. In terms of (23) we

can write

in fact,

C(A) =
~ ~ ~ sr' QA,

~WEilril & + - gEiIril
9

ris"'3m ~
(28)

L4/3 g sl., l t( & &( „~)
P~79 L e

I1ye ' ' ~, lxs, I 1 I l1$ I & /
ri, ""rs

e-sr, 4II" I ~(A )
r' ~ ~ ~ r' gAi

g "~~i I r'; I

(24)

where 0„.. . , 9„,, are the 0+1 regions into which

Clearly, we have

~(8,)" ~(g„,) &(A) (26)

Denoting now by A, the square concentric to A

and with side equal to L —2, we then have

Z, (A) e '"C(A,). (26)

In fact, this inequality is obtained by restricting
the sum defining Z, (A) to a few terms, namely, the

ones in which the contours A„. . . , A~ have a very
special form, while the contours y„.. . , y„are
put in A„ the chosen &„.. . , X~ are constructed
as follows: Draw a set of contours X, ,
which isolate the + spins of y and run parallel to
the boundary of A and next to it Then P; I.X, I

& 6L,
and therefore (26) follows.

~h~~~ y,', . . . , y, g A, means that none of the y,',

y,
' is in A, . We have

1',, ~ ~ ~, $3Iw4

CC r
e-3 lr'; I & p Q e- st$" I

+1r=i ' ' re~A 1

e-sir' I
& Q 3n e- sx

«& (3 s)4

~~o .=4
(30)

because the number of contours starting from a
given point and having perimeter n is at most 3".

Z —$$K ex' =exe$1, I e ' ')
gee O P e r'&o r'~o

(»)
where g„, II means the sum over all the contours
passing through a point 0 (we are simply saying
that, if y'g A„ it has to pass through some of the

8L points outside A, and inside A). Now it is easy
to show that, if P &ln3,



Formula (2V) then follows.
From (34)-(N') and p & ln3 it follows that

p(~ I4/I) 7 p-K;~I g~l)
)).1, '",XZ, L;!XiI &I, 4~3

xexp
1 3 ~ I . (31)
8+6P

ways of choosing 0 beginning points between the 2k
that are possible; hence, since 24&41.,

" )tA, E. l) I &I, ~3 i-1
e-8l x; I

2k 3~ s 8-@s. . . 3~«o- 8'«

4/3
i

~

& lt ' ' '
~ ~k& ~ i li & &

« ~ ~

3ll Bled

To estlIQRt6 the suIQ ln the bracket %'6 RgRln observe
BERt the number of contours stRrtlQg on R given point
and having perimeter / is not larger than 3', and
furth61Inore we observe that lf 7' ls fixed the
number k of contours X„.. . , X~ is also assigned
Rnd there Rre at most

o„„),.—(o„, . o„}'~ y(x„. . . , x„,D),
(»)

where f(x„.. . , x„, D) is a translationally invariant
function tending to zero as D- ~. A similar result
holds for (o„, o„),

Pmof: In fact, the second Griffiths inequalitye
implies that (o„, o„),.decreases when 8 in-
creases. Call QD a square centered at the bari-
center of x„.. . , x„and with ."ide v"D, then

0 (o„, o„ ), , —(o„,. o„ ),

=f(xg, . . . , x„, D) . (36

The function f(x„.. . , x, D) is translationally in-
variant and, decreases 'to zero as D ~ (again by
the second Griffiths inequality).

IV. PROOF OF THEOREM j.

I et y be a fixed boundary condition and let 8„
H~„be the 0+1 regions into which contours

. . . , X„associated with a given configuration 0

divide the region A. %6 call 8; a "positive" region
if the spins adjacent to the boundary of 8; from the
' s'd a e +1, Rnd a "negat' e" reg'o 'f t ey a

We can clearly compute (o„, . o„),as

max (o„, o„),= 5 Q* o„, o„
Xlf «««yA@y E i )hi I/I ~ fy

x ' P~-I8'~~l'~I '~~l&")~+.(x x .) (37)
z, (A)

1."',,«3x max (3e-')' = &(I.), (33)
I &2I.

and Lemma 1 follows, by noting that for large I.,

where the first sum runs over the sets of open
contours associated to some spin configuration and
the second sum runs over the spin configurations
o which have A„.. . , A.~ as associated open con-
tours; the function c(x, , . . . , x„, ~) is such that
(see Lemma 1)

~
&(x„.. . , x„, 7 )

~

& ~(I.) .

which ha.s a bound proportional to e"""~'"~.
We next prove another simple lemma.
Let g be an Rrbltrary regloQ Rnd let gl q . . . p g~

be n points; suppose we fix the spins adjacent to the
boundary to be all +1 (or all —1) and assign, using
the notation of Sec. I, the relative probability

Let A~, ), be the set of points Rt a distance not

exceeding —,'(I.'~3) from the set of contours X„
The number of points i.n 4» „ is not larger

than I ~ if g; I X& I & I,
If x„.. . , x„gA~, » then x„.. . „x„must

be in 8; for some i, and the sum g* appearing in

(3V) can be written as

exp(- PII, (o)), (34)
exp[- p(g, lx, I +$, ly, I)]

z, (A)

and denote by (o„o„}8,the average of o„, o„
under the probability distribution generated by (34).
Then the following lemma holds.

Lemma 2. If 0 is the distance of x„
x„&8 from the boundary of 8, we have

=p, (X„.. . , X, ) (o„.o„}«...
where the sign has to be chosen to be the same as the
oneoftheregion 8;, and p, (X„.. . , X«) istheprob-
ability of the spin configurations containing X„
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¹(x„.. . , ~„)
o'~, =~&.(&i &a)

We find, using (37)-(39) and defimtion (15), that

(4O)

X, as open contours (at fixed boundary condition 7 ).
This formulasimply follows from the fact that if ),„
. . . , X, are fixed, then the probability distributions
of the spins inside the regions 9, are independent
and generated by the weight (34).

I.et ¹(&,, . . . , X,) be the number of points in
the positive 8,'s; then put

and depends only on max,
& lg, —x&I, and comes

from the contribution of the a's such that (x, + a,
. . . , x„+a) has points in common with A„,

Formula (41) proves Theorem 1.
V. FAUNAL REMARKS

If we examine critically the calculations per-
formed in the paper in the two-dimensional case
we realize that a simple improvement can be
achieved by replacing the estimate 3' on the num-
ber of contours of length E by p, ', where p, is any
number larger than the connective constant p.o. '
This allows us to replace 3 in (27) and (32) by Po,
and the results discussed in this paper hold for

—(1 —~~, ,) (o., o. ) I

L8 &info y (42)
«{1.)+ 3f(x„.. . , ~„, I, '")

+ C(l."'/L, '), (41)

where the first term comes from the error term
in (3V), the second comes from the replacement of
(o'„,„o„„)~&„with (o„o„)'for all the
s s such that (xg+Q~ . . ~, x„+Q) has no points ln

A~, „„, and from the use of Lemma. 2 to esti-
mate the involved error; finally C is v independent

as is known, lnp, o is an estimate from below of the
critical Po to within 9/g. Notice that, in order to
get the proof of the statement that there are only
two extremal translationally invariant equilibrium
states, we have used neither the Minlos-Sinai
equations nor the fact that $,~0 e 8 "' is small (we
used only that Z, .,oe

~'"~ converges fast enough);
this is the reason why our results hold so close to
the critical temperature.
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