PHYSICAL REVIEW B

VOLUME 5, NUMBER 7 1 APRIL

Microscopic Description of Electron-Solid Interactions at a Surface™®

Peter J. Feibelman
Depaviment of Physics, University of Illinois, Urbana, Illinois 61801
and State University of New Yovk, Stony Bvook, New Yovk 11790

and

C. B. Duke and A, Bagchif
Department of Physics, Matevials Reseavch Labovatory and Coovdinated Science Labovatory,
University of Illinois, Urbana, Illinois 61801
(Received 15 November 1971)

A microscopic quantum theory of the scattering of an electron at metal-vacuum interfaces
is constructed. The interactions of the electron with the short-range electron-ion core poten-
tial, the bulk-density fluctuations (e.g., plasmons), and the induced surface charge all are
incorporated into the theory in a systematic fashion. Models of the surface- and bulk-charge-
density fluctuations are catalogued as appropriate limiting cases of theory. The structure
and predictions of the various models are compared, and the suitability of the models as the
basis of a theory of electron-solid scattering is examined. The approximations required to
produce from the general theory the usual semiclassical description of bulk- and surface-
plasmon emission by keV electron transmission are displayed. Similarly, the theory is applied
to “derive” the model Hamiltonian recently used to construct a semiphenomenological quantum-
field theory of inelastic low-energy (10<E < 10% eV) electron diffraction. A distorted-wave-
scattering theory of elastic low-energy electron diffraction is proposed in which bulk- and
surface-plasmon inelastic processes appear as loss terms in a nonlocal complex optical po-
tential whose nature is examined in detail. In appropriate limits, the optical potential is shown
to lead both to the image force and to the empirical local-potential models which have been
used in calculating elastic low-energy electron diffraction. The pronounced differences be-
tween the empirical models and the predictions of the microscopic theory for the optical po-
tential are explored. Some of the consequences of these differences for the analysis of experi-
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mental elastic—low-energy—electron-diffraction data are derived.

I. INTRODUCTION

Recent studies of both elastic!™" and inelastic®®
low-energy electron diffraction (ELEED and
ILEED, respectively) have improved the theoretical
description of these phenomena to the extent that
their applications to characterize the surface of a
solid are becoming quantitative in nature. The
ELEED data can be analyzed to determine the ge-
ometry of the surface atoms!''°-'2 and the ILEED
data to determine the dispersion relation and damp-
ing of the loss modes excited by the scattered elec-
tron. %1% All of the models used in these analyses
embody essentially phenomenological descriptions
of the interaction of the electron with the excitations
of the solid, In particular, the effect of surface-
plasmon loss processes on ELEED cross sections,
although long suspected to be important, %% is
known® not to be described adequately (if at all) by
existing models. This fact leads to difficulties in
using these models to characterize quantitatively
the properties of a surface. For example, the
absolute intensities of different ELEED beams pre-
dicted by otherwise adequate model calculations
are in disagreement with existing data, ®7 and the
dependence on the angle of incidence and crystal
face of these intensities is not described quantita-
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tively by current model calculations.”!®" Similar
problems in describing the details of the data occur
in analyses of ILEED intensities, !*%17 although
the model calculations of these processes are not
yet as refined as those of ELEED. The theory re-
ported in this paper is presented as a first step in
resolving such difficulties by virtue of constructing
as an appropriate basis for the theoretical data
analysis a model in which both surface and bulk loss
processes are incorporated a priori on an equal
footing. Although we have not yet carried our cal-
culations as far as those of the phenomenological
models, we are able to demonstrate that a micro-
scopic treatment of surface excitations provides
mechanisms of the proper nature and magnitude to
remove some of the discrepancies noted above.

Our description of electron-solid interactions is
based on the random-phase approximation (RPA) to
the linear response of the solid to the electromag-
netic field of the electron. Relativistic retardation
phenomena are neglected a priori. The literature
on the linear response of a semi-infinite medium to
an external electric field is substantial.'®-?* We
adopt the formalism of Feibelman'® because his use
of the spectral decomposition of the linear-response
operator is ideally suited for our calculations of
the electron-density-fluctuation vertex function for
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all of the independent density fluctuations of the
system. This formalism is specified, using a gen-
eralized state-vector notation appropriate for our
applications, in Sec. II.

Inspection of the considerable literature on sur-
face-plasmon phenomena® quickly reveals the use
of a variety of models whose relationships with each
other are not apparent. Therefore, as one of our
main tasks is the evaluation within our quantum
theory of the electron-plasmon-interaction vertex,
in Sec. III we classify these niodels, establish their
interrelations, and evaluate the density-fluctuation
excitation spectra and state vectors for two of
them. In particular, we develop the results for the
“step-density” model in detail (Sec. III B) because
it provides the connecting link between the micro-
scopic quantum theory and the semiclassical phe-
nomenological models of electron-plasmon interac-
tions. This link subsequently is established in Sec.
IVA. Since one of the unique features of the for-
malism, the orthogonality and completeness of the
density-fluctuation modes, is to play a crucial role
in our evaluation of the electron-solid optical po-
tential, we verify in Sec. IV A that it leads to a di-
rectly observable phenomenon: the reduction of the
forward-scattering cross section for the bulk-
plasmon-assisted transmission of keV electrons
through thin films. The step-density model’s pre-
diction of this effect is calculated and shown to
agree with both experimental data® and the hydrody-
namical-model calculation of Ritchie.® Therefore
we consider this important aspect of our microscop-
ic analysis to be firmly established.

In Sec. V we turn to our major task: the applica-
tion of the microscopic quantum analysis to describe
ELEED. The outline of an appropriate distorted-
wave multiple-scattering theory is given in Sec.

V A, together with our expression for the electron-
solid optical potential. As in the case of surface
plasmons, a sizable literature exists on alternative
schemes (mostly semiclassical) for evaluating such
a potential. Therefore in Sec. V B we classify
these procedures and relate them to the expression
predicted by our quantum theory. In Sec. VC we
show how to recover from our formalism the con-
ventional empirical descriptions'~" of the absorptive
part of the optical potential. A few previously
unnoticed consequences of such descriptions are
discussed in this subsection. In Sec. VD we cal-
culate the optical potential using the step-density
model and demonstrate that in the semiclassical
limit the model gives the image force outside the
metal and a short-range force inside the metal.
Finally, in Sec. VE we develop an approximate
solution of the Schrodinger equation which describes
electronic motion under the influence of the optical
potential associated with the step-density model
and demonstrate that, even in the quantum theory,
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far outside the metal an electron acts “as if” it
were under the influence of the classical image
force. However, due to the long-range nonlocality
of the optical potential predicted by the microscopic
theory, conventional methods do not enable us to
solve the associated Schrodinger equation in all of
coordinate space; i.e., our approximate solution
is only valid sufficiently far from the surface. Con-
sequently the evaluation of elastic electron-solid
cross sections, even for a highly simplified model
of the solid, remains an interesting and open prob-
lem.

Because of the extensive nature both of our in-
ternal checks of the quantum theory and the estab-
lishment of its relation to substantial bodies of the
literature, we have endeavored to make each sec-
tion as self-contained as possible. By inspection
of the above outline the interested reader can isolate
and examine those sections of interest to him with-
out reading the whole paper. A synopsis of our new
results is given in Sec. VI.

II. REVIEW OF FORMALISM

Let us assume that an electron impinges on a
solid with sufficiently high energy that the Born
approximation is valid in describing its coupling
to the excitations of the solid. The inelastic elec-
tron-scattering cross section is then simply an
integral over the linear-response functions of the
solid. %

The earliest descriptions of the linear response
of a solid with a surface?"® were based on a semi-
classical approach, which was basically hydrody-
namic. More recently, several authors!®=% have
employed the RPA, a fully quantum-mechanical
approach to linear-response theory. In this section
we discuss the linear response of a solid with a
surface from a point of view that is sufficiently
general to permit the codification of all previous
work on the problem.® As illustrations, in Sec. I
we will discuss two model surfaces, the step-func-
tion-density model, 9 and the infinite -square -bar -
rier model for which Beck and Heger and Wagner have
recently obtained numerically the surface component
of the exact RPA linear-response function, *

We restrict our description of the solid, for ease
of presentation, to the jellium model, in which the
(static) positive -charge background is isotropic in
the interior and falls to zero in some way at the
surface. We further assume our solid to have the
symmetry of a slab; the normal to the surface is
taken to be in the z direction. Under these condi-
tions, the response of the solid to a weak external
potential Vgxr(d, z, w) of wave vector q in the x-y
plane, and a frequency w, is given in the RPA as
the induced electron-number density,

2P(q, z, w):f dz' £(q; z, z'; w)
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(1)
where the two-dimensional Fourier transform of
the Coulomb interaction is denoted by

fq(zl_Z;I)E(zﬂez/q)e-qlz'-z"l , (2)

and the particle-hole propagator is

2
d kg Z elm' - ekwn
2‘7) nnt O~ Whagnt Wen !

£ 2, 2; w)=2j(
X Dl i), (2 MR (") . (3)

In Eq. (3) we have defined 6,,=6(¢y— w,,), where €,
is the electron Fermi energy and 6(x) is the unit
step function. The energy w,, is defined by

w,=k%/2m +w, , (4)

k2/2m being the energy of plane-wave state e'" ¥ of
motion parallel to the slab surface and w, being
the energy associated with the single-particle wave
function ¥,(z), according to the Schrodinger equation
1 d%

2m dz®

+ V(2)Pu(2) = wa(2) . (5)

In principle, the potential V(z) is to be derived
self -consistently by solving the Hartree equation

V(z)=Vy(2)=~ Zﬂezfdz' |z = 2" | [no(2") =05 (2],
(6)
where ng(z) is the assumed background positive -
density profile and #n,y(z) is the self-consistent elec -
tron-number density®?
2
no(2) = 2}'%’;—2  tual 4021 (7)
In practice, however, the Hartree equations are not
solved®; V(z) is chosen arbitrarily, and is used to
determine a set of single-particle wave functions
according to Eq. (5). In the work of Fedders,® and,
more recently, of Beck?%31%:3% and collaborators,
V(z) is taken to be an infinite square barrier. Al-
though this choice is unrealistic, it has the advan-
tage of rendering Eq. (1) soluble with a minimum of
labor. In the work of Feibelman,!*:%%¢ an attempt
is made to search for properties of the solution to
Eq. (1) which depend only on the gross features of
the ground-state many-electron wave function, such
as the density profile given by Eq. (7). Quantities
such as the dispersion and attenuation of the surface
plasmon require a more detailed knowledge of the
ground -state wave function, however. Therefore it
is necessary to study realistic models of V(z) to ob-
tain reliable results.
In order to express the solution to Eq. (1) in a
general form, we rewrite the equation in operator
notation,

'n;i))>=£qw[fqingt))>+IVEXT(qw)>] ) (8)
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where £ , is the operator whose coordinate-space
representation (z| £,,|z') is the particle-hole ker-
nel of Eq. (3), £(q; z, z'; w), and similarly f, is
the operator corresponding to the Coulomb interac-
tion, cf. Eq. (2). For w on the imaginary axis,
£,, is a Hermitian operator, *” and therefore Eq. (8)
may be solved for imaginary w by expansion in the
appropriate complete basis, the set of functions sat-
isfying

Lowlolts(qw)) =X (qw) |u; (qw)) (9)

To make correspondence with the ordinary theory
of integral equations with Hermitian kernels, we
must symmetrize Eq. (9). This is particularly
simple, since f, is a positive definite operator.
We define®® the operator f1/2by

ST (10)
Let
lo1(gw)) =F L uy(qw))
(11)
x,,=fi2e, 17,

Then Eq. (9) becomes
X o [0 (qw)) = 2, (qw) | v,(qw)) (12

where X, is a Hermitian kernel for imaginary w.
(Results for real w are obtained by analytic exten-
tion.) It follows that the |v;) form a complete
orthogonal set, i.e., that the identity operator I
may be written as

=5 lv,(qw) Yo, lqw)|
I ) o ae) (13)

and that the |v,(qw)) corresponding to different
A (qw) satisfy

Wi (qw)|v;+(qu) = [dzvF(gzw)v; (gzw) = 6;; T, (qw),

(14)
where 9, is a normalization constant. It also fol-
lows that the operator X,, has the expansion

xqwzz kl(qw) Ivl (qw»(vl(qw)l . (15)
1

R, (qw)

At this point we have the tools necessary to solve
Eq. (8) formally. We expand

12|yl =73 e (qw) v (qu))
! (16)
f.;l/zl VEXT(qw»:? Vt(qw)|vl(q°-’)> .

Substituting Eqs. (16) in Eq. (8), multiplying both
sides of the resulting equation by f1/2, and using
Eq. (12), we obtain
20 Mlgw)le (qw) + Vilgw)] |v,(qw) =23 ¢, |v, (gw)) «
1 1
(17)

Making use of the orthogonality, Eq. (14), of the
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lv,), we thus find

cilg, w)=X(qw)V(gw)/[1 - N (qw)] . (18)
The second of Egs. (16) implies that
Vilqw) = @, (qw)| £ 13 Vexrlqw)) . (19)

Substituting Eq. (19) in Eq. (18), and substituting
the result in the first of Eqs. (16), we obtain the
formal solution to the RPA equation, Eq. (8),

Iy _ 1 A (gw)
e’y —7;" N (gw) 1-x(gw)

x £ vilquoslgw)| 732 Vexe(qw)) . (20)

Returning to the » via the definition, Eq. (11), this
result may be rewritten
My _ 5

1 A (qw)
e >_)7 N, (gw) 1-x,(qw)

X ‘u,(qw))(u,(qw) l Vexrlgw)) . (21)

Equation (21) looks simpler than Eq. (20) because
it is written in terms of the |u#;), which have a
simply physical interpretation as the normal-mode
electron-density-fluctuation-state functions. In
terms of the lu;), the mathematics is somewhat
messier, but in general, the physical interpretation
is more straightforward.

