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The validity of electronic band-structure results may be tested by comparing the Fourier
transforms of the electronic charge distribution with x-ray structure factors. Measurement
of the latter is difficult and liable to relatively large errors. If more than one pub-
lished set exists it is sometimes difficult to decide which is the most reliable. A

simple model for the electronic charge distribution in cubic crystals is proposed, and hence
a parametrized expression for x-ray form factors is derived. This is fitted to the available
sets of measured form factors by a least-squares technique, giving an indication of the consis-
tency of each set and thus its reliability. Experimental data for Al, diamond, and Si are ex-
amined by this method. Electron distributions are drawn in (100) and (110)planes.

I. INTRODUCTION

II. MODEL CHARGE DISTIRBUTION AND FORM FACTORS

The electron distribution in the crystal p, (r) can
be expressed as

p. (r) =&KP.(K) e *"'" (l)

where

I

p, (K) = —
J p, (r) e'* 'dv (2)

and integration is- over the volume of the primitive
cell Q. K are reciprocal-lattice vectors. p, (r) can

A possible method of checking the validity of theo-
retical band-structure calculations is by comparing
the Fourier transforms of the calculated electronic
charge distribution with measured x-ray structure
factors. However, the derivation of structure fac-
tors by experiment is subject to many corrections
and the best precision that can presently be obtained
is of the order of 1%.' Different sets of measure-
ments may show considerable disagreement among
each other and it is sometimes difficult to decide
which set to use for the comparison with band-
struc ture results.

A simple parametrized theoretical model for the
electronic charge distribution in cubic solids is
proposed here, and hence a theoretical form-factor
expression is derived. The consistency of several
sets of measurements is then tested by means of
a least-squares fitting procedure.

The approach differs from the conventional use
of x-ray diffraction measurements in that the sym-
metry of the crystal is assumed to be known at the
outset.

also be expressed as a superposition of localized
charge dis tributions:

p, (r) = Z p', (r —7;. —R;), (3)

p, (K) = —„Ze'~'& f,.(K)-=—„F(K),

where E(K) is the x-ray structure factor. Equation
(6) demonstrates the relation between the Fourier
transforms of the crystal charge density and the
x-ray structure factors.

It should be noted that x-ray form factors are
completely determined from the electron charge
distribution and do not depend on the detailed wave-
func tion behavior.

According to Eq. (5), the site charge distribution
is the inverse Fourier transform of the form factor.

where 7& fixes the position in the primitive cell,
R& is the cell, and where the p', are designated as
"site distributions. " The superscript j distinguish-
es the different site distributions associated with a
primitive cell containing a basis.

Substituting Eq. (3) into Eq. (2) and making the
substitutions r —

v&
—R;= r' results in

p, (K) = —Z e '~"J p'. (P ) e i" ' "d~',

where now integration ranges over the extent of the
site distribution which may extend beyond the cell
boundary. The integral is equivalent to the x-ray
form factor f,.(K) for a charge distirbution p~(r):
We have

f, (K)= f p', (r) e' "d~

so that
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Since the form factors are only defined at recipro-
cal-lattice vectors in reciprocal space, the site
distributions are not uniquely defined.

Form factors derived from x-ray measurements
in solids differ only slightly from atomic measure-
ments calculated theoretically from wave functions.
The difference is due to a redistribution of valence
electrons. ' In accordance with this idea, a site
distribution is set up in which the valence electron
distribution is parametrized, both radial and angu-
ar variation being possible. Since the crystal

charge density has the symmetry of the crystal
space group there are symmetry restrictions on the
site distributions. In the case of a symmorphic
group, the site distribution has the symmetry of the
point group. A radial cutoff parameter D is intro-
duced for p', (r) in order to avoid spurious fits. D
must be sufficiently large to allow a certain amount
of overlap of the site distributions. In most cases,
it was chosen to correspond to the radius to which
atomic wave functions under consideration are tab-
ulated. In every case the core distribution was as-
sumed to be unchanged from the atom. The site
distribution for the valence electrons has the fol-

lowing form:

p', (r) = p(r) (ap+a, r+aar )y~(r, 8, P) for r&D,

p', (r) = O for r& D,

X +g +g X g g &$Z
y~(r, 9, $)=-1+r b, —, +b, , aba

(8)
Here p(r) is the spherically symmetric atomic elec-
tron distribution calculated from tabulated wave
functions. The quadratic term allows for radial
variation, forming an envelope function for p(r)
forcing p~(r) to zero at r=D. The r dependence in
the angular term is introduced in order to allow for
spherical symmetry in the vicinity of the nucleus.
b3 is nonzero only for the diamond structure; the
plus sign applies for the site distribution at r= 0,
the minus for that at r = —,'a(111) in the primitive
cell.

