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Computing g(M, ) to third order (neglecting all but
the three largest terms) one obtains Eq .(B5):

A, ~ 3 qA~qQ 3 A~a

x [1(1+l) —m, '] . (B5)

Substituting Eq. (B5) into Eq. (B4) and simplitying,
one obtains Eq. (9).
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Charles M. Bowden
Physical Sciences Directorate, Redstone Arsenal, Alabama 35809

(Received 7 September 1971}

A model is derived for the frequency dependence of the magnetic-resonance integrated
absorption for non-Kramers doublets. The integrated electron-paramagnetic-resonance
absorption is shown to be independent of the resonance frequency through second order in the
crystal field perturbation for transitions within a non-Kramers doublet. This in in large con-
trast with the frequency-squared dependence in first order for the acoustical-paramagnetic-
resonance and the paraelectric-resonance integrated intensities. For the cases of the acou-
stical. -paramagnetic-resonance and paraelectric-resonance integrated absorptions as functions
of the resonance frequency squared, the intercept is shown to depend explicitly upon the zero-
field splitting of the states of the doublet. The slopes determine the relative strengths of the
acoustical-paramagnetic-resonance and paraelectric-resonance absorptions. A transforma-
tion is derived from the spin Hamiltonian which transforms the absorption line shape from
that in field variation (H) to that in frequency variation (v). The transformation shows that the
line shapes in the two cases are basically different when the absorption line is broadened by
crystal field perturbations. The model predicts that the integrated intensity in frequency
variation is greater than that in field variation by a term proportional to the average value of
the square of the crystal field perturbations.

I. INTRODUCTION

Non-Kramers paramagnetic-ion impurities in
diamagnetic-crystal host lattices have been studied
using electron-spin-resonance' (EPR) techniques.

The applications of acoustical-paramagnetic reso-
nance (APR) also include studies on the non-.
Kramers impurities. In fact, the APR techniques
are particularly adaptive to the study of transitions
within the non-Kramers doublets since the quadru-
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pole transitions are allowed' for APR but forbidden
for EPR. In some cases both EPR and APR have
been readily observed. The transition probability
for the EPR in such cases is significant because of
mixing of the states of the doublet by local crystal
field per turbations. '

The nature of the mechanism for the phonon-
induced-APR and the photon-induced-EPR transi-
tion probability is quite different. If the absorp-
tion line shapes are broadened by local crystal
field perturbations, as is the case for non-Kramers
ions, '2 the shapes are expected to be quite different
for EPR and APR in the same sample. Line-shape
calculations have recently been carried out and
applied for several cases. ' It is shown in this paper
that the integrated intensity of the absorption as a
function of resonance frequency also gives a mean-
ingful comparison between the APR- and EPR-
resonance absorption, and a model is presented for
the case of a non-Kramers ion of effective spin one
with an axial crystalline-field environment and
simple hyperfine coupling.

In addition, the integrated absorption as a func-
tion of frequency is derived for the case of para-
electric-resonance (PER) absorption. This kind of
absorption is possible when the impurity site lacks
inver sion symmetry. Electric-field-induced
transitions of this type for a non-Kramers doublet
have been reported previously.

In the development which is to follow, we assume
that the resonance absorption line is inhomogene-
ously broadened by local crystal field perturbations
caused by crystal imperfections „ In addition, we
consider contributions to the broadening from iso-
tropic-hyperfine or transferred-hyperfine interac-
tions. In Sec. II A expressions are developed for
the integrated intensity for APR and PER in terms
of the resonance-frequency and spin-Hamiltonian
parameters. The slope and intercept are obtained
from the model for the integrated intensity vs
the square of the resonance frequency and can be
compared with the results of an experiment. Such
a comparison can give pertinent information con-
cerning the spin-lattice coupling and the transition
probabilities. It is shown that the integrated in-
tensity for APR and PER varies as the square of the
resonance frequency, and this is compared with the
frequency invariance, through second order in the

crystal field perturbations, of the EPR integrated
intensity. In Sec. II B a transformation is derived
from the spin Hamiltonian, which transforms the
absorption line shape from magnetic field variation
(H) with the frequency v held constant to that for
frequency variation (v) with the magnetic field H
held constant. It will be shown from the transfor-
mation that the line shapes in the two cases are
basically different. It is also shown that the inte-
grated intensity in (v) is different from that in (H)

because of the difference in the line shape in the
two cases. This is shown to arise explicitly from
the crystal field perturbations and the hyperfine
splitting.