Let us now explore the meaning of Eq. (21).
Functional differentiation of Eq. (21) yields

oney =5 =% 1 A (gw)
Vexrlgw) % 7T W(gw) 1-x(qw)

x |uy(qw) ) qw)|, (22)

where s, is the “density-density response func-
tion” of the solid. The poles of §,, correspond to
the resonances of the solid, the modes of oscillation
which can be excited by a weak external probe.
Referring to Eq. (22), we see that the /th mode oc-
curs at a frequency given by

N (qw) =1, (23)

and corresponds to the excitation of an electron-
number -density fluctuation (in coordinate space)

u(gzw)={z|u;(qw)) . (29)

In principle, the u; may be calculated by solving
the eigenvalue equation (9). To date, however, this
equation has only been solved for certain highly

J

N (qw)

d% Oy — O
=9 > kn kign
(277)2 r;;{ W = Whign + Wep*

( 5 2 a2 W ()2 - 2 gz @)
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FIG. 1. Schematic drawings of charge-density-fluctua-
tion profiles for the various modes of excitation. Curve
(a) represents a surface-charge or “surface-monopole”
fluctuation. Curve (b) represents a surface-dipole oscilla-
tion and curve (c) a bulk-charge mode. The ground-state
electron density »,(z) is shown in curve (d).

simplified models of the electron distribution at the
jellium surface, for which £, in a fairly simple
operator. (These models are discussed in Sec. III.)
Nevertheless, we can guess what the approximate
forms of the various u,’s and values of the ;,’s must
be. For example, the surface plasmon corresponds
to a u(z) which behaves like a & function near the
solid surface (since it is a “surface-charge” fluc-
tuation, see Fig. 1), and a X, ~w%/2w? for long
wavelengths, where w, is the classical plasma fre-
quency. Similarly, we would expect the u,(z) cor-
responding to bulk plasmons to be sinusoidally
varying functions in the solid, with the index [ cor-
responding to the wave number of the sinusoidal
variation. The corresponding A, should be equal to
w?/w? plus dispersive corrections.

Given a u(z) guessed from physical considera-
tions, we may evaluate the corresponding A(gw).
Using Eqs. (11), (12), (14), and (3), we obtain

Z/J' dzdz' uf(qzw)f(z = 2" u(gz'w) .
(25)
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Equation (25) may be utilized as the basis of a

variational calculation of the #; and ;. The func-
tional equation
o, (qw)/du,(gzw)=0 (26)

is equivalent to Eq. (9). Since it is easy to guess
plausible forms of the u, the variational approach
may prove to be a useful calculational tool, despite

J

)\I(Q7 W= Do)"zmw

where

¢ (gzw)= fdz'fq(z -2, (g2’ w) (28)

is the electron charge e times the potential associ-
ated with the electron-density fluctuation #;. In
deriving Eq. (27) we have used the completeness of
the ¥, and the definition of #,(z) [Eq. (7)].

We now show that the numerator and denominator
in Eq. (27) are, respectively, the kinetic and po-
tential energies associated with the motion of the
electron that produces the density fluctuation #,.
Thus the dispersion relation X;(gw)=1 is the condi-
tion for harmonic oscillation, namely, that the po-
tential energy associated with the electron-density
fluctuation equal the kinetic energy. The demon-
stration is based on a linearized hydrodynamic
picture. I, for a particular mode I, the local elec-
tron velocity and number density are given, re-
spectively, by w,(gzw) and n,(g, z, w)=n,(z)
+u;(gzw), then the kinetic energy of the mode, to
lowest order in fluctuating quantities, is

T,(qw) =3m fdzno(z)ﬁv’, (qzw)]z . (29)

However, according to Euler’s equation (Newton’s
second law applied to hydrodynamics), again to
lowest order,

aw, (X
m z(,Z,t)z

ot (30)

—V¢l(§, Zy t) ’
where ¢,(x, z, t) is the potential that drives the
electron motion.* Fourier transforming Eq. (30)
in x and ¢/, and squaring, we obtain

do,(gzw) 2)
dz

|W1lg20) [ *= —7— lwz <q2!¢zv(qzw)12+
(31)
Substituting Eq. (31) in Eq. (29), we verify that the
numerator of Eq. (27) is the kinetic energy cor-
responding to the mode /. That the denominator of
Eq. (27) is the corresponding potential energy is
obvious by inspection, using the definitions Eqs.
(28) and (2).
Finally, let us take note of a useful consequence
of the orthogonality relation Eq. (14). Essentially,

1 Z[dzno(z)<qz| $1(qzw) } 2
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the fact that it requires the solution of the nontrivial
problem of analytic extension of the #,’s and 1,’s
from the imaginary to the real w axis. In fact, a
surface-plasmon calculation which is based on Eq.
(26) is now in progress.*®

The physical meaning of the dispersion relation
Mgw)=1, Eq. (23), is revealed by examining the
high-frequency limit. Using Eq. (25), we find that

.
doulgze) | )/ éjdzuﬂqzwwxqw), (27)

dz

[

this relation tells us that the various u,(z)’s are
distinguished by their respective number of zeros;
that is, different #,’s must have different numbers
of zeros in order to satisfy Eq. (14). This result
is useful because it enables us to classify the u,’s
according to the respective ranges outside the solid
surface at which their fields may be felt.

There are two classes of u#; for a semi-infinite
slab, those having a finite number of zeros and
those having an infinite number of them. The latter
class of u,(z) comprises a continuum, for which the
index I may be replaced by the wave number g; this
class [u'®'(z)] corresponds to the bulk excitations
of the solid. The former class presumably com-
prises only a small number of u?”(z), for which the
index I may simply be taken to equal the number of
nodes. These {5’ are localized near the surface
and correspond to the surface excitations of the
solid.

Using Eq. (28) we may evaluate the potential
corresponding to a given u,(z). It is easy to see
that the potential due to «;’(z), the surface-charge
mode, has a longer-range potential than that as-
sociated with the surface-dipole mode #{5’(z), and
so forth. The potential due to the bulk modes is
essentially zero outside the solid, since the bulk
u,ﬁB’(z) are orthogonal to all the surface modes,
those which give rise to the longest-range poten-
tials. These remarks will be illustrated in the con-
text of specific models in Sec. III.

The fact that «{S’(z) alone gives rise to the lon-
gest-range coupling between a charged particle and
a solid surface is important, because it provides a
basis for the microscopic theory of the corrections
to the image force, which is the only force acting
on such a particle at sufficiently large distances
from the surface. This has been discussed pre-
viously in a formal way, ¥ and is dealt with below
in the context of a simple model (Sec. V).

III. APPLICATION TO MODELS
A. Model Classification

Our aim in this section is to discuss the two
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models for which the microscopic theory, developed
above, has been worked out in detail. In order to
permit an assessment of the relative significance

of these calculations, however, we begin by classi-
fying models according to the nature and degree of
approximation that they involve.

a. Full RPA models. A full RPA model of col-
lective excitations at a surface involves the solution
of the eigenvalue equation (9). Different such mod-
els correspond to different choices of the potential
V(z). The word “full” is meant to distinguish mod-
els based on solving Eq. (9) directly from those
(see Sec. IIAb) in which the kernel £, of Eq. (9)
is expanded in ¢ and/or w™ before the solution of
Eq. (9) is carried out. To date the only full RPA
model that has been solved® is that of the infinite
wall

0, 20
V(Z):{w 2 <0

Although this model is microscopic, it is not very
realistic. The comparison of its predictions with
experiment14 shows that, indeed, it must be im-
proved upon.

b. High-frequency micvoscopic models. In view
of the fact that the surface- and bulk-plasmon en-
ergies are fairly high (~ 10 eV) compared to those
of typical particle-hole states (~1 eV), one at-
tempts, before solving Eq. (9), to expand £,, about
its large-w limit, retaining only the lowest-order
terms. In this way one obtains an approximate £ ,,
appropriate for determining the large-w solutions
to Eq. (1), which has two desirable features: (i) It
is a differential rather than an integral operator;
(ii) it is specified by a few average ground-state
properties such as the electron-density profile and
stress tensor. It is found, however, that the high-
frequency approximation is internally consistent
(for a metal-vacuum interface) only if the electron-
density profile is taken to be a step function at the
jellium surface. Thus there is only one possible
high-frequency model of a metal-vacuum interface,
and not a very realistic one at that.

High-frequency models, by their very nature, do
not describe the small-w solutions to Eq. (1). Thus
they are useless in the study of the interaction of
slow (v <vp) external probes with solid surfaces.
Full RPA calculations, on the other hand, are in
principle valid in any frequency range.

¢. Hydrvodynamic models. The simplest, and
historically the first, way of obtaining equations of
motion for a bounded electron gas is to combine
hydrodynamics with Maxwell’s equations. If the
electron gas is assumed to have a step-function
density profile, and if plasmon dispersion is ne-
glected, then the resulting equations are identical
to those of the RPA high-frequency model [keeping
terms up to O(1/w?) in the latter].
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In order to evaluate dispersive effects, however,
it is necessary to close the hydrodynamic equations
by the introduction of a “constitutive relation,”
which relates pressure to the density fluctuations
in the electron gas. (Neglecting dispersion cor-
responds to neglecting the term in Euler’s equation
corresponding to the internal pressure gradient.)
Generally, the constitutive relation is chosen so
that the hydrodynamic and RPA values of the bulk-
plasmon dispersion agree. This choice does not,
however, guarantee that the two models also agree
on the value of the surface-plasmon dispersion, *?

Recently the hydrodynamic equations have been
applied to a model surface more realistic than the
step-function density profile, namely, a density
profile with a linear dropoff.*® The interesting
result, in this case, is that under certain circum-
stances the surface plasmon can have negative dis-
persion at long wavelengths. Nevertheless,the
assumption of a hydrodynamic boundary condition
at the point where the electron density equals zero
is thought to be unwarranted.® Thus, the hydrody-
namic model like the high-frequency model prob-
ably should be applied only in the case of a step-
function density.

The hydrodynamic model cannot be used to esti-
mate surface collective-mode damping, although a
viscosity parameter may be introduced to describe
this effect a posteriori.

B. Solution of High-Frequency Step-Density Model

Ultimately, for any model surface, our aim is to
determine the complete set of X’s and u’s (i.e., the
dispersion relations and coupling constants) for all
values of ¢ and w. But if we are satisfied to limit
our study to that of collective effects, it is appro-
priate to restrict our attention to the limits of long
wavelengths (¢ <k, the Fermi wave number) and
high frequencies (w> “typical” particle-hole fre-
quencies). The question then arises: Must we first
solve Eqg. (9) and only then allow w to become large,
or is it possible to let w~ = first and then solve for
the dispersion relations of the collective modes?
The idea of first expanding £(q; z, z'; w) in powers
of 1/w is an attractive one, since [see Eq. (3)] once
the expansion is made formally, the completeness
of the i, may be used to reduce the expression for
£ to one involving only average properties of the
unperturbed surface, such as the electron-density
profile!® no(z). However, Feibelman recently has
shown® that the neglect of particle-hole energies
compared to typical collective-mode energies 7w,
the assumption which is necessary if we are to ex-
pand &£, is consistent only if ny(z) is chosen to be
a step-function, i.e., #n¢(z) =n.6(z). For any more
realistic density profile, decay of the collective
excitation into particle-hole states must be taken
into account from the beginning.
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Thus, as our first example, let us obtain the
complete set of »;’s and A;’s for the step-function
density in the high-frequency limit. For the details
of the derivation, we refer to the original article
on the high-frequency approximation. 19 Equation
(9) is multiplied on both sides by f,, yielding an
equivalent equation for ¢,,

F1€e0| 91(qw)) = X (qw) | ¢4(qw)) (32)

£,, is expanded in powers of 1/w. One keeps only
the lowest nonvanishing term in the expansion.
Using the completeness of the y,, one then obtains
[cf. Eq. (21) of Ref. 19]

N gw)p(gzw) = -—————zjd ! ~ale-z’ In (Z’)

X, q¢z(qz w) +sgn(z - z )CJ_(_?QS]_Z____CU) >

(33)
It is worth noting*? that Eq. (33), with A,(gw) taken
equal to 1, is just the equation of motion we obtain
if we consider the electron field hydrodynamically.
We simply combine the equation of continuity

oulx, z, t)

W(E, 2, 0)]- -0 (34)

V - [ng(2)

with the (hydrodynamic) Euler equation (30), yielding
(35)

Fourier transforming in X and ¢, and using the rela-
tion Eq. (28), we obtain

! qlz-z’l

__2né?
quw)_—gqmw jdz e

[ aonate o) - For (i) LU (e

which is identical to Eq. (33), after an integration
by parts and with x=1, This proves that the hy-
drodynamic description of the collective modes is
identical to that of the RPA expanded through terms
of O(1/w?. The physical interpretation of this
identity is that when the frequency of a collective
mode is high compared to typical frequencies of
particle and hole motion, electrons must respond
to the local instantaneous (self-consistent) electric
field. But response to the instantaneous (rather
than time-delayed) electric field is precisely the
content of the Euler equation.

