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We present a method for calculating the "Griffiths'" scaling function h(e/M ) directly from
high-temperature series expansions. The scaling function is calculated for the first time for
the 8 = 2 and ~ Heisenberg models, and comparison with experimental data on CrBr3, EuO, Ni,
and disordered Pd3Fe is favorable. We observe an apparent lattice independence of the scal-
ing functions calculated, consistent with the "universality hypothesis. '"

The static-scaling hypothesis makes predictions
concerning (i) relations among critical-point ex-
ponents (such as a+2p+ I =2), and (ii) the mathe-
matical form of the equation of state in the critical
region. At present there exists a great deal of
experimental evidence to support predictions (i)
and (ii); however, theoretical calculations on
model systems almost exclusively concern critical-
point exponents and hence pertain only to predic-
tion (i).

One notable exception is the recent calculation
of the scaling-function equation of state for the Is-
ing model. The calculation of Bef. 3 depends
crucially upon the knowledge of low-temperature
as well as high-temperature series expansions;
unfortunately, low-temperature expansions are not
available for many interaction Hamiltonians, and
in such cases the calculation of Bef. 3 cannot be
generalized. In particular, since a large fraction
of the experimental evidence supporting (ii) con-
cerns magnetic systems, it would be desirable to
obtain a theoretical prediction of the scaling func-
tion for the Heisenberg model of magnetism.

The purpose of the present work is to present a
method of calculating scaling functions that depends
only upon the existence of high-temperature series
expansions arid hence is applicable to Ising, planar,
Heisenberg, . . . systems. Moreover, we feel that
this method is significantly simpler to apply than the
method utilized in Bef. 3. To illustrate this method
we calculate the scaling function for the S= —,

' and
Heisenberg models, and compare the theoretical
predictions with experimental data on the insulating
ferromagnetic CrBr3. We discuss the possible de-
pendence of the scaling function upon spin quantum
number S, in the light of the universality hypothe-
sis. Also we calculate the Ising-model scaling
function for various lattices and compare our work
with that of Bef. 3.

The static-sealing hypothesis may be formu-
lated" by the statement that the singular part of a
thermodynamic potential (or, equivalently, the mag-
netic field) is a generalized homogeneous function;
that is, for all positive A.,

H(~"'"" O'""M) = ~" ""H(e M)

where II, &, and M denote, respectively, magnetic
field, reduced temperature (T —T,)/T„and mag-
netization; the exponents P and 6 are defined by
M- j e l, when II=0, and II-M, when &=0. The
main assumption is that (1) is true in the critical
region, i. e. , for sufficiently small & and M.

The "Griffiths" scaling function h(x) may be ob-
tained from (1) by setting X= (1/M)", where

However, the function h(x) defined in Eq. (2) would
not be characteristic of the critical region since
both arguments of H(a/M i~, 1) in (2) are not small
near the critical point. To obviate this difficulty,
we return to (1) and set A. = (c/M)'', where c is an
arbitrary fixed small number. Therefore (2) is
replaced by

~He MP y7g p
~c g c h g/g

so that the function h(x) becomes

h(x) =H(xc"', c)/c'.

Hence if we knew the function H(&, M), then h(x)
could be obtained by fixing M = c and allowing for
& the corresponding values xc' . In fact, the
most we know about H(e, M), either for the Ising
model or for the Heisenberg model, is a finite
number of terms in a series expansion.

In order to test the present procedure of obtain-
ing h(x) we will first consider the Ising model.
Gaunt and Baker provided the following expansion
of H(6, M):

H(e, M)=-(e+1)tant ' MQ y„(M)e
n=o

-=(~+ 1)tanh-'[Mr(M, v)],

where g„(M) are polynomials in M of degree
n, e= tanh[Z, /(e+ 1)], K,= J/kT„and J is the ex-
change parameter in the Hamiltonian. The poly-



CALCULATION OF THE SCALING FUNCTION FOR. . .

r(c, v) = Q (17„(c)v"= (vo - v)'f(v),
n=0

(5)

nomials (t(„(M) were calculated through order
I.=- 8, 12, and 12 for the fcc, bcc, and sc lattices,
respectively. Following (3) we should get a closed-
form expression for the right-hand side of (4) when

M=c, where c is a very small positive constant. '
Formally, this problem is similar to one encoun-
tered in the process of determination of the phase
boundary from (4), and here we will adopt the
similar attitude, namely, we will assume that the
function 7 (M= c, v) in (4) vanishes at the phase
boundary with the power-law form

where vo, q, and f(v) are to be estimated by the
methodof Pads approximants (PA's). Thus one first
must find vo and q by considering PA's to (d/dv)
x [Inr(c, v)], and afterwards f(v) can be determined

by studying the product (vo —v) 'r(c, v). Gaunt
and Baker noticed that the series (5) was not suf-
ficiently lengthy for reliable estimates for ep and

q to be obtained unless c & 0. 6. Since the smaller
the value of c, the wider the range of x in (3) may
be, we will choose c= 0. 6 for our further analysis.

In the case of the bcc lattice we found up= 0.1658
and q= l. 076; PA's to f(v) were consistent up to
five decimal places, and we rather arbitrarily
chose the [4, 4] PA, with the result

~

~

~

~

~

~

~

~
v 1078 1 4. 5665+5. 40683+5. 842v3+0. 390vv4

5 1558 1 —5 9389~ 17. DD3v —37 D98 25 812v ) (6)

inserting (6) into (4), using the resulting form
for H(e, 0. 6) in (3), and choosing p= I'Lt, 5=5, we

finally obtain

h(x) = [(0. 195x+ 1)/0 07776]tanh '[0. 6r(0.6, v)],
(7)

where r(0 6, v) is. given by (6) and v-=tanh[0. 15743/
(0. 195x+ 1)].