II. THEORY

A Integrated Intensity

%e consider the condition that the resonance ab-
sorption is inhomogenously broadened by crystal
field perturbations and hyperfine or transferred-
hyperfine interaction. The paramagnetic absorp-
tion of acoustic energy (APR) for a homogeneous
component of the resonance absorption is given by
the relation

Phvn = ~qg

where a is the paramagnetic-absorption coefficient
at the Larmor frequency v, c is the energy density
of the phonon field of frequency v, e is the velocity
of sound in the material, n is the population dif-
ference between the levels, and, using Fermi's
golden rule,

is the probability per unit time that a transition oc-
curs Her. e, g(v) is the density of final states for
the homogeneous component and Q L is the appro-
priate spin-lattice Hamiltonian for the phonon field
at the resonance frequency which couples the initial
state i with the final state f.

For the high-temperature approximation, i.e. ,
for Qv /KT « i, and assuming that the frequency v

does not change significantly over the range in
which the density of final states for a homogeneous
component, g(v), is significantly different from
zero, ' the paramagnetic absorption of acoustic
energy is

n(v'- v) =K(N)v "g(v' v)-
Here v' is the "center" frequency of the homoge-
neous absorption and

where N is the number of paramagnetic absorbers
per unit volume for the homogeneous component,
p is the density of the material, G,'», are the spin-
lattice coupling parameters which are related to
the spin-lattice coupling coefficients" by numerical
factors which depend upon the particular spin-op-
erator combination involved, and e» are the strains
per unit strain.

The resonance frequency v' is identified with a
homogeneous ensemble of paramagnetic absorbers
and can be evaluated in terms of the interaction
parameters from the eigenvalues of the appropriate
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spin Hamiltonian for the given ensemble. The
total integrated intensity J for the inhomogenously
broadened absorption line is obtained by summing
the integrated absorption over all the ensembles of
the system, '

eT=Z( f Q((V( —P)dV
0

8 =hv, 0 =16 (12)

If we use Eq. (11) in Eq. (7), the resulting expres-
sion for the integrated APR intensity for a given
hyperfine component of the system, characterized
by the nuclear-spin quantum number m„ is

=4( K((X() f V( g(( (V—V)dV (5)
mr I 8

(13)
where v, and N, are the resonance frequency and
number of absorbers per unit volume in the ith
ensemble, respectively, and E, (N, ) is given for
each ensemble by Eq. (4). We have the normaliza-
tion condition for the density of final states for
each ensemble, i.e. ,

g( (P( —P) dV = 1
0

Then we get

g=Q, If, (N, )v,

(6)

(7)

To evaluate the terms in Eq. (7), in terms of the
spin-Hamiltonian parameters, we must solve the
eigenvalue problem for each ensemble of the
system. As an example we consider the effective
spin-one Hamiltonian for a non-Kramers doublet
with axial crystal field symmetry, '

z= —,
' rs. +a[s,'- —,

' s(s+1)]

Here P is the normalized hyperfine probability,
l. e. ,

m I
nt

, , x„,!(n-x )!
ni

x, !(n —x„,)!

O=&V0 (15)

is the unperturbed Zeeman splitting. We use Eq.
(4) to perform the indicated summation in Eq. (13)
to give the resulting expression

(16)
Here

(17)

(14)
In this expression x is the number of ways in which
n objects can be arranged within the spin manifold
mr. Also

where

+ M + b *S + (As, —pw II,)Ig, (8) is the ensemble average of the crystal field per-
turbations and