The reasons for the breakdown of the high-fre-
quency approximation when #y(z) is chosen to be a
realistic (i.e., continuous) function of z have been
treated elsewhere. Here, we set

no(2) = n.0(2) (87)

and proceed to solve Eq. (33). Substituting Eq. (37)
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in Eq. (33) and integrating by parts, we obtain

_)2¢,(gzw) - ¢,(q0w) e™**
mxz‘qwm‘qzw’-{ bl
z2>0
z<0 (38)

Equation (38) admits two types of solution. If
¢,(g0w)#0, then

¢i1lgzw) = (,b;(qu) e ’
(39)

w2
)\l(qw)=-2—(j_2' ’

where wf=4ne2n”/m is just the classical plasma
frequency. This solution corresponds to the surface
plasmon. The associated charge fluctuation is ob-
tained from Eq. (28) to be

>¢z(qzw)-—~—g—q¢’<qeow) 6(2) ,
(40)

which is localized precisely at the surface.® It is
nodeless, and thus we assign it the index 7=0. The
frequency of the surface plasmon is given by

2

1= Ao(qw)=—2%% ’

which, not surprisingly, is the hydrodynamic re-
sult. There is no dispersion in Eq. (41), because
we have retained only terms O(1/w? in expanding
the RPA kernel. For definiteness, we normalize

usS’ by choosing ¢,(q0w)=2re?/q. With this normal-
1zat1on uos’(qzw) has the dimensions of an electron-
number -density fluctuation.

If ,(q0w)=0, we obtain from Eq. (38)

1
uﬁs’(qzw)=z‘1;e*z“(qz

(41)

6(z)x an arbitrary function of z which
approaches zero as z— 0%,
= wf/wz

These solutions correspond to the bulk plasmons.*
The index ! should be identified as the wave number
k. The frequency of the bulk plasmon is given by

(43)

¢, (gzw) =
(42)

1=)(qw)=wi/w?,

which is again independent of ¢ and « (i.e., disper-
sionless) because we have retained only terms
0(1/w?. As a result of this degeneracy, i.e., the
independence of (g, w) of ¢ and k, we are free to
enumerate the ¢.® (gzw) in terms of any convenient
complete set of states.

Using Eqgs. (11) and (28), it is easy to see that
the orthogonality condition Eq. (14) may be re-
written:

Jdz¢i(gzw)utgzw)=0, 121" . (44)

Let 7 and 7’ refer to a bulk mode and the surface
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mode, respectively. The orthogonality condition
thus yields

Jdz ¢ (gzw) uf(gzw) =0, (442)

which reduces, using Eq. (40), to the requirement
that ¢¢%(¢, 0, w)=0. This requirement automati-
cally is satisfied if we follow the prescription, Eq.
(42), given above.

Our final problem is to ensure that the set of ¢’s
chosen satisfies the completeness relation, Eq.
(13). It is important to carry out this verification
explicitly, in order to be certain that we have not
left out any modes, e.g., a surface-dipole mode.
Using Eqs. (11) and (28), together with Eq. (13),
the completeness relation may be expressed in two
equivalent forms:

u(2ut @) . N | a? ,
) - rit = gl (- ote -0

(45a)
*( 1 2
1 ! 1
The equation
PR (RN ) MR
=z )=\ a -z Jole

used in Eq. (45a) gives the explicit matrix inverse
of the Coulomb interaction, which is defined by

Jaz' FHe -2 =2 =06z -2"") . (47)

The fact that the right-hand side of Eq. (45a) is
given simply in terms of a & function suggests that
we should try to fulfill the equation by expressing
the u®’ as sinusoidal functions. We therefore start
from the ansatz for the bulk modes,

utBqzw) = (Cq SINKZ + Bege COSK2)0(2) . (48)

The coefficients «,,, and B,,,, however, are not
independent. They must be related in such a way
as to render

2 L
82(q0w) = 212 s dz' e P gzw) =0, (49)
which ensures orthogonality to the surface mode.,
This condition is seen to be satisfied for the ansaiz
(48) if Bqp / Yqw = —K/q, Or in other words, if

w8 gzw) e 6(2)( —%) sinkz . (50)

Incidentally, we may note that this choice of u!®’

automatically guarantees that the potential due to
the bulk mode vanishes for z<0, as is required
[see Eq. (42)]. This follows according to

6B (gz<0w)ex [~ dz' e P (g2 w)
0

=% f: dz' e uP(gz'w)=0, (51)
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in which the last equality follows from Eq. (49).
Thus the vanishing of the bulk-plasmon potential
outside the solid may be ascribed to the orthogo-
nality of the bulk and surface modes.

In order to see how to fulfill the completeness
condition Eq. (45a), let us start from the com-
pleteness relation for the sine function,

J' %?ﬁ sinkz sinkz'=08(z = 2") - 6(z+2") . (52)
0

From Eq. (52) we deduce straightforwardly that

L gjrﬂ [e<z)(q -4 )sinxz} [G(Z')(q - d—j—) sin;cz']

=0(2)6(z") [(qz —%)6(.2 -z')

_< _é)(q_c%)é(z+zl)] . (53)

Comparing Egs. (53) and (45a), the possibility of
satisfying the latter with u!®”’s of the form given in
Eq. (50) looks quite promising. There are, how-
ever, two difficulties which must be overcome.
First, we must explain the presence of the factors
6(z)6(z") in Eq. (53); that is, we must explain how
we expect to obtain a “complete set” of u, if we can
only have charge fluctuations inside the metal
(z>0). Second, we must learn to deal with the
multiple singularities that appear in the last term
of the right-hand side of Eq. (53) in the neighbor-
hood of z=0, z'=0.

The first difficulty is easy to overcome; it is a
standard problem in the spectral theory of integral
operators. Because the electrons in the ground
state of our solid are confined to its interior, the
kernel £(g; z, z'; w) vanishes when z or 2’ is out-
side the solid. [In the unexpanded form of £, Eq.
(3), this is seen to be true because at least one of
the wave functions ,(z) and ¥,. (z) corresponds to a
negative energy.| In the high-frequency-expanded
RPA, cf.Eqgs. (36) and (32), we have effectively

£g; 2, 2 )
|t - (a2 )] ote -2

and £ vanishes for z or z’ outside the solid since
np(2)—~ 0 there.

Therefore any function of z which vanishes inside
the solid is a solution to Eq. (32), with A=0. The
class of functions which we have left out of our
enumeration of the solutions to Eq. (32) is therefore
the class of zero-eigenvalue solutions. By virtue
of Eq. (22), however, we see that these functions
do not contribute to the density-density response
function (the contribution of any mode u, is propor-
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tional to the corresponding ;). This is satisfying;
we would not want unphysical charge fluctuation in
the vacuum to contribute to any physically mea-
surable quantity. The zero-eigenvalue modes there
are important only in fulfilling the completeness
relations.

The second difficulty, that of the singular behav-
ior of Eq. (53) near z=0, z'=0, is best avoided by
trying to fulfill the requirement of completeness in
the form (45b) instead of (45a). Our working hy-
pothesis is that the electron-density-fluctuation
spectrum is represented by

2
NERTS
$)=

zwz ’ (543)

us®(qzw)=6(z) ,

K

B _ d\ . w?
u, ’(qzw)-@(z)(q —E)smxz , xéﬂ):éﬁ , (54Db)

ulV(gzw) = 6(- z)<q+§i—) sinkz , AY'=0, (54c)

where the u,f”’ are the unphysical zero-eigenvalue

modes. The corresponding potentials are easily
calculated using Eqs. (28) and (2). We obtain
2
¢3s’(qzw)=2nqe e, (552)
4re® [ d\ .
(B) - P -qz
O (qzw)—m ( dz)Sanz +Ke :l@(z) ,
(55b)
2
w) _ 4me AN ,,,:l B
v (qzw) m[( dz)smxz ke [0(-2z) .
(55¢)

It is straightforward to check that these modes
are mutually orthogonal in the sense of Eq. (44),
which, we recall, requires

Jaz i gzw)ulgzw)=0

for 1#1'. We have ¢ (g0w)= ¢ "’ (g0w)=0 which, as
we noted above, implies orthogonality of the bulk
and unphysical modes to the surface mode. The
fact that the ¢ =0 for z<0, while the »‘”’ are
only nonzero in this region, implies the orthogonality
of bulk to the unphysical modes. The orthogonality
of one bulk mode to another is also easy to verify:

© - da\ . d
im gz (a2 Jonwe o] [ (4 2 s
hmj; ze q T2 sinkz +«ke q az sink'z

6-0
® ! !
= limj dze % (g? + k¥ sinkz sink'z=0, «k#x',

(56)
where the factor ¢ % has been introduced to ensure
convergence at ©, The equality in Eq. (56) is de-
rived using integration by parts. A similar equa-
tion holds for the unphysical modes.

We now establish the completeness of the ¢’s in

FEIBELMAN, DUKE, AND BAGCHI

|

the sense of Eq. (45b). It is a straightforward
exercise in contour integration to verify, starting
from Eqs. (55b) and (55¢), that

- 2
I c‘if B qz)8 P gz = Z1L
0
X[e-qlt-t'l_e'“(‘"') ]9(2)9(2,) s (57)

° 2
I d—; ¢ Mgzw) 972 w) = ———-(2”52)

0
X [e-qlz-l'l _ea(z+ﬂ')]9(_2)9(_zf) . (58)

The normalization constant for the surface mode
is given by

g8y (s) (S) 27e?
0° qw) =1 dz 6% (qzw) usS (gzw) = . (59)

Therefore the contribution of the surface mode to
the sum of Eq. (45b) is

(péS)(‘{Zi*;))(P(gs )(qzlw) - 2me® erallzlsle’ ) (60)
o™ gw) q
The exponential on the right-hand side of Eq. (60)
may be rewritten:
pratlzl+lz ) o 9(2)9(21) pmatere ) | o(- 2)6(—-2')6“""‘)
+[1-0(2)0(2") = 6(= 2)6(~ 2")]e~'==" ",
(61)
Thus, choosing the normalization constant for the
bulk modes,

NB(gw) = 27e? (62)

independent of x, ¢, and w, we verify that

1 “d
s (I 7K¢K(B’(qzw) Pgz'w) + s (qzw)p " (g2 w)
0

2
+q¢és’(qzw)¢63)(qzl“’)>=27;6 el (63)

which is the completeness condition for the ¢’s.
We are now in a position to evaluate the density-~
density response function [cf. Eq. (22)] which later
will be used to evaluate the excitation of our model
solid by an incident charged particle. We obtain

fdzl dzzfq(z - zl)sqw(zl’ Zz)fq(zz - Z,)

¢, (gzw)e,lgz'w)
ml(qw)

-5 _Mlgw)
T 1=x(qw)

2 2
_ 2me ( Wp___ mallzlela’ 1)
g \2w®-w,

2
+5;_U_LJ§— 0(2)0(z")(e=41#=2 " _e-q(nz'))) , (64)

which is valid at high frequencies, for the step-
function electron-density profile.
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In view of the correspondence between this model
and the hydrodynamic theory of the semi-infinite
electron gas, it is not surprising that, as shown in
Sec. IV A, the expressions for energy loss by a fast
electron, computed using Eq. (64), agree with those
of Ritchie.? What at first glance may seem more
surprising is that using the “semiclassical” vertex
of Gersten, *® which corresponds to taking

(65)

we also recover formula (64). The ¢2”s of Eqgs.
(55b) and (65) are obviously different. Yet each of
them represents a set of functions which vanish at
z=0 and which are complete in the half-space z >0.
Thus, either set of ¢.?’ fulfills the criteria that
originally were imposed following Eq. (43).

There is no paradox in these remarks. The indi-
vidual ¢>,§B’ never enter the calculation of a physical
quantity. Rather, what enters is the sum

o2 (qzw) < sinkz

b ¢1(gzw) ¢y (g2’ w) -
BULK 1/ Elll(qw)

e(z)G(z')<

21e® . e
= 0(2)6(z") 7;6 (emt1z=#"1 _ gratese’)y

However, if one should wish to construct a simple
model which includes bulk-plasmon dispersion by
introducing a x dependence into the ¢!?’(qw)’s, then
it will be important to choose a “good” set of
¢>‘B”s. For this purpose the set given in Eq. (55b)
seems preferable to that given in Eq. (65). Note
that if ¢.® is given by Eq. (65) then the correspond-
ing density fluctuation

1 a2
(8) - 2 __ (B)
u” N(qzw) yo (q e )qSK (gzw)

2 2
+i? K
< G 51nxze(z)+-‘—2‘4ﬂe 6(z) , (69)

which contains a surface-charge fluctuation, that

is, a term proportional to §(z). The u'®’ corre-
sponding to Eq. (65) do not contain a 5(z) term,
which intuitively seems more reasonable for a bulk-
plasma fluctuation. (A discussion of the hydrody-
namic theory with dispersion is given in the Ap-
pendix.)

To conclude our study of the step-function-density
model, let us take note of several of its special
features:

(i) There is only one surface mode. The possi-
bility of surface-dipole or higher-multipole reso-
nances is not realized in this simple model.