ao, b„b2, and b3 are adjustable parameters.
a, and a2 are related to them by the cutoff value D
and the fact that the site distribution contains the
same number of electrons as the atom:

1 —ap(C0+(—', b, ++»ba) C, —(1/D ) [Ca+ (5 b, ++ba) Ca])
C1+ (5b1+ 1po ha) Ca —(1/D) [Ca+ (5 b1++16ha) C3]

(9)

where

C„=1"r"pdr/f,
"

pdr,

aa= —(ap+ a, D)/D .

(1O)

(jr"),-=J j,(Kr)I' r"dr, (15)

tribution at r = 0 and the positive sign applies to that
at r = —,

' a(ill), and we obtain

(12)

Only the tetrahedral term of Eq. (8) can give rise
to an imaginary term. We have

Ref (K) = ap [(j)0+ b1(&jr&4 X, + 5 (jr&p)

An expression for the form factors f;(K) of p~ is
then derived. Depending on the symmetry of the

site distribution it may be complex: We have

f;(K)=Ref;(K)+i imf&(K) .

where j,(zr) is the spherical Bessel function of
order l and

g2 = 4gy2g~&p

with a~ as the Bohr radius. We have

x., = (z'„+z,'+ z', )/z' ——,',

(16)

+ ba((jr)6 X2 22(jr)4 Xl+ 105(jr)0)l

+ a1[&jr&o+ b1((jr'&4 x, + 5 & jr'&0)

+b2(&jr'&6 Xa 22 &jr')4 X1++»&jr'&0)l

+aa[(jr')p+b, ((jr')4 X, + 5 (jr')0)

+ba((jr')6Xa-aa (jr )4 X1+ 1o6(jr )o)] (13)

and

Imf&(K) = + ha(ap(jr)2+a, (jr )6+aa(jr )3) xa (14)

where now the negative sign applies to the site dis-

Xa ———Kazaza/K —(Z„+Z„+Z )/22Z + 1V/462,

(18)

Xa=z„z,z, /Ka. (19)

When fitting these expressions to experimental
data it is best to restrict oneself to as few param-
eters as possible. Although the computer program
was set up to allow variation of four independent
parameters (ap, b„ba, and ba) it was found, in
practice, that the fitting was independent of the
parameter b2.
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III. MODIFICATIONS FOR COMPARISON OF
MODEL FORM FACTORS WITH EXPERIMENTAL

RESULTS

Experimental results for Al, diamond, and Si,
tabulated in the form of form factors, are consid-
ered. Room-temperature results are reduced to
T= 0'K by means of the Debye-Wailer formula

fr(K) = fp(K) e (20)

where fr(K) and fp(K) are the room-temperature and
7=0'K are form factors, respectively. The as-
sumption is made that at relatively large K, fp(K)
= (j)p. B is then found by a least-squares fitting to

ln(( j)p/fr) = BK (21)

and substituted into the transposed Eq. (20) to ob-
tain fp(K).

The fcc lattice contains one atom per primitive
cell and thus we have

z(K) =f(K),

where the subscript j of the model form factor can
now be omitted. The expression for the model form
factors f(K) is fitted to the experimental values

fp(K)
In case of crystals of the diamond structure, the

tabulated quantities fp(K) are not true form factors.
They are defined by

tected for Si and diamond, the term in b, cannot be
omitted when fitting to form factors of allowed re-
flection for those crystals-.

IV. EMPIRICAL ERROR BOUNDS

The parameters of Eqs. (13) and (14) giving the

best least-squares fit to experimental form factors
are found. The corresponding model form factors
and their standard deviation from the experimental
set o are then evaluated. o serves as the criterion
of the consistency of the measured set.