I'=2gp. ~H,

and H, is the axial component of the magnetic field,
A the isotropic hyperfine coupling parameter, and
6 can be written explicitly in terms of the local-
strain components and spin-lattice coupling coef-
ficients. '~ Thus, 6 is a distribution function in
the local crystal fieM perturbations, and there-
fore each value of ( AI~ characterizes an ensemble
of absorbers of the system. If the axial distortion
is large compared to the Zeeman splitting, i.e. ,

then, neglecting any coupling of the singlet into the
states of the doublet defined by Eq. (8), ' the char-
acteristic determinant of Eq. (8) takes the form'

(18)

is the total number of paramagnetic absorbers in
the system. The total APR integrated intensity
for the system is obtained by summing Eq. (16)
over all the hyperfine components to give the total
integrated intensity J for the inhomogeneously
broadened line, i.e. ,

~=~ ~m,
-r I

J =K(Xr) vo+~ I(I+1)(2I+I)~Pq+ ~2
— (APR)

(fl')
h

(18)
where

a11
0

a3y

0 a)3
a22 —X 0

0 a» —~
=0 (10)

and

mI ~I

p, = Z m,'p
mr ~-I

mI I
Z m,

'
mr~ I

(2O)

The resonance condition for an ensemble for
transitions within the non-Kramers doublet defined
by Eq. (8) is therefore"

mr ~I

m~~ = ,' I(I+ 1)(2I+1)—
mr~ I

(21)

8 = [(I'+Am )'+ 0'] '~'

where

In the case of electric-field-induced transitions
in PER, the absorption a per unit time per unit
volume" is
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a =-,' v'(e'I x„l')vz,', (22)

where the term in parenthesis is the electric-
dipole moment of the ion and E„ is the applied-
rf electric-field intensity in the sample. The ex-
pression analogous to Eq. (1), in this case the
paraelectric absorption of energy from the radia-
tion field, PER, is

Z'=Q J a (v, —v)dv (26)

where

Here R is the spin-electric-field coupling param-
eter, 6 is defined by Eq. (8), and cr and p are the
real and complexparts of &, respectively. y' The
rf-field-normalized integrated intensity 8' is

a= Phvn ~ (23) a'= a/Z„', (26)
If we assume that the undistorted crystal field
symmetry is C3„, the PER transition probability
has been shown to be given, through second order
in I &I/hvo~ by

P= —2R2E2i 1 —
2 ~ 2 +p2 g v

!

(24)

If Eqs. (24) and (26) are used in Eq. (23), the in-
dicated integrations and summation can be per-
formed in Eq. (25) using the same assumptions and

procedure which led to Eq. (19), The result is,
neglecting terms of order [ 6['/(hvo) and A /(hvo)

and higher,

J'=K'(N ) v —l(1 ~ 1)(21 ))—)q ~ — —~ ((P ) —(g ) )) (PER)2 1
A' 1 (n') 8

(27)

where

K'(X, ) = (28)

B =PJ'S vn

For this case, '

B=4mH„vy"

(29)

(30)

where y" is the complex component of the suscep-
tibility and H« is the magnetic field component of
the applied rf field in the-sample. The transition
probability P is again given by Eq. (2). If we as-
sume that the unperturbed symmetry at the im-
purity site is either D,„or C,„, the matrix element
in Eq. (2) which couples the initial and final states
is, through second order in the crystal field per-
turbations, '

The crystal field perturbation 6 is again defined

by Eq. (8) and is the same distribution function in

(0 ) and pz are given by Eqs. (17) and (20), re-
spectively, and (p ) and (o ) are defined in the
same way as (0 ), i. e. , Eq. (17). It is to be noted
that the last term in Eq. (27) is zero in some
cases, from symmetry considerations. In partic-
ular, it has been shown' that for a system such as
CaFo. U" where the axial distortion is along [111],
(o ) and (p') are equal. When this is the case,
Eqs. (19) and (27) are quite similar.