(ii) The modes are dispersionless, and the ¢,
are independent of frequency. Neither of these

2445

de _\Pgw)

dx 02 (gzw)os P (g2’ )
71 -2 (gw)

N (gzw)

(66)

In the high-frequency approximation A\{?’ = w? /w?
independent of k, and thus all the bulk plasmons
are degenerate. It is precisely for this reason that
we obtain the same physical result for the two sets
of ¢ ®”s. All that enters Eq. (64) as the bulk-
plasmon contribution is

w§ /w? jf]ﬁ 05 (qzw) 0> (g2 w) (67)
1-wi/w?) r A, (qw)

Thus, if we have convinced ourselves that the sur-
face plasmon plus the bulk plasmons constitute the
complete set of modes [as we have, in fact, in the
calculation leading to Eq. (63)], the result Eq. (64)
may be written down directly, without any reference

to the form of individual ¢.®’, using

E¢z

ALL !

(gzw)pilgz'w) _ 66° (qzw)e® gz’ w) )
Ny(gw) i (qw)

r

features of the model is realistic. Nevertheless
they are useful in that they render various calcula-
tions simple.

(iii) The orthogonality of the bulk modes to the
surface mode fixes the phase of their respective
sinusoidal variations and forces ¢’ (2<0)=0. The
useful consequences of the orthogonality relation
are less clear in more realistic models.

We now turn to a more complete, if not more
realistic, model of the solid-vacuum interface, the
infinite-wall model, 3! which permits the evaluation
of §,,(z, 2') for all values of w, not just the high
frequencies, and for which the “special features”
of the step-function density model are no longer
true. In particular we expect that the ¢,’s will be
frequency dependent and the corresponding A,’s, ¢
and w dependent. Also, we expectthereto be higher
surface-multipole modes.

C. Infinite-Wall Model

The infinite-wall model consists in assuming the
electrons in the solid to be bound by the potential

)0, 2>0
V(z)—{w C i (70)
rather than any self-consistent well. The kernel

of the RPA equation is thus obtained from Eq. (3)
by the substitution of
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Val2)~ 1,(2) = 0(2) sinkz , (71a) 2 in— fo“’ 2qk /1 . (71c)
Wy~ W=k 2m , (71b) The result (neglecting the electron spin) is

|

2dky ( 2dky  Oump = Ovary . o N )
£lg; z, 2'; w)= I(z 5 - L 7 W=y + Wng sinkyz sink;z’ sink,z sinkyz’ 0(2)6(z") . (72)

The fact that the integral of Eq. (72) is even in both %, and &, enables us to convert it to the useful form

v (@ (T e (T dRy  6res = Beeary
Lg; 2, 275 w)—I(Zn)z w0 2T ) 0 2T W = Whagry + Wiz

X 2 cosky —kg)z[cos(ky —kg)z —coslky +ky)z"16(2)6(2") . (73)

We thus obtain the RPA equation for the normal-mode charge fluctuation in the infinite-wall model [cf.Eq.

(O

{ a% (T dky (" dks  Brrz— Orears B
Mgw)ulgzw) —J‘(é;)—z’( I % @~ Orraeg + Drty 2cos(ky-kj)z

xj dzlj dzglcos(ky =)z — coslky + Rz ] Ze e e1ely (g z00) . (74)
0 0

Following Beck, 3'* we Fourier cosine transform according to
ulgr,w)= 2f0°° dz cosk zulgzw) , (75a)

ulgzw) =J %]:i cosk, zulgr,w) . (75b)
0

Thus we obtain from Eq. (74)

2
_ 2 2 d°k dkl dkz 9kkg"'9k+qk1 - _ _ _ _
Mg wulgr,w) =4n’e J._(zﬂ)z 20 21 0 Wy + uny [5(ky —ka—k.)+0(ky—ky —k.)]

X(qT‘”——_‘+ 7 l_ka)_z [ulgry = kyw) — olgw)] = q2+ (k11+k2)-§ [ulghy +kow) - 0'(‘1"")]> ) (76)

where we have defined

O(qw)fj dee'q'zu(QZzw):f dk, ulgk,w) . (77)
0 (O
Carrying out the %, integration, and changing variables according to

k=2 z (k= K1), (78)

Eq. (76) is reduced, finally, to the simple form

_ 4ge® ) 4ne® . szgf_c; L(g; Ky, K13 w))
x(qw)u(quw)—m L(g, ky; w)ulgr,w) _<?+_Kf Lig, ki3 w)—27e [ olgw)

d !
—2’”62-” zK Lig; Ky, ki3 w%équl(g)" , (79)
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where, following the notation of Beck,

2
ool 4R Otk z = Onva teliey) 2
L(g; ki, ki3 w)=s(2 )2 K=Ky q, (kg
M) W= Whag, (k+ky) /271 Wh, (k] k) /2
(80)
and
dK

47 (81)

7
L L{g; ki, Ky w) .

L(g, ki w) ES
Notice that the bulk (RPA) dielectric constant is di-
rectly related to L (g, ,; w), according to

4ne?
€olg, ki w)=1—;az—’(f‘ Lig, Ky w) . (82)

The eigenvalue equation [Eq. (79)] is partially
separable, in that ¢ is independent of k;. There are
therefore two types of solution to Eq. (79), those
for which o#0, and those for which 0=0. This
situation corresponds nicely to that of the step-func-
tion density that we have previously described [see,
e.g., the discussion of Eq. (49)]; bydefinition [see,
e.g., Eq. (77)],

olgw) = (g/2me®) ¢ (q0w) ,

where ¢, as before, is given in terms of «# by Eq.
(28). Thus the criteria, o equal or not equal to
zero, are equivalent to the criteria ¢(z=0) equal or
not equal to zero that distinguished bulk and surface
modes, respectively, in the previous model, ac-
cording to the orthogonality relation.

One should take note of the physical meaning of
olgw). The expression on the right-hand side of
Eq. (83) is proportional to the electric field normal
to the wall at z=0, which, as we know from Gauss’s
law, yields a “surface charge.” Thus the condition
o#0, nonvanishing surface charge, seems appro-
priate for a surface oscillation.

Beck®? has solved Eq. (79) for the surface mode
to obtain its dispersion relation. The method is as
follows: Let

(83)

ulgr,w) = olgw)[1 - vigr,w)] , (84)

which is nontrivial if c#0. Substitute Eq. (84) in
Eq. (79), and divide through by o(¢w). Then

2
vigr,w) = 1/( Mgw) - q§ZiEL(q, Ky w))

dk. v(gk, w)
X - 2 L . ’, L
(x(qw) 2me j o L(g; ki, K w)—g———-—q WE )

(85)
|

4re? “d
u(qxlw):[— Znez/(h(qw)-ﬁruq, Kis w))] s G L(g; ko, Kl @) x o
A L %0

0 l

Tdi, quigr,o)
q +Ky
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Beck solves the inhomogeneous integral equation
(85) with Alg, w)=1. The solution, however, is

only consistent with Eq. (77) if [substituting Eq.

(84) in Eq. (77)]

T _a
I—JO - m[l vigr,w)] . (86)

Equation (86), which gives w as a function of ¢, is
thus the dispersion relation for the surface mode.

It is straightforward to verify that at ¢=0, Eq.
(86) yields w=w,/V2, in agreement with the result
for the sharp-density-profile model, and with the
general (RPA) theorem concerning the infinite-wave-
length surface-plasmon frequency.®® We notice that
the factor ¢/(¢%+«? in Eq. (86) behaves like a &
function in x, as ¢—~ 0. We therefore examine the
right-hand side of Eq. (85) in the limit g~ 0 with
k. taken to be of O(g) (and x=1). Referring to Eq.
(25), we see that

Llg; k,=0(q), ki; w]=0(g? . (87)

This implies that the second term within brackets
on the right-hand side of Eq. (85) is of O(g), and
therefore negligible compared to AMgw)=1. In the
same limit, ¢g— 0, k,=0(g),

47e® _wh
P Lg, & w)-z)‘g . (88)

Therefore, in the long-wavelength limit, we may
write

1
g, ki W =TT T2 i (89)

Substituting Eq. (89) in Eq. (86), we see that

2,2 (7 2
_—wp/w dk, q ___l Wpr___» (90)
1_1—-w§/w2 L T K 2 wi-ws

from which the result w?=w?/2 follows directly.

The fact that the integral term in Eq. (85) is
O(g) means that a long-wavelength expansion of v
can be easily generated by iteration. In this way a
closed-form expression for the coefficient of the
term linear in ¢ in the dispersion relation can be
obtained if desired.

To obtain the u(gk,w) corresponding to modes
other than the surface plasmon, we rust solve Eq.
(79) with 0=0. That is, we mustfinda u(gk,w)which
satisfies simultaneously

! ulgriw)
i+ Ki y (913-)

(91b)
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In general, we expect the solutions of Eq. (91a) to
come in pairs (doubly degenerate solutions) cor -
responding to sinelike and cosinelike waves in the
interior of the solid. The condition (91b) then fixes
the phase of the bulk wave. This is quite analogous
to the situation in the sharp-profile model, in which
the orthogonality condition Eq. (49) was used to
determine the phase of #.2’(qzw), cf. Eqs. (48)

and (50).

Finally, let us examine the potentials, outside
the solid, associated with bulk and surface modes
in the infinite-wall model. We obtain the respective
¢’s for z<0, using Eq. (28), and simply ignore the
question of what it means to be “outside” a system
bounded by an infinite potential wall. In general,

. -
plgz<0w)= 27;8 e"'f dz' e™* ulgz'w)
0

2
_ 2re e“olqw) .
q
Thus the surface mode is the only one whose elec-
tric field extends outside the solid. All other modes
have 0=0, and therefore ¢ (g z<0w)=0.

It is possible that Egs. (91) will have discrete
surface solutions in addition to the continuum of
bulk modes. These might include a surface-dipole,
-tripole, or higher-multipole charge fluctuation.

But according to Egs. (91b) and (92), the potentials
due to such modes could not be felt by a particle
outside the solid; thus they would represent a pecu-
liar set of surface-charge oscillations.

We conclude our discussion of the infinite-wall
model by commenting on several of its special fea-
tures:

(a) The RPA equation is partially separable. As
a result it is easy to obtain the surface-plasmon
solution.

(b) The condition, 0=0 or o#0, distinguishes be -
tween bulk and surface modes. As a result only
the surface mode has a nonzero potential outside the
solid.

(c) The condition o=0 for bulk modes fixes the
phase shift suffered by a bulk plasmon as it reflects
from the surface. This is analogous to the effect
of the orthogonality condition in the step-density-
profile model. It is difficult to apply orthogonality
directly in the infinite-wall model (and more real-
istic ones) because it holds only between u,’s at the
same value of w. But surface and bulk modes oscil-
late at different frequencies. Thus to the extent
that the #’s vary with w, the orthogonality relation
is not helpful.

There are no other models, to date, which have
been studied. We therefore turn our attention to
the interpretation of experimental results using the
model charge-mode profiles and dispersion rela-
tions.

(92)
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IV. VERTEX FUNCTIONS AND THEIR APPLICATION IN
ELECTRON-SOLID SCATTERING

In Sec. II we developed a microscopic description
of electron-solid interactions and examined in Sec.
III its consequences for simple models. In this sec-
tion we first display the relation between our micro-
scopic theory and the phenomenological inelastic-
collision model of ILEED. %% %~5 Then we note
some of the directly observable experimental con-
sequences in keV electron transmission of the
orthogonality of the bulk- and surface-plasmon
particle-hole density fluctuations.

A. Relation between Inelastic-Collision Model of ILEED
and Microscopic Theory

The inelastic-collision model of inelastic elec-
tron-solid scattering was proposed by Duke and
Laramore, ® used by them to predict several qualita-
tive features of ILEED, °'*"* and subsequently re-
fined by Duke and Bagchi® who applied it to analyze
experimental ILEED intensities from*:%°A1(111) and
A1(100).* In this model, the incident electron in-
teracts with boson fields which characterize the
excitation spectrum of the target solid. The com-
bined effects of the electron-boson interaction ver-
tex and the dynamics of the propagation of the boson
are described by the loss-mode spectral density
defined by Eq. (2.9) in Duke and Laramore.® Here
we examine the coordinate representation of a close-
ly related boson spectral density® A(T', T, iw,),
w,=2mn/k T which is related to Duke and Laramore’s
loss-mode spectral density [A(n, m, w)] by

Aln, m, w)=-2iN(w)ImA(R,, R,, iw,~ w+ib),
(93a)

N(w) = [e"e/*T — 1]+ (93Db)

in which —Ii,, and ﬁm designate the positions of ion-
core scatterers in the target lattice.

The correspondence between our microscopic
theory and the phenomenological inelastic-collision
model of ILEED is obtained by comparing their re-
spective predictions as to the form of A(T, T, iw,).
It is convenient to consider the case of dispersion-
less bulk and surface plasmons because this limit
emerges naturally from applying the high-frequency
expansion to analyze the step-density model (Sec.
IIIB). The boson spectral density for this model is
given by Eq. (64) to be
ige(r’ -r)ASD

ot A d%
ASD(r” r, an):jwe

x(z', z; Q, iw,) , (94a)
ASD(ZI’ Z3 a; iwn)zAsp(Z,, Z, 43 iwn)

+A(2'y 2z, q; iw,), (94b)
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-, 21 —(w?/2w3) . .
Asp(zl’ z; q, an): q p/ By gmallelsle b ’

1+ (w3/207)
(94c)
21e?  —w?/w?
Ap(2’, z; g5 iwy) = Lion o 9(2)6(2"
bp(z Z; q an) 1+(wp/w”)2 (Z) (Z)
X(e-qlz-z'l _e-q(xu')) . (94d)

In the case of surface plasmons characterized by
the dispersion relation

fwylg)=Rw,=fw,/V2 , (95)

Egs. (2.10) and (2.18) in Duke and Laramore® give

2
ey Te W 1 1 )
Asn(z s 254, lwn)" q (iﬁwn "‘ﬁw, ikwn+ﬁws

X e—a( Iz 1+] 21) , (96)

which is identical to Eq. (94c). Thus the phenom-
enological model of Duke and Laramore, de-
scribing the semiclassical electrostatic coupling
of the incident electron to dispersionless surface-
plasmon modes, is identical to the predictions of
microscopic theory for the leading term of the
high-frequency expansion of the RPA applied to a
step-density model.