It seems desirable to estimate how the uncertain-
ty in the experimental results as well as the choice
of model affect the precision of the calculated
parameters, thus giving a measure of their signifi-
cance. To this end the model form factors are
randomly perturbed using a Gaussian distribution
with a standard deviation equal to 0 calculated
above. A new fit is then obtained to these perturbed
model form factors producing a new set of param-
eters and model form factors. This perturbation
procedure is applied 30 times in the case of Al and

10 times in case of diamond and Si. Standard de-
viations for each parameter, each form factor, and

the forbidden reflections are then calculated; these
are the quantities in parentheses in Tables I-III.
To run the entire procedure for Al, fitting to 9 form
factors, takes about 10 min of computer time.
Diamond fitting to 23 form factors takes about 14
min.

(K)
I

= 2fp(K)
I
cos -'K (23) V. CRYSTAL CHARGE DISTRIBUTION

The absolute structure factor expressed in terms
of the complex form factor is

Ref(K)cos-,'K 7+Imf(K) sinpK

(24)

where f(K) is the true form factor for the site dis-
tribution at r = 0, the other site being at r = —,'a(lll).

Equating Eqs. (23) and (24) one finds

fp(K) =
I

Re f(K)+ tan —,'K vIm f(K)
I
. (25)

In the case of the proposed model, Ref(K) and

Imf(K) are given by Eqs. (13) and (14), respective-
ly. This expression for fp(K) is then fitted to the

experimental values by means of a least-squares
procedure. Since products of parameters occur,
a nonlinear procedure is called for; this results in
several solutions with almost equal standard devia-
tions.

In the case of forbidden reflections —,'K. 7. is an
odd multiple of —,'71' and

Once the parameters have been determined it is
a simple matter to form the crystal charge distri-
bution by superposition of the site distributions.

Atom
hkl HF

Form factors
Model

D = 5.26'Expt.
Model

D =26.95az Expt. I

111 9.03
200 8.60
220 7.37
311 6.69
222 6.60
400 5.70
331 5. 29
420 5 ~ 10
422 4. 60

Standard
deviation

8.80+0.06
8.38 +0.06
7.27+0. 06
6.66 + 0.06
6.48 + 0.06
5.78 + 0.06
5.33+0.06
5.20&0.05
4.66+0.05

0.03, 0.04

8. 85
8.39
7. 28
6.63
6.45
5. 75
5.28
5.14
4. 65

8.79
8.42
7.33
6.66
6.46
5.74
5.28
5.14
4. 63

8.70
8.31
7.17
6.59
6.52
5.77
5.34
5. 20
4.71

0.11, 0.11

TABLE I. Consistency of two sets of experimental
x-ray form factors for Al. All data are for T=O 'K. The
effect of different models is examined by choosing two

different cutoff values D. No adjustable parameters are
used.

l~(K)I = 2llmf(K)»nlK ~l. (26)

According to the proposed model, Imf(K) depends
on bs. Since forbidden reflections have been de-

ap

af (ap D)aJ3
a2(ap, D)a~

~Reference 4.

0
0.9398

-0.1785

0
0.3978

-0.01476

"Reference 10.
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TABLE II. Consistency of two sets of experimental x-ray form factors for diamond. Empirical confidence bounds on
fitted values are shown in parentheses. All data are for T =0 'K. Three adjustable parameters were used; the fit was
made to 23 values in each case;however, only the first 9 are shown here. L) =12.4az for the model charge density cutoff
value. E(Pgk)) is the structure factor per primitive cell for a forbidden reflection. Comparison with band-structure re-
sults is made.

111
220
311
400
331
422
511
333
440

Atom RHF'

3.03
l.96
1.76
l.59
l.52
1.44
1.40
l.40
1.33

Band-
s tructure

3.30
1.95
1.66
1.53
l. 53
l.41
1.37
1.34
1.31

Form factors

Expt.