We turn attention now to the case for magnetically
induced transitions, EPR. The absorption per unit
time per unit volume B in this case, the counter-
part of Eqs. (1) and (23), is

l

the local crystalline field which appeared in the
previous two cases. Using Eq. (31) in Eq. (29)
and under the same assumptions made in the pre-
vious two cases, the expression for the absorption
B for a given ensemble of the system becomes

B(v' —v) =K"(x)v"g(v' —v)[l al'/(h vo)'j, (32)

where

K' (X) = (32m X/KT)g'p, ,H„ (33)

Using Eqs. (6), (11), and (17) in Eq. (34), the in-
tegrals and summation are performed in the same
way as presented in the previous cases. If terms
on the order of

~
b, ('/(h v, )' and A'/(h v, )' and higher

are neglected in the result, we obtain the expres-
sion for the integrated EPR intensity for the sys-
tem,

J"=K„"(1Vr)((O )/16h ) (EPR),

where

(36)

K„"=K"/a,', (36)

is independent of the applied radiation density.
Equation (35) differs markedly from Eqs. (19) and

(27) in that it is independent of the resonance fre-
quency vo. This is a direct consequence of the fact
that the transition within a non-Kramers doublet is
a magnetic-quadrupole transition (~ bMo [ =2) and is
therefore a forbidden transition in EPR. Transi-

The rf-magnetic-field-normalized integrated inten-
sity for the system, J", is given by

J =Z, v, —,g(v, —v)dv . (34)
K"(&() o I ~(l'

« hvo
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tions occur only when the states of the doublet are
mixed by perturbations which lower the symmetry
to lower than axial. Thus, there are no first-
order contributions to the transition probability as
there are for the APR and PER, and the second-
order term in effect cancels the frequency depen-
dence of the integrated intensity.

B. Transformation of Line Shape

Magnetic-resonance observations are most often
performed in the microwave region, and therefore
the applied dc field H is normally varied, while
the unperturbed Zeeman frequency vo (klystron fre-
quency in EPR) is constant. The line shape obtained
under this condition will be called H variation, and
designated as (H). The resulting equations for the
integrated intensity, Eqs. (19), (27), and (35),
correspond to the condition where the applied dc
field II is fixed and the rf frequency v is varied.
This condition will be called v variation and des-
ignated as (v). The calculations were necessarily
done in (v) because the straightforward counter-
part in (H) leads to difficulties in the theory; in
particular, the density of final states is not strictly
normalizable independent of the unperturbed split-
ting v0. ~2

To compare experimental results with Eqs. (19),
(27), and (35), it is necessary to obtain a mapping
of the line shape from (H) to (v). It is the purpose
of this section to develop this transformation within
the context of the present model. This is done
directly from the eigenvalues of the spin Hamil-
tonian. Consistent with the definitions given by
Eqs. (9) and (12), we replace (H) by (F) and (v) by
(b). Thus, Eq. (11) in (8) can be written as

(40)

J'&g)($) =p, Z n, c& "(8,' —&g) (41)

where n& in Eq. (40) is the number of absorbers
in the ith ensemble, the ensemble belonging to the
resonance splitting I'&', and a' in this case is the
absorption per ion. The obvious analogy holds for
Eq. (41). The terms in the arguments, I", and

8,', are connected by the point transformation, Eq.
(39), and I' and &&' are corresponding points in (I")
and (8), respectively, on the resonance-absorption
line. Consistent with our assumption that the
homogeneous components of the absorption line are
unresolved, within each hyperfine component Eqs.
(40) and (41) become, in the unresolved limit

J& &
(I') =p J o. '(F' —I')q(I")dI"

0
(42)

to some ensemble and hyperfine component. Thus,
for each hyperfine component of the absorption
line, Eq. (39) is the mapping between I' in (I') and
&g in (8).

We proceed now with the derivation of the trans-
formation for the intensity of the absorption. Since
this depends explicitly on the nature of the probe,
we shall consider only the case for APR. The
procedure carries over identically to the other two
cases and these will not be considered here.

We begin with the following expressions for the
intensity of the absorption in (I') and (8), respec-
tively, for each hyperfine component, assumed
resolved:

Q'(8) = 8' —(e, +Am, )' (37)

Q (I') = $0 —(I'+ Am~) (3S)

Since a particular ensemble of the system is char-
acterized by a particular value of 0, the mapping
of the resonance, or "center, "absorption of each
ensemble between (1") and (8) is obtained by equat-
ing Eqs. (37) and (38),

where So is given by Eq. (15) and is the unperturbed
Zeeman splitting. Similarly, in (F), Eq. (11) can
be written as

el&g, (&) =p J, ~"(&g' —b)p(b')db ' (43)

where E=( 28 0+2m& A&&)0'~ and q(I') and p($ ) are
the density of absorbers in (I') and (8), respec-
tively. We look for the transformation that trans-
forms Eq. (42) into Eq. (43). With this purpose
in mind, we transform Eq. (43) from (8) to (I').