Turning to the case of the incoherent coupling
of the incident electron to bulk plasmons as de-
scribed by Duke and Laramore, from Egs. (2.10)
and (2. 15) of their paper,® we obtain

be 2
' . dp, 2meHW, ip(at-n
et | PG vt

1 1
X -
iriwn - h‘wb(p“ q) ihwn + hwb(pu q)

c

(97a)

If we formally extend the cutoff momentum® p,
to infinity, we obtain for dispersionless bulk
plasmons (7w, (p) = 7iw,)]

27762 [ - (wp/wn)z]
P 1+ (w,/w,)?

Aibp(zl7 Z;a’ iw")= e'ql"‘zll *
(97b)
Thus only the “bulk” term in Eq. (94d) involving
|z—-z'| is predicted by the incoherent-coupling
model vertex. In addition, the extension of the
integration limits to infinity implies ¢<<p,~1 A,
Finally, it is evident from the analysis leading to
Eq. (64) that the use of Eqs. (97) for the electron-
plasmon vertex involves “double counting” of the
effects of surface plasmons. That is, the e~¢'**"!
factor in Eq. (97b) results from the completeness
condition Eq. (63) alone, whereas in Eq. (64) the
correct weighting of the bulk-plasmon terms is ob-
tained by subtracting from the total e~'#-#'' factor
the factor e~?#'*!#'1 due to surface plasmons and an
appropriate factor for the “unobservable” plasmon
modes with A =0, which are localized outside the

crystal.

Duke and Laramore recognized the difficulties in-
herent in the use of Eqs. (97) and sought to remedy
them by using sine-wave plasmon-basis states which
vanished outside the sample. The electron inter-
action with these states was taken to be the semi-
classical form derived by Gersten.* The phase-
space weighting of these modes is given by

Y, flodp/. (98)

From the normalization Eq. (52) we would expect
c=2. However, because the solid only occupies
one-half the normalization volume, we take c=1,
Using this choice in Eqs. (2.10) and (2.18) of
Duke and Laramore® gives

. Pe dp, 4enw
Acbp(zl; 254, lwn) =J’ plz 2
] pi+q

1 1 )
X -
( iﬁ(&)" - ﬁwb (p.Lx q) ikwn - ﬁwb(pu q)

X 0(2)0(z") sin(p,z) sin(p,z"). (99a)

In the limit that 7w, (p) = 7w, and ¢<<p,, we obtain
from Eq. (992)
2ne? - (w,/w,)?

’ - . _ 7
Acbp(z bl Z; q)lwn)"‘ q 1+ (wp/wn)z 6(2) 0(2 )

X (e-qlz-:'l - e-a(z+z')) , (ng)

which is precisely the result Eq. (94d) given by

the step-density model in the high-frequency limit
of the RPA. Therefore, the coherent-coupling model
of Duke and Laramore correctly accounts for the
consequences of the orthogonality and completeness
of the bulk- and surface-plasmon density fluctuations
in the limit that zw,(p) ~ 7w,. The theory developed
in Sec. III suggests that when plasmon dispersion
and damping are considered, the semiclassical co-
herent-coupling vertex is accurate only in the ¢ =0
limit, However, the major modification of the
simple RPA required by the analysis of experi-
mental data *°'5° is the abandonment of plane-wave
basis states for motion parallel to the surface.
Therefore no consideration of vertex renormaliza-
tion using plane-wave models has been attempted.

B. Experimental Consequences of Completeness and Orthogonality:
Inelastic-Electron Transmission through Thin Films

In Sec. IV A we found that the orthogonality and
completeness of the bulk- and surface-density
fluctuations resulted in a modification of the elec-
tron-bulk-plasmon spectral density relative to
its form for an “infinite” medium. The consequences
for ILEED of this “vertex” modificetion were ex-
amined by Laramore and Duke,® Unfortunately,
however, the damping of the bulk plasmons renders
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unobservable, in any practical sense, the predicted
effects in ILEED experiments,®*® Therefore, in
this section we turn to an examination of keV
electron-transmission experiments in order to
demonstrate the experimental observation of the
consequences of the completeness relations for
density fluctuations.

The measurements which we consider are those
of the angular distribution of inelastically trans-
mitted keV electrons of incident wave vector
k= (2mE/Km*Y? from films sufficiently thin that
kd<1l. The symbol d designates the thickness of
the presumed uniform planar film., For convenience
we restrict our attention to normal incidence
(i.e., k,=0, k,=%). We shall find that the com-
pleteness relations manifest themselves in the
reduction of the forward-scattering bulk-plasmon-
emission cross section. This phenomenon has
been observed for some time.2'%-% It has been
interpreted®® interms of the “boundary correc-
tions” originally predicted by Ritchie using the
hydrodynamic model.??'*® As expected from the
general analysis in Sec., III, our results for the
high-frequency limit of the RPA applied to the
step-density model are identical with those of
Ritchie. Therefore we are able to show that the
electron-plasmon-vertex modifications predicted
by our microscopic theory lead, in the appropriate
limits, to the hydrodynamic description of an ob-
served phenomenon,

The first step in our analysis is the specifica-
tion of the density fluctuations u,(gzw) for a film
of thickness d analogous to those given by Eqs.
(54) for the semi-infinite medium. Taking the center
of the slab to be at z=0, we use

utS (qzw)=27V2[8(z + d) + 6(z - 1d)], (100a)
ulB(qzw) = sink,z 0(z+ 3d) 6(3d - 2) , (100b)
ule (gzw) = cosk,z 0(z + 3d) 6(4d - 2) . (100c)

The orthogonality of the bulk- and surface-density
fluctuations, i.e., Eq. (44), leads either to identities
or to eigenvalue conditions onk, and k,. The nor-
malization integrals for the surface-plasmon modes
are given by

27e?
()= = (Lee ), (101)
in contrast to Eq. (59) for the semi-infinite medium.
The quantity which we wish to calculate is the
spectral density for the emission of dispersionless
bulk plasmons fiw,(p)=#w,. From Eq. (64) we ob-
tain

pllal o p, 2,

. -
Abp(z.'z 54, twn)" 1 +(wp/wn)2 (102a)

FP (2, 2")=0(z+ 3d) 0(z"+ 3d) 6(3d - 2)0(3 d - 2)
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(277 ateni_ 919() 885 _ 089 (2) ¢£S><z’)>
e TR - 9 (5 .
(102b)
The ¢{%)(z) are calculated from Eqs. (28) and (100).
When they are inserted in Eq. (102b) and the origin
(2=0) is changed to the left-hand edge of the film,

we obtain

F®(z, 2" = 2’:2 6(z) 6(z") 6(d - 2) 6(d ~ 2°)

X {e-qlz-z'l - (1 - e-qu)-l [e-q(t-vi )+ e-q(Zd-z-z')

— pma(d+z-g") _ ,-a2d-g-2' )]} . (103)

Inserting Eq. (103) into (102a) completely specifies
the bulk-plasmon spectral density.

The Born approximation for the inelastic-scatter-
ing cross section for bulk-plasmon emission (by
forward scattering) from k= (0, %) to k' = (§, #}) with
loss energy w is given by

azo_ ZmAs k" dk’ é(w_
deaa ~~ % ) @n)?

2R’ ﬁzkz>
2m  2m

¢ pa
7 ’ > L. .
xj dzj dz’ e MR 1 (2, 21 F, W, ~ w4 §6),

o Jo
(104)

in which A is the surface area of the film. Noting
that for plasmon emission Eq. (102a) gives

ImAbp(Z’ z';ﬁ, iAW, = w+i6) =~ % ﬂﬁwp &(w ~ )"pr)

(
XFP(z,2,  (105)
we obtain our final result
d%o dA [ 0 2 669
= (- LS T
AE " 2, CW )| G2 0Z ~ (rd) 6%+ 6%
e3R8 _ o~k40 05 (A6 L)
X E.
(,“ e 2] oo
6= % ,
, (106b)
0. = k=ky - ’7_“’2 s
BT p 2E

in which E is the energy of the normally incident
electron, 6 is its scattering angle, and ap is the
Bohr radius, ag=7%2/me?.

The predictions of Eqs. (106) and their compari-
son with the data of Kunz®® are shown in Fig. 2.
The completeness relation introduces corrections
to the bulk cross section which reduce the for-
ward-scattering inelastic cross sections in agree-
ment with the data. The result for the bulk cross
section, originally obtained by Ferrell, % is re-
covered from Eq. (106a) in the d ~ « limit. Equa-
tions (106) and Fig. 2 constitute our demonstra-
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Inelastic Scattering Cross Section for an Electron
Passing Through an Aluminum Foil .
1° | : P I FIG. 2. Comparison of the theoreti-
Bulk Bulk cal [Egs. (106) in the text] and experi-
5x10'- E=I9keV swio! . | mental curves for the inelastic cross
=I9%eV section of an electron incident normally
i E=39keV E=39%keV on an aluminum foil and deflected through
2 an angle 6 with the excitation of a
5 . 4 bulk plasmon. Curves marked ‘“Bulk”
g 0~ Theory -1 10r 4 are drawn for Ferrell’s calculation of
% - d=125A 2 bulk plasmons in an infinite medium.
5 SxI0 - IO~ Experiment - Surface corrections in a finite film
§ [C.KunZ. Physica Status decreases the scattering cross sec-
o Solidi 1, 44|(|96|)] tion in the forward direction. The
< theoretical curves have been computed
0k \| 10'2_ | for a film of thickness 125 A and for
electrons with incident energies of 19
5410 S L 545 L ' and 39 keV.
logl 0.5 | 5 10 10 0.5 | 5 10
6/6,— 6/6,—
tion that the completeness relations for the density G, ;’Y-’, E)= Goo(Y‘,Y", E)+ f A%, d%ry Goy(F, ¥4, E)

fluctuations, which lead to the “coherent-coupling”
model in Duke and Laramore’s theory of ILEED,®
also lead to a directly observable experimental
phenomenon, Finally, comparison of Eqs. (106)
with Eq. (23) in Ritchie’s paper®” reveals, after
some algebra, that in the absence of plasmondis-
persion the step-density model does indeed repro-
duce the results of the hydrodynamic model,

V. ELECTRON-SOLID INTERACTION: EFFECTIVE
OPTICAL POTENTIAL

A. Formal Scattering Theory

As emphasized in Sec, I, our main objective in
this paper is the development of a microscopic
theory of electron-solid scattering which incorporates
the long-range and dissipative components of the
force law as well as the short-range electron-ion-
core interactions. We apply this theory to calcu-
late the elastic electron-solid cross sections by
proceeding in two steps. First we examine the
scattering of an incident electron by semi-infinite
jellium (i.e., a system in which the actual ion-core
charge densities are replaced by a uniform positive
background). The appropriate electronic propaga-
tors G,(T,T’, E) are evaluated using the optical-
potential method of Bell and Squires, %! These
propagators subsequently are used in a distorted-
wave multiple-scattering analysis of the electron’s
interactions with the short-range potential due to
ion-core potentials, In this paper, however,
we concentrate on the first step. The second is
examined only in the distorted-wave Born ap-
proximation® using a highly simplified model.

The electronic propagator G,(¥, &', E) associ-
ated with the distorted-wave basis satisfies the
integral equation®®:6°

X $(%,,F,, E) Go(F,, 7', E), (107)

}‘,ZZVZ

&

- >/
Goo(T, T,

™ E) -I a®r, Vo1, ) GOO(Y'I‘,Y*', E)

(

in which 2(%’, %, E) is the retarded proper self-
energy due to electron-electron interactions® and
Vo(¥,T") is any prescribed static potential. In
principle, V,(¥,%’) is taken to be the Hartree and
Hartree-Fock contributions to =(¥,%’, E), although
in practice such a choice is not feasible.® The
complete propagator of the system, G(¥,%’, E),
satisfies the integral equation

E)

8(F-T1"), (108)

b

> >/

G(T,T',E)=G,(¥, T/,

+ [ d%r d®r, Go(F, ¥y, E)

X Vo (F,, ) G(¥,, %, E), (109)

- >/

in which Vv, (¥,T’) is the change in potential caused
by decomposing the uniform positive “jellium”
background into positive ions of the appropriate
charge and position. A multiple-scattering analysis®
of Eq. (109) can be performed if V. (%,T") is of

the form

.