3.321+0.007
1.972 +0.009
l. 662 + 0.007
1.479 a 0.009
1.579 +0.005
1.443 + 0.002
1.418 + 0.005
1.418 +0.005
1.287 +0.009

Fit

3.32(O. O2)

l.9v(o. ol)
1.6v(o. ol)
1.50(0.02)
1.57(0.01)
l.44(o. oo)
l. 3v(o. ol)
1.39(0.01)
1.33(o.oo)

Expt c

3.341
1.865
1.567
1.474
1.486
l.286
1.342
l.319
1.276

Fit

3.34(o.ov)
l. 86(0.03)
1.56 (O. O2)

1.45 (O. O6)

1.55 (O. O2)

1.43 (O. Ol)
1.36(0.02)
l.37(O. O2)

l. 32(0. 01)

Standard deviation

I r{222) l

~ Z(622) ~

ap

a((ap, b), b3) a~'

a2(ap, b), b3) a~
b) a~'

b3 CEp

~Reference 1.

0.24

Reference 13.

0.30
0.Ood

0.02

o. 19(o.o4)
o. oo6(o. ool)

O. 37(0.04)
0.91(0.09)

—0.076 (0.007)
—0.32(0.03)

o. v(o. 2)

Reference 14.

0.05

o.3(o.1)
o. oo5(o. oo3)

—o. 1(o.1)
l. 4(O. 3)

—O. 11{0.03)
—o. 3{o.1)

1.1(O.8)

Reference 15.

Conventional methods for evaluating the crystal
charge distribution from x-ray measurements ' '

are (i) straightforward evaluation of three-dimen-
sional Fourier series, representing higher-order
terms by theoretical atomic form factors, and (ii)
the method of convolution. The present method is
an extension of (ii). In the original application a
smooth curve is drawn through the fo(K)-vs- lK I

plot. This curve is then fitted by a sum of Gauss-
ians making it convenient to calculate the corre-
sponding portion of the site distribution by means
of a Fourier transformation. A correction is then
added in the form of a Fourier series having as
coefficients the deviation of the measured points
from the smooth curve. Points will lie off the
smooth curve whenever the site distribution is non-
spherical. In the present treatment, the fit is made
directly to the points fo(K), thus making allowance
for nonspherical site distributions and eliminating
the necessity of adding a Fourier series. The
charge distribution in the core region is fixed in a
more satisfactory way than with former methods.
To estimate the effect of an inaccurate representa-
tion in the core region on the calculated charge dis-
tribution in the remainder of the crystal would in-
volve a considerable amount of computation and was
not investigated at this time.

Computer time for generating the crystal charge
distribution from site distributions is very depen-
dent on the choice of D. A decrease in D substan-

tially decreases the computer time, e. g. , the case
of Al generating 16&& 8 points in the (110)planes
with D = 5. 26a~ takes 1 min, while with D = 26. 95a~
this takes 9 min. It is valid to vary D because, as
indicated above, the choice of site distribution is
not unique.

VI. RESULTS

The proposed model was fitted to experimental
form factors for Al, diamond, and Si. Results are
given in Tables I-III.

Some of the very recent experiments ' appear
to be considerably more accurate than previous
data. These results make it possible to determine
the parameters that should be retained in the model.
In the case of Al, the model expression (13) was
fitted for two different cutoff values: D= 5. 26a~,
the smallest radius that still produces reasonable
overlap of site distributions, and D= 26. 95a&, the
radius to which the atomic wave functions are tab-
ulated. In both cases the model was found to be in-
dependent of the parameters ao, b„b2, and b3.
Setting these parameters equal to zero results in
a good fit of the model to the experimental form
factor of Raccah and Henrich' for either value of
D. Eight of the nine model form factors lie within
their listed experimental error; f(420) falls outside
by 0. 01. For both values of D the model indicates
a slight outward radial displacement of the valence
charge in going from the atomic to the metallic
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TABLE III. Consistency of two sets of experimental x-ray form factors for Si. Empirical condidence bounds on
fitted values are shown in parentheses. All data are for T =0 'K. Three adjustable parameters were used; the fit was
made to 10 form factors of Ref. a and to 22 form factors of Ref. b. D =26.3' for the model charge density cutoff value.
E(hkl) is the structure factor per primitive cell for a forbidden reflection. Comparison with band-structure results is
made.

ill
220
311
400
331
422
511
333
440
444

Atom RHF

10.53
8.71
8.16
7.51
7.18
6.70
6.44
6.44
6.03
4.97

Band-
s tructure

10.88
8.76
8.09
7.53
7.35
6.81
6.54
6.50
6.16
5.11

Form factors

Expt.