If n(Q)dQ is the number of absorbers between
Q and Q+dQ [n(Q) Gaussian for random perturba-
tions], then

&g =28 +2m A($ —I') —I (39)

Thus, if the ith ensemble of absorbers (correspond-
ing to 0 = Q&) is resonant at I', in (I') when the un-
perturbed Zeeman splitting is $0, then from Eq.
(39) we have its corresponding resonance at 8& in
(&g) when the unperturbed Zeeman splitting is the
same. If the homogeneous components of the reso-
nance absorption are completely unresolved in the
line shape, each point on the resonance line can be
considered as the resonance position corresponding

q(I') =n(Q(F))
dQ

and

p(&) =~(Q(&)) d@- .

Thus we have

p(&) =q(F(&g)) dg

(44)

(45)

(45)
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Consistent with the assumption made in Eq. (3) that
8 does not change significantly for an ensemble of
the system over the range in which the density of
final states g(v' —v) is appreciably different from
zero, the absorption functions n ' and n" in Eq s.
(42) and (43) are written in the same form as Eq.
(3 ),

~'(r '- r) =z'$', g'(r'- I)
and

o."($'—$) =A'$'g($' —$)
where

A'= (A/X)P (49)

and SC is given by Eq. (4). Consistent with the as-
sumption used in representing the transition prob-

ability P according to Fermi's golden rule, we
relate the density of final states g' in (I') to that
in ($), g, by the Jacobian of the transformation,

derived from Eq. (39), i. e. , in the same way as
p and q in Eq. (46). From Eq. (39) we get

r [2$', +2m, z($, —r) —I ]'"
g m A+P (5O)

(51)

and

If we use Eqs. (39), (46)-(48), and (50) in Eqs.
(42) and (43), the result for each hyperfine compo-
nent, assumed resolved, is

J&„(r)=z'$', f g'(r' r)-q(r ')dr '

, f (as;, 2m, ~y, -r )-r"f'*,(~,
A+~ (52)

(53)

Similarly for Eq. (52),

r[J«&(r)]=If'T[g'] r[F]
where

We note that Eqs. (51) and (52) are in the form of
convolution products if the density of final states,
g', is taken to be zero for I'&0, 1"&80. Thus,
taking the transform of Eq. (51) and making use
of the convolution theorem, '

r[J (r) (r)]=ff$t2T[g'] T[q]

J&r&(I') E $0q(I') (5&)

, [2$', + 2m, z($, —I ) —r'] '~'

(58)

for g'(I" —1 ) —5(I"—I'). Thus, combining the last
two expressions,

[2$()+2mi A($0 —I') —I' ]~~~

J&s& r = '
8'a(m 'r) J( &

r

[2$', +2m, a($, —r') - r"]'"
q I"'

~1A+ ~'

We may combine Eqs. (53) and (54) to get

( ]
1 r[E]T[J(„&(r)]

~$, r[q]

(55)

(59)
So, for the 5-function approximation for the density
of final states, given the line shape in (I"), Eqs.
(59) and (39) can be used to obtain the corresponding
line shape in ($) for each resolved hyperfine com-
ponent.

III. DISCUSSION AND CONCLUSIONS

Since J&r& is the measured intensity and F/q is
determined if the hyperfine splitting A is known,
the right-hand side of Eq. (56) can be determined
numerically from the observed line shape in (I') if
some assumption is made about the form for the
probability density in the crystal field perturba-
tions q. Thus Eqs. (56) and (39) comprise the
transformation of the line shape from (I') to ($).