VL(r,r)=6('f‘—F')Z"u('x"—§,,). (110)

The elastic electron-solid cross section is obtained
by examining the asymptotic form of

Dscatt (?,E)“Pk(?):f darld“rzG(Y',Y'l,E)
(111a)

XV (Fy,Tp) u(T2),

¢,,('f)=e"r"f' + [ d3ry d3ry Goo(F, Ty, E)
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X Z(T, Ty, E) 0,(T2) , (111b)

in which k is the wave vector of the incident elec-
tron. Therefore, in this formulation of the calcu-
lation of the elastic electron-solid cross section all
effects of both the induced charge on the solid’s
surface and the inelastic loss processes are de-
scribed by the coordinate representation of the
electronic proper self-energy = (%, %', E) for semi-
infinite jellium,

The electronic proper self-energy may be evalu-
ated readily using the formalism developed in
Secs. II and III. Although a complete quantum-
field theory can be constructed,® we confine our
consideration to the linear-response expression
for £(F, %', E) as given by taking i#iw,~E +40 in

(F, T, iw,) =2, A(F, T,i0,)
X Go( T/, F, iw,+iw,), (112)

in which A is the particle-hole spectral density de-
fined and evaluated in Sec. IV A, Equation (112)
reveals the significance for the calculation of the
electron-solid optical potential 3(F,%’, E) of the
orthogonality and completeness relations of the
density fluctuations u; developed in Sec. II. By
using a systematic microscopic description of these
density fluctuations, we can isolate the individual
contributions to the electron-solid force of surface
plasmons, bulk plasmons, and bulk particle-hole
pairs. This separation permits the investigation

of their distinctive dependences on the position

and energy variables. Therefore we can provide a
physical interpretation of the range, energy depen-
dence, and dissipative character of their respective
contributions to the electron-solid optical potential.
The orthogonality and completeness relations
guarantee that our decomposition of the optical
potential into its separate components is well
defined, is unique within the framework of a given
model, and incorporates all possible contributions
to the potential. This decomposition leads to in-
teresting physical results like the fact that the

z! “image-force” potential outside the jellium
surface is caused by virtual surface-plasmon emis-
sion, whereas inside the solid the corresponding
contributions to the optical potential are canceled
by virtual bulk-plasmon emission processes.

As our final preliminary to evaluating the optical
potential and electron propagator, we recall that
the translational symmetry parallel to the planar
surface renders Egs. (107) and (108) diagonal in
the momentum variable k,, for electronic motion
parallel to the surface. Therefore we only need
to evaluate =(z, z’,k,, iw,) defined by

(@2n)? o(k1-K) 2(z, 2';k,, iw,) = a2 pertio? [ a%p eFr?
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K3,

x (F, 7 iw,), (113a)
2
Z(Zszl;kmiwn)= j"'g_z 2. A(Z,zl;ﬁ,i‘*’m)
@m* i,
X Gy (2", 2, %+, 1w, +1w,) . (113b)

In practice, we make the additional approximation
of replacing G, by G,, in Eq. (113b), i.e., using

the second-order-perturbation-theory expression
for the optical potential. Performing the Matsubara
sum over iw,, gives

%z, 2'; E,., E)= Z,,(z, z';k,, E)+ %z, z';k,, E),
(114a)

NG, [ &g

Evn(zy Zl;kn, E)"j (211')2

S

X Go(zy Z,9EII+-{1’ E+ x)ImA(Z) Zl;a, x))
(114b)

“ flx) ax S d%q

(27T2 A(Z; zl;-(i: E+x)

Ee(z: zl; ku; E) =5

XImG,(z, zk-4,x), (114c)

flx)= (/T +1)1. (114d)

For most incident electrons, EX25 eV, the ex-
clusion-principle contribution Z, is small or zero.
Therefore we neglect it and use Eq. (114b) as our
basic formula for the electron-solid optical poten-
tial.

B. Classification of Models of Optical Potential

In the remainder of this article, we shall be eval-
uating the electron-solid optical potential and study-
ing its consequences in model calculations. A
logical preliminary, then, is the classification of
previous models of the potential felt by a charged
particle in the presence of a solid surface and a dis-
cussion of their relation to the exact equations (114).

The two principal criteria which we use to dis-
tinguish among the various models are (i) whether
the motion of the external particle is completely
prescribed, or is defined only insofar as initial
conditions are stated; (ii) whether the motion of
the external particle is restricted to be at high
speed (v > vp) or low speed (v<vg) compared to
the Fermi velocity vg.

Many of the calculations in the literature of the
potential seen by a charged particle outside a solid
surface?!'22:62~64 5re hased on the assumption that
the particle is a point charge, at rest, at a fixed
distance from the surface. Others®'%¢ assume it
to be moving with constant velocity along a prescribed
path, In either case, the charge induced in the solid
by the particle is evaluated, and the potential due



5 MICROSCOPIC DESCRIPTION OF ELECTRON-SOLID...

to the induced charge is identified as the interaction
of the particle with the solid.

However, the instantaneous specification of both
the position and velocity of a finite-mass particle
is not possible quantum mechanically; the com-
plete specification of the trajectory of sucha particle
without foreknowledge of the potential it sees is
not even possible classically. Models which are
based on such specifications cannot be derived
from exact many-body equations of motion, except
in the limit that the external particle has infinite
mass (see Sec. VD, below). The reliability of
these models is, therefore, difficult to assess.

Only two calculations, to date, have avoided the
complete specification of the external particle’s
trajectory, that of Gersten, %7 which is discussed be-
low (Sec. VD), and the present one. In our model
calculations, only the conserved quantum numbers
(initial conditions) of the external particle are
specified. That is, we fix its total energy and
momentum parallel to the surface, but not its po-
sition or momentum perpendicular to the surface.
Our treatment of the external particle is thus com-
pletely quantum mechanical, at the cost, however,
of the introduction of nonlocality into the effective
potential that influences the particle’s motion,

The question of the speed of the external particle
is important in that it determines the frequency at
which the solid is excited, and consequently the
nature of the elementary excitations of the solid
to which the external particle couples. If the
speed of the external particle is high (v> vg) the
excitations to which it couples are plasmons. If
the speed is low (v<wvy) they are noncollective
particle-hole states. The distinction between the
two regimes arises from the fact that a particle
located at a distance z from the surface moving
with instantaneous speed v excites the solid at a
frequency ~v/z with wave vectors whose magni-
tude is ~1/z. However, the dielectric response
of the solid is associated with plasmons when
w/ K| > Vg, w and k being the frequency and wave
vector of excitation, and with particle-hole states
if /K| Svg.

In the model calculations presented below, as
well as in the papers of Takimoto®® and Lucas and
Sunjié, % use of the high-frequency approximation
to the dielectric response of the solid limits the

|

_1_ ikLlz-g'| (,ﬁl"ki> ikl(zu')].
zk; [e EJ_"'kL e ’

g-ithiz-ky2’ Y/ (ly + %);

ei(zl"kl")/(kl+ E);

R RT-H P (’EL‘kL) s’fq(z»fz'i!,
2k, ["’ Ntk /€ :

Golz, zl; Eu; E)=-2mi
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validity of the results to high-velocity external
particles. Lucas® applies the high-frequency di-
electric function in the study of plasmon excita-
tion by ions in field ionization. Because the ions
are of low velocity, this application is incorrect.
We wish to apply this dielectric function in the
analysis of low-energy electron diffraction, how-
ever., For incident electrons of energy 210 eV
the criterion v >vy is satisfied.

Other calculations? +?2:62~64 i the literature have
been performed for a static external particle. They
differ in their treatmentof the solid’s zero-frequency
response. Approximations to the dielectric func-
tion at w=0 that have been used in recent work
include the Fermi-Thomas approximation, 216
the infinite-wall RPA without “quantum-interference
terms;’? and the infinite-wall RPA with “quantum-
interference terms” included.? '?® None of these
calculations is directly relevant for ananalysis of
electron diffraction because for these electrons
V> Vp.

C. Local-Complex-Potential Model of ELEED

In many recent model calculations of ELEED
intensities2'*~® a local complex potential is employed
to simulate the consequences of the electron-elec-
tron interactions on electron-solid scattering.

Thus it is of interest to specify this model and
derive some of its more important consequences
within our distorted-wave scattering theory.

The local-complex-potential model is defined
by specifying, a priori, the retarded proper self-
energy =(¥,7', E) to be of the form

=(F, 7, E)=6(F-T)=(F,E). (115a)

In practice?:*-® the further assumption is made that
(T, E)=V(E)(2), (115b)

in which V(E) (or at least its imaginary part) is
taken to be the energy-shell one-electron self-en-
ergy in bulk jellium, 2-6-15

Although it cannot be derived from our micro-
scopic theory in any well-defined limit, the local-
complex-potential model exhibits the interesting
feature that the distorted-wavebasis states, ¢,(T),
defined by Eq. (111b), and propagator G,(¥,%', E),
defined by Eq. (108), can be evaluated in closed
form. We find

!
2,2 <0

!
z2<0<z

7
z <0<z

’?
0<2,2 (1162)
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K(8, E) = @mE/1?) - (k,+B)? , (116b)
R2(E, E) = {2m[E+ V(E))/h% - (k,+B)?, (116c)

in which g is a reciprocal-lattice vector of the lat-
tice-potential layers parallel to the surface, and

du(F) = M7 3, (2) (117a)
g eiklz+<k1 —kE.L_>e_{kLg; 2<0

ROE VTR
?ZkLe’k**/(kﬁ k); 2>0 (1170)

By use of Egs. (116) and (117) in the formal
scattering theory, Eqgs. (109) and (111), we can
illustrate the type of effects predicted by the dis-
torted-wave scattering theory For simplicity,
we consider only the distorted-wave Born approxi-
mation and use the 6-potential model of the lattice
potential

v(T-R)=v,8(f-R,) . (118)
After some algebra we obtain for the asymptotic

form of the wave function [using Egs. (116) and
(117) in Eq. (111a)]

zpscatt (—f)—___> eii“.; zpk (Z) ’ (1193_)

z2= %

(2)=R(0, E)

, 3, S50, B)S(E, B) miv, explilk, (&, E) + b, (8, E)IR,}

gin ﬁaiél(g, E)
(119b)
The first term in Eq. (119b), i.e.,

R(0, B) =[%, (0, E) = £,(0, E)] / [%, (0, ) + .(0, E)],
(120a)

gives the contribution to the scattered wave from
the jellium-vacuum surface alone, The second
term in Eq. (119Db) is the result obtained from the
Born approximation of scattering from the lattice
potential, Eq. (118), alone multiplied by the prod-
uct of

S(g, E) =2k, (E,E)/ [k, (E, E) + EJ. (8,E)] (120m)
for the incident (g =0)and final beams, i.e., the
product of the transmission coefficients of jellium-
vacuum interface in the absence of the lattice po-
tential.

We have presented the results of these elemen-
tary calculations to illustrate three important fea-
tures of the distorted-wave scattering theory.
First, the spatial dependence of the optical po-
tential at a solid-vacuum interface not only con-
tributes its own reflection coefficient R(0, E) to
the total electron-solid cross section but also in-
fluences the electron’s scattering from the short-

e

range electron-ion—-core potential. The latter
influence is always strong for glancing initial or
final beams, independent of the energy of the elec-
trons. This fact has the important consequence
that the ratios of the absolute intensities of dif-
ferent beams predicted by a model potential will
depend (sensitively) on the spatial dependence

and magnitude of £(¥,%', E). Second, as I(¥,TE)
diminishes as E increases,? the extent of the
dependence of the relative beam intensities on the
shape of the optical potential diminishes with in-
creasing energy of the incident electron. For
more general models of the optical potential than
Egs. (115), the magnitude of the “apparent” real
part of V(E) depends on the beam index § as well
as E sothat the energies as well as the intensities of
maxima in the intensity-vs-energy profiles de-
pend on the shape of the optical potential. Third
and finally, we see that GO(Y',T"', E) does not depend
solely on R=% -F', Therefore simple multiple-
scattering theories®:® no longer suffice to solve
Eq. (109), and more general planar-scattering
theories* must be used for this task. In this paper
we do not attempt to solve this equation, but rather
turn in subsequent sections to the determination of
the optical potential =(F, ¥’ E) itself.

D. General Features of Electron-Solid Optical Potential: High-
Frequency Step-Density Model

In this section we apply our microscopic descrip-
tion of electron-solid interactions to evaluate the
electron-jellium optical potential in the simplest
case: the high-frequency step-density model de-
scribed in Sec. III B, Before proceeding, two gen-
eral observations seem appropriate. First, we
demonstrated in Sec. IV A that the electron-density-
fluctuation spectral density predicted by this model
is identical to that obtained using Gersten’s model. *¢
Using Ferrell’s semiclassical analysis Gersten
also applied this analysis to obtain an expression
for the electron-solid optical potential of the
form46,67

z:G (Z, ZI;EHE) = 5(2 - ZI) [ﬁ(f(u; E) 5(z)+ a(r{u; E) 9(2)] .
(121)

The d-function term is associated with surface-
plasmon creation by the incident electron and the
g-function term with bulk-plasmon creation. Al-
though detailed numerical calculations have been
performed using this model, ¢” the functional form
of the potential was determined solely by inspec-
tion of the normalization criteria in the semiclas-
sical analysis.* Our microscopic quantumdescrip-
tion predicts drastically different spatial depen-~
dences (e.g., long-range highly nonlocal real and
imaginary parts) of the optical potential from those
given in Eq. (121). Thus, whereas within the high-
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frequency approximation the semiclassical analysis
proved adequate for evaluating electron-density-
fluctuation spectral densities, it is inadequate for
calculating the optical potential. Our second ob-
servation concerns the validity of the high-frequency
step-density model itself. From Eq. (64) we found
that in this model, A;(gw)=2x,(w), i.e., the bulk
and surface plasmons exhibitnodispersion. Such
a model is adequate only for values of w such that
wRqup, where v, denotes the Fermi velocity in
jellium, This restriction on the validity of the
high-frequency approximation renders this approx-
imation inappropriate to describe the optical po-
tential for slow electrons [(2E/m)"2=v<v,].
FromEgs. (94), (107), (108), and (114) we see
that within the high-frequency step-density model
the optical potential can be written as the sum of
three terms,