11.12 +0.04
8.78 +0.09
8.05 +0.07
7.40 +0.14
7.32 +0.12
6.72 +0.06
6.40 +0.08
6.43+0.08
6.04 +0.15
5.00 +0.10

Fit

11.12(0.02)
8.78(0.02)
8.03(0.02)
7.40(0.02)
v. 3o(o.ol)
6.74(0.00)
6.44(0.01)
6.46(O. O1)
6.07(0.00)
5.00(0.01)

Expt.

10.89
8.77
8.17
V. 51
V. 52
7.02
6.65
6.65
6.18
5.16

Fit

10.98(0.12)
8.91(0.06)
8. 24(O. 06)
v. 45(o. o9)
v. 25(o. o3)
6.76 (0.02)
6.45 (0.03)
6.53 (O. O6)

6.10(0.01)
5.05 (0.02)

Standard deviation 0.01 0, 3

IZ(622) I

0.44 0.44 +0.08, 0.41 +0.01 0.47(0.04)
0.001(0.001)

o.o3(o. 2)

ap

ag(ap,
a2(ap,
bg

b3

1.49(0.15)
o.o6(o.o9)

—o.oo5(o. oo3)
—0.24(0.02)

o. 8(o.1)

2. 5(O. 3)
—0.5(0.2)

0.015(0.007)
—0.21(0.15)
—o.1(o.5)

~Reference 1
"Reference 13.

'J. B. Roberto and B. W. Batterman, Phys. Rev. B 2,
3220 (1970).

state. Only the form factors f(111), f(200), f(220),
and f(222) of Table I have a valence contribution
outside the range of the experimental errors. The
standard deviation 0 of model-vs-experimental form
factors is therefore calculated for these four val-
ues. For the measurements of Ref. 10, cr=0. 04,
while for a set proposed by%eiss, a=0. 11; the
former set is therefore considered more accurate.

Hartree-Fock wave functions" in the Ss Sp con-
figuration are used to calculate the Al atomic
charge distribution p(r).

The electron distribution in (110}planes resulting
from the Raccah and Henrich data is shown in Fig.
1, core and valence distributions having been com-
bined. The upper numbers show the result of
changing cutoff value; the one at the left-hand side
is for D = 26. 95a~, the one at the right-hand side is
D = 5. 26a~. The lower numbers result from a
superposition of atoms. It is apparent that in the
solid, charge has moved from the vicinity of the
cores to the voids between atoms. Minima occur
at the midpoint of the cubic cell and equivalent
points. A comparison can be made, in the region
where the core distribution is negligible, with the
valence distribution obtained by Harrison' from
orthogonalized-plane-wave (OPW) form factors.

Harrison's charge distribution reaches a minimum
of 0. 11 electrons/A compared to 0. 15, 0. 11, and

0. 10 electrons/A, at the same location, for
D = 26. 95a~, D = 5. 26a~, and atomic superposition,
re spec tively.

No recent experimental data for diamond are
available. Measurements of Gottlicher and %olfel
and of Brill et al. are compared. These room-
temperature measurements were reduced to
& = 0 'K by means of Eq. (20) with B= 0. 2002
+ 0.0001 and 0. 208+ 0. 001, respectively. They are
not in very good agreement, as may be seen from
Table II. The error bounds of Ref. 13 seem overly
optimistic. According to a recent publication an
accuracy of 1/~ is about the best that can presently
be obtained when measuring form factors. Fitting
the Gottlicher and Wolfel data with only two param-
eters, ao and b~, results in poor agreement with
Renninger's~' measured value for IE(222) I. Of the
23 tabulated form factors, only the first 11 contain
valence charge contributions larger than this error
limit, so that the fit is effective for these 11 values.
Fitting with three parameters ao, b~, and b3 results
in o = 0. 02 and [E(222) (

= 0. 19 as compared with
Renninger's value of 0. 30 and the band-structure
value 0. 24. The fact that ao&1 indicates that val-
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IA

O. 20, 0.20
(0 )7) O. I5,0. I I

(O. IO) gp

tried but they did not improve the fit.
The value D = 12.4a~ is the radius to which carbon

wave functions are tabulated; reducing D to 4. 00a~
causes small changes in the fitting.