A particularly simple special case arises if the
density of final states in Eqs. (51) and (52) is ap-
proximated as a 5 function. This, of course, will
be justifiable in a given situation only if the line
broadening due to the crystal field perturbations
is much greater than that caused by lifetime broad-
ening. In this special case, Eqs, (51) and (52)
become

J(r) ——A (Xr )v() (6O)

So it is seen that the integrated intensity in ($),

The integrated intensity for the APR, Eq. (19),
predicts a resonance-frequency-squared dependence
for transitions within a non-Kramers doublet. This
dependence has been observed and repor ted' for
CaF~:U '. However, the results of the model in-
dicate that the ratio of the intercept to the slope for
the integrated intensity versus the square of the
resonance frequency can give important information
about the effect's of the hyperfine coupling and aver-
age-crystal-field perturbations which occur in
second order in Eq. (19). The integrated intensity
given by Eq. (19) is in ($). The corresponding
integrated intensity in (I') is'
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Eq. (19), yields more information than that in (I"),
Eq. (60). The fact that the integrated intensity in
(A') is greater than that in (I') is a direct manifes-
tation of the fact that in (8), the energy-level split-
tings corresponding to the various ensembles are
sampled at different energy-level separations and

consequently different population differences,
whereas in (I'), the energy-level sylitting for each
ensemble is sampled at the same energy-level
separation and population difference. The ratio 8
of Eq. (19) to Eq. (60),

Aa (0')(R=l+gI(I+1)(2I+I)
(

„pr+, (61)

bears out fundamentally the predicted differences
in the two types of experiment using the same
probe, i. e. , one in (8) and the other in (I'). If the
concentration of impurity N~ is known, the spin-
lattice coupling can be evaluated in the usual ma, n-
ner" from Eq. (60) and thus K(Nr) is evaluated
using Eq. (4). Then, using the transformation for
the line shape, Eqs. (39) and (56) or (59), the left-
hand side of Eq. (19) can be evaluated from experi-
ment. Thus, if the hyperfine splitting A is known,
the average crystal field perturbation (0 ) can be
evaluated. Since (Q~) is "hidden" in the line shape
for a non-Kramers doublet, ' and therefore must be
determined from the line shape itself, Eq. (19)
offers a useful means for evaluating this parameter
from an experimental line shape.

The line shapes in (8) and (I') are fundamentally
different, as indicated by the transformation equa-
tions (39) and (59). On the basis of the transfor-
mation, the shapes are expected to be very nearly
the same for regions of the absorption line in the
neighborhood of the undisplaced Zeeman component.
However, in the low-field tail of the line, the shapes
are expected to be quite different. The crystal field
perturbations in this region tend to increase the
amplitude and narrow the line in (A') with respect
to (I"). This is caused by the combined effect of
the increase in population difference as well as

splitting in (8) and the increase in the density of
absorbers between (I') and (S) as indicated by Eq.
(50).

The results of the model for the integrated in-
tensity predict a similar dependence between the
APR and PER integrated intensity, Eqs. (19) and

(27), as expected, since in each case the transition
occurs in first order. On the basis of a develop-
ment similar to that presented for the APR, the
left-hand side of Eq. (27) can be evaluated from an
experiment provided the coupling 8 is significantly
different from zero and provided the energy density
in the rf electric field, E„, can be evaluated in the ex-
periment, Eq. (26). ln such a case, the ratio of
8 to the spin-phonon coupling can be determined
independently of the impurity concentration N~ by
a comparison of the APR, Eq. (19), with the PER,
Eq. (27), of the same sample.

A marked difference exists on the basis of the
model between the EPR integrated intensity, Eq.
(35), and the APR and PER integrated intensities,
Eqs. (19) and (27), respectively. This is due en-
tirely to the fact that the magnetic-quadrupole tran-
sitions occur in second order, whereas the phonon-
induced and electric-dipole transitions each give
a first-order contribution to the transition probabil-
ity for a non-Kramers doublet. In the absence of
a first-order contribution to the transition prob-
ability, the resonance-frequency-squared depen-
dence inherent in the expression for the integrated
intensity for APR and PER, Eqs. (19) and(27), in
effect is "cancelled out" in the case for EPR, Eq.
(35). Thus, to the same order in the crystal field
perturbations, the EPR integrated intensity is ex-
pected to be independent of the resonance frequency,
in large contrast to the APR and PER.
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