E(Z’ Z,;E,,, E)= EHF(Z’ ZI;EH) + Esp(z)zl; E,,, E)

+ Ty (2, Z';En; E). (122)

The leading term, Z,5, designates the Hartree-
Fock contribution. Its range near the surface and
nonlocality are both of the order of kp= (312n)'/®
for semi-infinite jellium of density » cm™, Its
depth is approximately Ty ~ (¢ + 72k3/2m) in which
¢ is the work function of the jellium system, ¢
~2-6 V. For electrons for which k= 2mE/#?)
>kp (l.e., E2100 eV) we argue that this contri-
bution to the optical potential is small. Therefore
for the purpose of estimating this potential, we use
a plane-wave basis for Gy, in Eq. (108), rather
than

VO(Z: Zl;ku) = ZHF(Z’ Z,’ ku) )
ie.,

° dr eikl(ﬂ-l’ )
.21 @ /2m) W+ ) - E

Goo(Z;Z’§E|u E)= —j

mi givla-g|
h—z.y ’

(123a)

v(B,k)=[@mE/r? - B]?; E>n®k3/2m

=i| @mE/n®) - I2|V%; E<n®/2m.
(123p)
The expressions for the bulk- and surface-plasmon

contributions to the image potential, T, and Z,, re-
spectively, areimmediate consequences of Eqs. (94)

and (114). Considering the zero-temperature limit
gives
; 2 2 ivgl g-z * |
- iw d e Ts
% ., __ tne mhw, q
sp(z; Z kll: E) h22172 (21'.)2 qvs
% e-a(l zlrle'l) (1 243.)
b
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vi=[2m(E - hw,/2Y%) /] - (k,+§)?, (124b)

ime thwp dzq ei'rb lz-2’|

z "k, E) = -
bp(Z,Z, iy ) ﬁa (277)2 qyb

X 9(z) 9(2.") (e-ql z-2' | _ e-q(zu’) ) , (1253)

vi=[2m(E - hw,) /1?] - (k,+ Q). (125b)

The square-root conventions for Eqs. (124b) and
(125b) are given in Eqs. (123).

The semiclassical limit of these results is ob-
tained by taking the m — e limit in Eqs. (123),
i.e.,

8 (z,2";k,, E)=0(z~ 2) /E. (126)

In this limit the relevant optical potentials are
Tz, 23 E=0)==08(z - 2") e?(1 — e ®es' *') /4| 2],

(127a)
Sz, 2" E=0)= = 6(2) 6(z - 2') €2

g2yl el
x<<"12&_————1 iz > ) (127b)

We use p, and p ., to designate the maximum wave
vector of the bulk and surface plasmons, respec-
tively. Equations (127) illustrate three impor-
tant results. First, as |z|> pgg, the optical potential
due to the surface plasmons becomes the classical im-
age potential both inside and outside the jellium-
vacuum interface. Second, for z> pZl inside the
jellium, the image potential due to the surface
plasmons is canceled exactly (screened) by bulk-
plasmon contributions to the optical potential re-
sulting from the orthogonality and completeness
relations satisfied by the density fluctuations.
Thus, the vanishing of the image potential inside
the metal results from the same mathematical
feature of the theory which led to the reduction of
the forward-scattering~bulk-plasmon--emission
cross section as described in Sec. IV B, Finally,
Eqgs. (127) show that the high-frequency step-den-
sity model leads to the correct semiclassical static
(E=0) limit despite the fact that we expect (g, @ ~0)
rather than X(g —~ 0, w) in Eq. (64) to describe the
quantum theory of this limit.*! Note that this limit
does indeed lead to a local potential. However, it
is purely real and is long range in contrast to
Gersten’s predictions, #6/47

The origin of this result lies in our taking the
semiclassical limit in the intermediate states of
the electron’s propagation as well as the initial
and final states. Gersten’s procedure® treats
these two types of electronic states in an asym-
metrical fashion, The intermediate electronic
states must be treated quantum mechanically
(either explicitly or implicitly via a dielectric
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function), so that losses are possible, before a
dissipative optical potential can be obtained.

In our quantum theory of the optical potential,
there is an intimate connection between the range
of its nonlocality and its dissipative character.
For example, if E<7w,/2Y2, the optical potential
is real. The range of the nonlocality of the sur-
face and bulk-plasmon contributions to it are de-
termined by

K=iv,=({2m[(iw,/2" ) = E] /m?}+ (K, +3H)?) 2,
(128a)
Ky= =iy, = {[2m(iw, - B)/n?]+ (£ ,+3)?/2,
(128b)

respectively. Thus as E -0 the potential exhibits
its shortest-range nonlocality. The two contribu-
tions become increasingly nonlocal as E increases
to fiw,=hw,/2"% and Kw,, respectively. Above the
plasmon-emission threshold, the concept of the
“range” of the nonlocality becomes ill defined due
to the oscillatory character of the ¢'”'*#'! factors
in Eqs. (124). Also note that at the plasmon-emis-
sion threshold energy, the diagonal term of the
optical potential becomes complex. If k,=0, the
diagonal term is purely imaginary when E increases
to the extent that

BA(E) = 2m(E - iw,) %> p2,; .

Although the imaginary part of the diagonal terms
of a nonlocal potential [e.g., ImZ (2, 2; E,,, E) in
Bq. (124a)] are necessarily associated with a phys-
ical absorptive process, the fact that off-diagonal
elements of such a potential are not real has no
direct physical interpretation. Therefore the evalu-
tion of X, and Z,, in closed form via Egs. (124)
and (125) is not our immediate concern. Rather,
we turn in the Sec. VE to an approximate solution
of Eq. (111b) for the distorted wave basis, in order
to examine the nature of the effective electron-solid
force for electrons which are “far” from the jellium
interface.

(129)

E. Electron Motion Far Outside the Surface; Quantum
Derivation of Image Potential

In this section, we give an approximate solution
for electron motion under the influence of the optical
potential. In particular we demonstrate that far
outside the surface the electron moves as if it were
acted upon by the image potential.

If a charged particle is located at a sufficiently
great distance z from a metal surface, no matter
how great the particle’s velocity v, the frequency
which characterizes the electric field it induces
at the surface is small, of O(v/z). Consequently,
the induced motion of the electrons in the metal
is adiabatic. Thus we expect the electron effective
potential to be the image potential. The deriva-
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tion of the image potential given in Sec. V D applies
only in the classical limit m -, v=0. We derive
a similar result, for a finite-mass moving electron,
but solving the Schrédinger equation [equivalent to
Eq. (111b)]

ik, R dz>
(E— 2m  2m dz’ 9:(2)

=§ dz' (2, 2"k, B) p3(")  (130)

approximately in the asymptotic region z — «,

We then discuss the possibility of evaluating the

leading correction to the image-force law. In this

asymptotic region, the effective potential varies

rather slowly compared to a fast electron’s wave

function, Thus we attempt a WKB-like solution

of Eq. (130) by assuming ¢;(z) to be of the form
Pp(2) = e™f Fy(2) (131a)
By, = @mE/H? - B2)V?, (131b)

where Fj is slowly varying in a sense to be defined.
Substituting the ansatz (131a) in Eq. (130), we ob-
tain

7? . dFy d%)
r_(oip, ¢k 4 Lk
2m ( Ry et R

©

=I dz'Z(z,z';-l;.,,E) esikile) B (2 (132)

We now suppose that two criteria of slowness of
Fy’s variation are satisfied:

d2Fs dFs
‘”—Ldzz <2k | E ‘ (133a)

[ dz'2(z, 2";K,, E) e"*+5#) o (') /

[ dz'%(z, 2';k,, E) et Fy(2)] - 1| < 1. (133b)

The first[(133a)] is the criterion for the validity of the
ordinary WKB approximation., The second [ (133D)]
permits us to replace Fy(z') by F,(z) in Eq.

(132); its validity, together with that of (133a),
enables us to approximate the integral equation

(132) by the differential equation

-0% [InF;(2)] zz;?—gkj dz' ©(z, 2';k,, E) e-ituts-2) |
L Jow

(134)
We wish to integrate Eq. (134) in the asymptotic
region z — « and to verify there the satisfaction of
the inequalities (133) a posteriori. In the asymp-
totic region, cf. Eq. (125a), the bulk plasmons
do not contribute to Z, nor, of course, does the
Hartree-Fock potential. Thus we replace Z by
T, cf. Eq. (124a), and obtain

8p?
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d o
e [InFi(e)] =

2, 2 ©

me“m"w )
Aol/iy dz’ e-tkua-2)
72V %k _w

d?q explivylz—2"1)
@n? qvs

Performing the 2 integration in Eq.

—a(l zlelz' )

(135)
(135), wefind
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27e2m pr d®q 1 ( ie?e*

d
o @) = Toomm = Y oor S\ @ 97 i0?

In order to take the limit of large (negative) z, we make the variable change

Q- zlq,

which yields

27elm? w, 1 . 2m Fiw
e = R

z

We have made use of Eqs. (124b) and (131b) in ob-
taining the denominator of the first term on the
right-hand side of Eq. (138). In the limit z ~— «,
this denominator approaches a constant 2mw, /7242
and the second term within the bracket vanishes. "

Therefore, in the asymptotic region Eq. (138) re-
duces to
d _ 2nmePm® w, 1 H2Y?
dz[lan(Z)]‘" 7i3kl 21/2 z 2%/1{;3;
a?Q 29 ie?m
X = -
j G @ - antkz - 1%

Integrating and substituting in Eq. (131a) we find
the approximate wave function

z 2
. ' e‘m 1
¢k(z)~expzj dz <kl-- 1% k;) .

By comparison, the lowest-order WKB (continuum)
wave function for an arbitary local potential V(z) is
given by

¢(z)=exp[ifdz'(ki 2 Viz )) J, (141)

where k, is the asymptotic electron wave vector,
Assuming V(2)<< (#?k2/2m), we expand the square
root in Eq. (141). This yields

(140)

z

¢ (2) = exp [zg dz’ (kl— ;’% V(z) 4 ﬂ .

(142)

Comparing Eqs. (142) and (140), we see that in the
asymptotic region z —~ «, the electron in the case
(140) moves as if it were in a local potential

(143)

e(q-ikl-irs)z ) (13
— % | . 6
T % e v D] )
(137)
Ztle Z—EHQ) Q e-Q-i(k_lw_,)z ]
z 2z )y, Q%z%+ (it v R (138)

I

Thus we have established the result stated at the
outset, provided that the inequalities (133) can be
shown to be valid.

We therefore proceed to determine the conditions
under which these inequalities are satisfied. Ac-
cording to Eq. (139),

ZF*,‘/dF‘ H:( e im )2_ ie*m }/ ie*m
N 4nR, 4n2k,z* |/ 4n*k.z
1 ezm 271/2
- Z[n(‘m%) I (144)
Thus (133a) is satisfied if
1 ezm 2 71/2
klz>>2|:1+ <4h2kl> } . (145)

For a 40-¢eV electron, as an example, this requires

z>>0.3a, ~0.15 A, (146)

where ay is the Bohr radius. Thus inequality
(133a) is satisfied to distances which are well within
the distance from the surface at which the image
potential can no longer be a good representation of
the effective potential.

In order to study the satisfaction of the second in-
equality (133b) we must evaluate the integral

M(z) Ef dz' Zs,(z,z';izl,,E) e thlaE) P2y

(147)
in which we use, cf. Eq. (139),

Fy(a) = (2)iem /e

(148)

The integral may be carried out exactly to give (in
terms of incomplete I" functions)™

1 [ 27y,
(Zﬂ)a av. | g+ ik )+ v2

e 2qx z -ip

M(e)= =ti —17'%
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1
-

— s L .

1
T =il k) - q]"“’)

YT (= ip, iy, — k) 2 — q2)
- (aikyra)e (e s th,ily, L q
+ipe [itvs= k) = q]'-?

e I~ ip, — 1(73*' k) z - qz)
[=ilyg+ ) —ql* )] ,  (149)

in which we have defined

e’m 1

P= 4Pk, " dagh, (150)

and in which the incomplete and complete I' functions,

respectively, are given by

I'(a,x) = fxn dtett*t,
151
I'(a)=I'(a,0). 1s1)
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We may obtain from Eq. (149) a simpler expres-
sion for M(z), valid in the asymptotic region z —— o,
by using the formula

(152)

T(a, x)— x*re*[1+0(1x)].

X o0

That is,
—in fw, d®¢ 1 2ae _,%
M(Z):: ag 2% I (277)2 qvs [ZW'
2m hw . P
(7’”2— 2—1,5 - 2ik,q+ 2K, - q)
__ 2qT'(2-ip)
[_ i(75+ k.l.)] -i
(eritroneas _ ZiDYskE Z-w] . (153)
m wp

In order to show that the mequahty (133b) is satisfied we must demonstrate that 3 (z - «) is nearly equal to
z-" times the integral [dz’' %z, z';K,, E)e-**¥) which we have already calculated [cf.Eqgs. (134) and

(136)].

Note that for sufficiently large |z|, only the first
terms within the respective brackets of (153) and
(154) contribute. But these terms are identical.
Therefore, at sufficiently large values of [z], the
inequality (133b) is satisfied. This completes the
quantum-mechanical demonstration that sufficiently
far outside a solid surface an electron moves as
though it were under the influence of the image po-
tential.

Finally we note that the difference between (153)
and (154) is comparable in magnitude to the second
term in the bracket of (154). But this latter term
represents a typical correction to the image po-
tential. Thus it appears that the error inherent
in our WKB method is comparable to the magnitude
of the corrections to the image potential. This im-
plies that we cannot utilize a local approximation
to Eq. (130) if we wish to evaluate accurately cor-
rections to the image-force law.