Comparing h(x) in (7) with Ref. 3, we find good

agreement in the range —xp& x& 1.1; xp is the

lowest possible value of x and is determined by

xp= ~, where (g, is the amplitude defined by

M(e, H= 0) =( —e) . The largest discrepancy is
not larger than 3%, and it occurs at those values
of x where different PA's of Ref. 3 agree to within

10%. More striking is the fact that in Ref. 3 four

separate expressions were needed for h(x) in the

interval —xp& x& 1. 1, while in the present ap-
proach a singte expression, E(I. (7), suffices. In

fact, theupperlimit of = 1. 1 for x is determined
only by the smallness of the number of terms in the

original series (5). For x~ l. 1 we may use the
"fifth expression" of Gaunt and Domb (derived also
from high-temperature expansions), and it satis-
factorily matches our expression h(x) (valid for
x&1.1).

We also calculated expressions for h(x) analogous
to (7) for the fcc and sc lattices. We find that the

normalized functions h(x)/h(0), when plotted against

x/xo, differ for all three lattices by at most 2/o,

thereby supporting (but of course not proving) the

idea of universality of the scaling functions. ' '
Next we apply the present approach to the case

of the nearest-neighbor S = —,- Heisenberg model, for
which Baker et al. 10 have calculated expansions
analogous to (4),

L n

H(e, M)=(a+ 1)tanh ~ MQ 2„,—P(M)
n=0

= (e+ 1)tanh [M g(z, M)], (8)

whe~e z -=If, /(&+1) and P„(M) is a polynomial in
M of degree n. In analogy with (5), we assume
that the function g(z, M) for fixed M = c vanishes at
the phase boundary,

L n

g(z, c)=1+ Q 2„, P„(c)-(z,-z)' t(z()(.2n (9)

The PA analysis is not reliable for c & 0. 4, so we
shall choose c = 0. 4. Again the PA's to (|7(z) are
extremely consistent (providing 0. 4& c & 0. 85) and
we present here the expression for g(z, c), for the
fcc lattice, using the [3, 3] P. A. ,

8(., 5. 87= (1-, „'„,)""

1+ 3. 789@+1.671' + 3. 612'
1+ 3. 775z + 4. 622z + 14. 397z

Combining (10), (8), and (3), we obtain

h(x) = —, tanh '[0. 4g(z, 0. 4)],(0.4) t s x+ 1

where

Z =O. 2492/[(O. 4)"'x+1] . (12)

Qfe deliberately have not written the explicit values
for (0. 4)'~6 and (0. 4)2 (as we had in the Ising-
model case) since there is now an alternative to
choose either P =- 0, 35, 6 = 5 as in Ref. 10 or to
take P = 0. 385, 5 = 4. V1, which follows from com-
bining the more accurate estimates y= 1.43 and
2A= 3. 63 with the scaling relations A=y+P and
P5= y+ P.

For large x, E(I. (11)will break down for the
reasons discussed above. Hence we calculate h(x)
for large x using the method of Ref. 3, 13 with the
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result (for @=1.43, 2m= 3. 83, P=O. 385, and
5=4. Vl)

0. 9328+ 0. 2805 x
1 —0.24V2 x

This expression meets with (11) in the vicinity of
x = 1. 25 with an accuracy better than 0. 5%.
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FIG. 1. Scaling function for the S=y Heisenberg mod-
el, compared with essentially the entire range of the Ho-
Litster data (Ref. 2) on CrBr3. The slight discrepancy
for large values of the abscissa is due to the difference
between the value &=1.43 used in the calculation (Ref.
11) and y=1.215 measured (Ref. 2) for Crars. This is
essentially a plot of "scaled magnetization" M/H~ ~

vs "scaled temperature" c/8, with the results pre-
sented in terms of the Griffiths function h(x).
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FIG. 2. Central portion of Fig. 1 is shown enlarged
here. Curve 1 was calculated with p=0. 385, g =4.71
(as in Fig. 1), while curve 2 was calculated with P=0. 35,

t5 =5. Also shown is the scaling function for the Ising
model.

Figure l compares our S= 2 Heisenberg-model
calculation of h(x) with experimental data on the
insulating ferromagnet CrBr3 . Figure 2 is an
enlargement of the central portion of Fig. i, and

O

FIG. 3. Comparison of calculations
for the fcc lattice for the Ising model and
the S= 2 and S= ~ Heisenberg models.
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contains additional comparison with the Ising
model.

For the classical Heisenberg model (S = ~), a
somewhat modified procedure applied to the series
of Stephenson and Wood leads to the result

0. 8Z, & z

3- 22. 169z+ 23. 71z + 9. 512z
1 —7. 823z+ 10.745z +1.697z

where x =K,/(xM + 1) and M is found from the
expression M(xM' +1)= 0. 8K, (K, = 0. 1573).

To compare h(x) for S= ~with h(x) for S= —,', we
plot in Fig. 3 the dependence upon (x+ xo)/xo of
h(x)/h(0), because this quantity does not require
for its calculation the specification of the critical-
point exponents. " In the region where (11) and (14)
are valid, the discrepancy between the S =-,' and
S = ~ scaling functions is at worst 10/~; whether

this discrepancy is genuine or spurious (because
of the slow convergence of the series) we cannot
answer firmly.

In summary, we have presented a method that
affords a simple reliable calculation of the scaling
function h(x); this method is applicable to models
for which no low-temperature series are available.
The scaling functions for the Ising and Heisenberg
models were calculated and of the two the Heisen-
berg calculation was found to agree considerably
better with experimental data on CrBr3, EuO, Ni,
and disordered Pd3Fe. Finally, we have noted a
striking lattice independence (and possible spin
independence) of the scaling function.
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