For Si, two sets of measurements are compared:
a set compiled by Raccah et al. ' and one mea-
sured by Gottlicher and Wolfel. The set of Ref. 13
was reduced to T=O K using B=0.5021+0.0003.
Again the two-parameter model gives poor agree-
ment with the forbidden reflection. As may be seen

O. I 9,0. I 8
(O.IO)

U O. IS,O. I 7
(O.Ii)

5,0.27
0.30)

(a}

IA

FIG. 1. Electron density (electrons/A ) in Al {110)
planesderivedfrom form factors of Ref. 1. Upper values
on the left-band side are for D =26. 95az, a0=0. 1, a~
=0.35, ay= —0.0». Upper values onthe right-hand side
for D=5. 26', a0=-0. 1, a& —-1.02, a2= —0.19. Values
in parentheses result from superposition of atomic charge
distributions. Triangle denotes a saddle point, square a
maximum point, and inverted triangle a minimum point.

ence charge is pushed outward from the core re-
gion, in contradiction to the interpretation of Ref.
1. The experimental set of Brill et al. results in
0 = 0. 05, and is therefore considered the less ac-
curate of the two. In this case, large random vari-
ations were found between measured and model
form factors pertaining to higher-order reflections
than those shown in Table II. The band-structure
results of Ref. 1 compare better with Gottlicher and
Wolfel's set of data.

Figure 2 shows the charge distribution in the 1110)
and (100)planes for diamond, as calculated from
the Gottlicher and Wolfel model parameters. The
distribution in the {110)planes differs little from
that derived for room temperature by the original
authors who used the method of convolution. Their
charge density at the midpoint of the valence bond

is 1.67 electrons/As as compared to 1.69 elec-
trons/A in the present calculation for T = 0 'K;
superposition of atomic charge distributions results
in 1.1 electrons/A . Just beyond the core, the site
distribution has a skewed shape, as compared to the
squarish shape which results from straight super-
position of atoms. Outside core and bond regions
the charge distribution is relatively small.

Hartree-Fock-Slater' atomic wave functions in
the 2s2P configuration are used to calculate p(r) of
Etl. (7). Hartree-Fock wave functions also were

70
5.0
2.0
I.5

IO

0.20

F1G. 2. Electron density (electrons/A3) in diamond
derived from form factors of Ref. 13. D=12.4az. Tri-
angle denotes a saddle point and inverted triangle denotes
a minimum point. (a) {110)planes and (b) {100)planes.
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0.00

lA there is for diamond due to the larger core region.
At the midpoint of the bond, the charge density is
0. I electrons/A as compared to Gottlicher and
Wolfel's 0. 57-electrons/A room-temperature value
and their value of 0. 32 electrons/As for a super-
position of Hartree atoms. The site distributions
corresponding to the measurements of Ref. 18
indicate little radial redistribution„ the deviation
from. atomic form factors is mainly due to the
angular term in Etl. (7).

In the region outside core and valence bonds the
charge distribution is extremely small. The nega-
tive value sets a lower bound for the probable
error.

VII. CONCLUSIONS

.0

FIG. 3. Electron density (electrons/A~) in Si (lloyd
planes derived from form factors of Ref. 1. D=26. 3a~.
Triangle denotes a saddle point and inverted triangle
denotes a minimum point.

from Table III, the former set can be fitted quite
well with the three-parameter model. Owing to
the relatively large experimental errors, only the
first four form factors have valence contributions
larger than these. Considering only these four,
we have a = 0.01. The precision of the experimen-
tal form factors seems better than indicated. The
calculated value IF(222) I

= 0. 47 is comparable with
the measured value 0. 44 and the band-structure
value 0. 44. The measurements of Gottlicher and
%olfel can not be reconciled with the model and the
calculated value of IF (222) I is not meaningful.
This is found whether fitting to all 22 form factors
or only fitting to the 10 which are listed in Table
III.