VL. SYNOPSIS

In this paper we have laid the foundation for a
microscopic theory of low-energy electrondiffrac-
tion in which the consequences of both surface and
bulk inelastic loss processes are incorporated in a
natural way. The formalism which we use was
reviewed in Sec. II. In Sec. III, we classified

In the asymptotic region, z'“’ times this integral equals

in hnw [ - ~n>/<27’"l w, ) zqz-ipeqt-i(klws)z]
- 2% %z —5 =15 — 2ik + 9k . Lqs e -7
B 2125 @n? gy, [77° n® 2l2 u (v, + k)2

(154)

[

models of the loss processes, related the assump-
tions and construction of the models to each other,
and compared their predictions. In Sec. IV we
demonstrated that one of these models, the high-
frequency step-density model, led naturally both

to the semiphenomenological inelastic-collision
model of ILEED® and to the prediction of the ob-
served® reduction in the inelastic forward-scatter-
ing cross sections of keV electrons. In Sec. V, we
developed a distorted-wave theory of ELEED, clas-
sified models of the optical potential used in this
theory, displayed the approximations needed to re-
duce the full theory to models whose use is common
in the literature, and provided a more accurate
evaluation of the electron-electron-interaction in-
duced optical potential as well as the demonstra-
tion that our evaluation of this potential reduced to
the image force in all appropriate limits. The next
logical step in the development of the.theory is the
solution to the Schrédinger equation obtained using
our more accurate optical potential and a simple
model of the short-range electron-ion-core inter-
actions.

APPENDIX

One of our principal concerns in this paper has
been to derive vertex functions which permit the
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calculation of electron excitation of bulk and sur-
face plasmons, In Sec. II, we derived such func-
tions within the context of a hydrodynamic theory
of the electron gas, in which dispersive effects
were neglected, In this Appendix we discuss the
inclusion of dispersion.

We find that in order to include dispersive effects,
our description of unforced modes of electron-gas
oscillation only needs minor modification. However,
when we turn on an external field, in the dispersive
theory, we find that the field appears not only as a
source term in the hydrodynamic wave equation,
butalso in the boundary conditions at the electron-gas’s
surface. As a result, when there is dispersion, it
is not straightforward to describe the gas’s linear
response in terms of its free-oscillation modes.

The basic equations of hydrodynamics are those
of mass and momentum conservation, respectively,

z—? ==V . (ngW), (A1)
g o == 1T = Ip. (a2)

As in the main text, x and w are the electron-den-
sity and velocity fluctuations, #, is the ground-state
electron-density profile taken to be

(A3)

and ¢ is the induced electrostatic potential, which
solves Poisson’s equation,

ny(2) =1 6(2) ,

V2= — dme’y. (A4)

The step-density model is completed by the assump-
tion that the pressure fluctuation is given by the
local constitutive relation

p=mp?u, (A5)
where the constant 82 is given by
BE=%0v%, (A6)

a value which is chosen in order that the bulk-
plf.smon dispersion relation in the present case
will agree with that of the RPA for the infinite-
electron gas. Note that the fluctuating quantities
u,W, and p are only defined in the occupied half-
space z >0, whereas ¢ is defined for all values of
z.

Combining Eqs. (Al) and (A2), we find that

82

m _B?M =V . (V) + V3.
Expanding the expression V. (2,V¢) in Eq. (A7),
and substituting Eqs. (A3)-(A5), we obtain

(A7)

Bzu

W:—(c";f)(z‘)u+ B2V2u+% 5(2)% . (A8)

The first question that must be answered at this
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point is whether or not Eq. (A8) can be construed
to be valid for z =0 or only for z>0.

In more familiar problems that involve dis-
continuous or singular potentials, e.g., the
quantum-mechanical square well, the matching con-
ditions at the discontinuity are automatically gener-

“ated by the differential equation under considera-

tion (Schriddinger’s equation in the square-well
case). Boundary conditions need be specified only
at infinity. In the present case, however, matching
conditions cannot consistently be generated by the
differential equation (A8) unless u(z)~0, as z—0
from the right. Otherwise, if #(z) must behave like
a constant times 8(z) as z - 0%, then (d2%u/dz?) must
behave like 8'(z) at z=0, and Eq. (A8) has no solu-
tion. In the case of the surface plasmon, we will
see presently that u(z) is requived not to vanish

as z—~0*. Thus Eq. (A8) can be construed to hold
only in the interior of the solid, i.e., for z>0.
Thus Eq. (A8) is rewritten

9y

292
8t—2=—w,2,u+BVu

z>0 (A9)
and the hydrodynamic theory must be completed by
the introduction of a boundary condition at z =0*,

The boundary condition which is generally as-
sumed is that the electron velocity in the z direc-
tion must vanish at z=0". The rationalization for
this assumption is that electrons must not leave or
enter the solid. It is equivalent, however, to the
requirement that #(z) contain no term proportional
to 6(z), as may be seen by integrating the equa-
tion of continuity (A1) in a pillbox about the surface
2=0. In any case, whether one chooses to ascribe
the boundary condition

w,(0")=0 (A10)

to the confinement of the electron fluid to the solid
or to the absence of any d-function-like surface-
charge fluctuation, the real motivation for using
Eq. (A10) to fix solutions of Eq. (A9) is that this
procedure yields the correct infinite-wavelength
surface-plasmon frequency.

We first proceed to solve Egs. (A9) and (A10)
for the surface and bulk modes of plasma oscilla-
tion. Note that the boundary condition (A10) together
with Eq. (A2) implies that

i

dz

-
0*_dz

(A11)

0*'

Using Eq. (A5) and the solution of Poisson’s equa-
tion [cf. Eq. (28)],

27e?
q

b (qz )= fdz'e-“"-"'qu’w), (a12)
0

the condition (A11) may be rewritten
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dul(gqzw) w? }"o U :
Qlgz®) | Y dzle- y(gz'w), (A13
dz £=0% 22 o wgz'w), (A13)

a form which involves only the unknown function u.
We Fourier transform Eq. (A9) in X and ¢, obtaining

2
(wz_w§—32q2+32 5?) ulgzw)=0. (A14)
Equations (A13) and (A14) are the well-known linear-
ized hydrodynamic equations for the semi-infinite
electron gas.

A surface mode corresponds to a solution of Egs.
(A13) and (A14) which vanishes at z=, We see
immediately that there is only one possible ansalz
for the charge fluctuation,

ulgzw) =ue™, (A15)

where u, is a normalization constant. [This form
of u(gzw) substantiates our earlier remark that for
a surface mode, u(z)~0 as z —~0* is not possible. |
In order that Eq. (A15) be consistent with Eq.
(A14), it is necessary that

= wf 1 B2(g2 - 7). (A16)

In order that it be consistent with the boundary con-
dition (A13), however, it must be true that

)

w1
=ty —— | A17
Y 262 q+vy ( )
Solving for y, Eq. (A17) yields
(e q_z)”z q
y= (252 + 4 9 (A18)

Substituting from Eq. (A18) into Eq. (A16), we find
the surface-mode dispersion relation

W=y wi+ By (30f+ 182072+ 38% 2, (A19)
which is Ritchie’s hydrodynamic result, The fact
that at ¢=0 we find w?= $? leads us to identify
the surface mode as the well-known surface plas-
mon; this result, of course, was obtained by the
imposition of the boundary condition (A13).

The bulk-mode solutions to the hydrodynamic
equations also can be found easily. These modes
are expected to vary sinusoidally as z- «. The
most general bulk mode that can satisfy Eq. (A14)
is thus given by

up(qzw) =u, sin(Kz + ) , (A20)

where u, is an arbitrary normalization constant
and a, the phase, is to be determined by the satis-
faction of Eq. (A13). In order that (A20) solve Eq.
(Al14), of course, it is necessary that

wl=wi+ pAgP+KD) (A21)

which is the ordinary bulk-plasmon dispersion rela-
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tion. Substituting Eq. (A20) into Eq. (A13), we see
that @ must satisfy

2 .
~-w, gsina+K cosa

2% A +K* (A22)

Kcosa=

The resulting value of a substituted in Eq. (A20)
yields the bulk-mode density fluctuation

1y COS D_l_

% 2, -2
x[qsinKz —K<1 + Zﬁ—(%g—”{——-)>cous} .
b

uy(gzw) =

(A23)

Note that in the dispersionless limit (82— 0),
choosing the normalization u, cosa=¢, this result
reduces to our earlier one, Eq. (54b) of Sec. I B.
The fact that it does not reduce to Gersten’s u\”’
[cf. Eq. (69) of Sec. IIIB]is not an accident; that
is guaranteed by the boundary condition (A10), which
is equivalent to the requirement that » not contain
a term proportional to &(z).

At this point, we have determined all of the solu-
tions of Egs. (A13) and (A14). In order to show that
they constitute a complete orthogonal set of eigen-
modes, we must define a scalar product (£, f») in
the space of functions f satisfying the boundary
condition (A13), we must then demonstrate that
the operator d%/dz% is Hermitian in this space.

Evidently, if we choose the “wrong” definition of
the scalar product, the proof of Hermiticity will
fail. If, for example, in analogy to our previous
results, we define

2
(F1, f2)o= 27;@ jdzdz'fi(z)c"’"’""fz(z') , (A24)

where the subscript 0 stands for g%=0, it is easy to

see that
dzf‘g >
#
f2>0 <f1> dZE 0

d*fy
dZZ 9

The ansatz with respect to which d2/dz? is a Hermi-

tian operator is

2 re o
(f!.’ fa)szs—gﬂ_e—_l( dgj( dz’fl(z)(e-alz-z']
q o o

+em N £z L (A26)

Starting with Eq. (A26), it is easy to verify that

4%, < 4y
(dZZ!f2>BZ'" fl: dzz)ﬁz

_ e’ (411_
q

(A25)

j dz'e ' f,(2') - Al
0

’
0 dz

dze ™ fi(z)) .
xJ'O ze ™ fy ))

However, as a consequence of the assumption that

dz 0

(A27)
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f1 and f, satisfy the boundary condition (A13), the
right-hand side of Eq. (A27) vanishes, which implies
that d%/dz® is Hermitian. It also implies that the
solutions to the hydrodynamic equations with g2#0
are orthogonal with respect to the condition

(uly ul')Bzzov 1#1° .

(A28)

This fact raises the question of how the g2=0
limit is approached, for 82 does not appear explicit-
ly in the definition (A26), and we know that at g2=0
the solutions to hydrodynamic equations are ortho-
gonal with respect to the scalar product of Eq.
(A24). This paradox is resolved by the observation
that the 8%=0 hydrodynamic solutions are in fact
also orthogonal with respect to the scalar product
of Eq. (A26). Thus a $2=0 hydrodynamic theory
could have been based on the orthogonality relation
of Eq. (A26) as well as on that of Eq. (A24).

This completes our discussion of the free oscil-
lations of the semi~-infinite electrongas withinthe
hydrodynamic model including dispersion. The
logical next step is to consider the excitation of
these oscillations by an external potential, and, in
particular, to obtain the density-density response
function which is the %+ 0 extension of that of Eq.
(64).

Turning on an external potential Vgxr(X, £) modi-
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fies the Euler equation (A2) but does not affect the
other hydrodynamic equations (A1), (A4), and (A5).
Equation (A2) is replaced by
9 - - -
mn0%= -noV¢ —ngVVexr ~Vp , (A29)
and, as a result, the wave equation (A14) is replaced
by

2
(wz -wi-p%2+ Bzd—dzz—> ulgzw)

_ R dz 2
=gz e Vexr(gzw) . (A30)

m\dz

However, the boundary condition (A14) is also
modified by turning on Vgxr, since according to
Eq. (A29) the condition Eq. (A10) now implies that

a¢| _dp

AVexr
fhe dz 0+~ dz

o

o* dz

(A31)

0+
As a result of this change in the boundary condition,
the solutions of Eqs. (A30) and (A31) cannot simply
be expanded as a linear combination of the solutions
of Eqs. (A13) and (A14). The evaluation of the
linear -response function in the dispersive hydrody-
namic theory thus requires a modification of the
procedures that are described in the main text, and
for that reason it is not discussed here.
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Mossbauer spectra of Cdg gsFeg, (2C 1,8, taken between 5 and 300 K, reveal that there is a
magnetically induced, temperature-dependent quadrupole interaction below the Curie tempera-

ture (96 K).

The observed temperature dependence of ¢QV,, and Hp; can be understood in

terms of the combined action of a crystal field, an exchange field, and a spin-

orbit interaction. The following constants are derived: 6= G(AZ/A,_.+p) =12 cm™, eQV,(0)
=5.75 mm/sec, E,(0)=90 K, A=62 cm™!, @=0.24x 10" cm?, and 2«=0.83. Within experi-
mental error the principal axis of the electric field gradient is parallel to the hyperfine field.

I. INTRODUCTION

Mossbauer spectra of 'Fe in FeCr,S, have been
reported by several authors,!=® but up till now the
results are not completely understood. The com-
pound has the spinel structure, Fe being at the
tetrahedral A sites. Magnetization data on a single

crystal reveal that below the Curie point the pre-
ferred direction of the magnetization is the [100]
direction.® It can be shown that a combination of a
crystal field, an exchange field, and a spin-orbit
interaction then gives rise to an induced electric
field gradient (EFG) at the nucleus, axially symme-
tric around the direction of the hyperfine field