The band-structure results of Ref. 1 are not in
good agreement with either measured set; the dis-
crepancy with the measurements quoted in Ref. 1
is mainly in f(111). The fact that the measured set
has good consistency makes it plausible that the
measured f(ill) is correct.

Hartree-Fock wave functions in a 3s3p config-
uration are used to generate p(x). The 2P electrons
overlap in the crystal, so that their charge distribu-
tion should probably be slightly readjusted; how-
ever, the form factors of Ref. 1 can be fitted with-
out making allowance for this. Here, D = 26. 3a~,
the radius to which the wave functions are tabulated.

The charge distribution in the (110'planes is
shown in Fig. 3. Bonding is again apparent. There
is less distortion in the vicinity of the nuclei than

A parametrized model charge distribution for
cubic crystals has been proposed and an expression
for the corresponding form factors has been de-
rived. By means of the latter, consistency of two
sets of experimental form factors for each of Al,
diamond, and Si has been examined and one has
been chosen as the more reliable.

It was shown that in case of the diamond structure
the tabulated quantities in the literature are not
truly form factors. The relation between these
quantities and the true form factors was derived.
The occurrence of forbidden reflections was made
plausible and an expression for their structure
factors was derived.

In the application of the fitting procedure. it be-
came clear that a set of experimental form factors
of relatively high precision is needed in order to
establish the number of parameters that should be
used in the model. The recent experimental results
of Raccah and Henrich for Al could be fitted with-
out parame ters.

The model may possibly serve as a test for form
factors of other metals for which experimental form
factors are presently available. In the case of Cr,
Fe, and Cu, the d-electron charge could be varied.

For diamond structures it seems that the cubic
term in bj, as well as the tetrahedral term in b3,
must be included in order to obtain agreement with
the experimental values of IF(222) I. In the case
of Si, agreement between the model, experimental,
and band-structure values of IF(222) I is better than
for diamond. A new experimental determination of
the forbidden reflection of diamond would contribute
to the verification of the proposed model.
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Multiple-scattering theory is employed to determine the one-electron Green's function in
the presence of a uniform external magnetic field and a dilute random arrangement of atomic
potentials. The oscillatory part of the density of states is extracted and used to compute
thermodynamic quantities. Explicit expressions for the frequency shifts and the amplitude
diminution caused by inserting impurities into the free-electron gas are obtained.

I. INTRODUCTION

The de Haas-van Alphen (dHvA) effect has long

been a useful tool for the investigation of extremely
pure metals. In recent years it has been applied
to the study of controlled dilute alloys in an attempt
to elucidate the electronic properties of these rel-
atively simple disordered materials. One is pri-
marily interested in the effect of alloying on the
frequency of the dHvA oscillations, since this quan-

tity depends directly upon the electronic states in

the vicinity of the Fermi energy.
There have been several theoretical studies of

the dHvA effect in dilute alloys. The earliest was
the pioneering work of Dingle, which was essen-
tially a phenomenological treatment of the effect of
impurity scattering on the amplitude of the oscilla-
tions. Dingle argued that the result of such scat-
tering was to broaden the Landau levels (the quan-
tized energy levels of an electron in a spatially uni-
form magnetic field). Since the dHvA effect arises
from the passage of such levels through the chemi-
cal potential of the system, the broadening of the

otherwise sharp levels manifests itself as a dimi-
nution in the amplitude of the oscillations. awhile

correct in spirit, Dingle's treatment gave no pre-
scription for calculating the lifetime causing the
decrease in amplitude. Furthermore, it did not
deal with the frequency shifts produced by alloying.
Heine did consider the question of what would hap-
pen to the frequency as impurities were added to
the perfect crystal. His approach was a fundamen-

tal one, insofar as the effects of alloying in the ab-
sence of an external field were concerned, but did

not attempt to deal with field-dependent effects in
a basic way.

Bychkov4 attempted to apply multiple-scatter ing

theory to the problem. His work was limited to
the case of a zero-range potential, and in any event
was not concerned with the questions of frequency
shifts. His expressions for the lifetime associated
with the dHvA oscillations differ from those derived
here and in Ref. (5) by the presence of apparently
extraneous factors. Brailsford' discussed the
question of frequency changes and amplitude reduc-
tion using what was essentially a ruse to avoid


