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Theoretical positron-lifetime spectra are derived for targets with structures such that posi-
trons can diffuse into interstices where they remain trapped until, after a distinct lifetime,
they annihilate with an electron into & quanta. Exact expressions and convenient approximate
formulas for different structural geometries are presented. The contribution of trapped posi-
trons to the angular correlation between the two annihilation p quanta is derived. The propaga-
tion of errors in determining positronMiffusion constants or, conversely, parameters of the
target microstructure from positron-annihilation characteristics is discussed.

In a previous paper, ' a strong dependence of
positron-lifetime spectra on the grain size in pow-
ders was interpreted in terms of the diffusion of
positronium (Ps) atoms from the solid material
ir.to the interstices between the grains. For ex-
ample, in a series of Si02 powders of varying grain
size (40-300 A) one observes three lifetime com-
ponents of intensities I, m = 1, 2, 3, normalized
suchthatg I =1, withlifetimesr or annihilation
rates y =v ', respectively. ' The intensityI, of the
component with the longest lifetime (r, =140 nsec)
grows with decreasing grain size at the expense of
the intensity Iz of the component with the inter-
mediate lifetime (r2 ~2 nsec). The intensity I, of
the component with the shortest lifetime (v'~ =0.4
nsec) remains essentially constant. I2 is attributed
to the electron pickoff annihilation of orthoposi-
tronium (o-Ps: positron and electron spine paral-

lel) in the solid with pickoff rate y~ =r2'. The
third component, of intensity I3, decays with the
self-annihilation rate of o-Ps. We attribute I3 to
o-Ps atoms that have diffused, before they could
annihilate in the grains by electron pickoff, into
the voids where they annihilate at a rate y, & y~.

'

I, comprises all other annihilations, viz. , the an-
nihilation with target electrons of positrons that
have not formed Ps and the self-annihilation of
parapositronium atoms (p-Ps: positron and elec-
tron spine antiparallel) that form concurrently with
o-Ps in a proportion given by spin statistics.

Interesting applications of these ideas have been
made in various contexts. The notion of diffu-
sion and trapping in voids, of course, need not be
restricted to Ps. In fact, certain positron-annihi-
lation characteristics in solids can be interpreted
in terms of the diffusion of positrons to defects
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acting as positron traps. ' Recent experimental
studies support this interpretation.

We return here to the problem of positron dif-
fusion to derive exact theoretical spectra to be ex-
pected under diffusion conditions, and to present
the results for different geometries of the target
microstructure. In applications to crystal defects
the approximate spectrum derived earlier is shown
to be adequate for the analysis of positron-lifetime
spectra because in such cases the uncertainties in
the data cannot distinguish between the exact and
the approximate expr essions. Optimum experi-
mental conditions can be cited for determining
positron or positroniurn-diffusionconstants D or,
alternatively, given D, for determining structural
parameters of the target material.

Consider a target consisting of small solids (sub-
script s) interspersed by voids (subscript v). An

injected positron is stopped at time t = 0 at some
point r with uniform probability density p (r, t = 0)
throughout the solid matrix, and with zero proba-
bility in the voids. If positrons can diffuse in the
solid in which they were thermalized, some reach
the surface and can escape into the voids where
they annihilate with a lifetime &, which is long com-
pared to the lifetime v, in the solid. In time,
p (r, t) changes as

dn, (t) (,,
dM {t)=-y, n, tj+ (4)

The rate equation governing the positron fraction in

the voids, n„(t), annihilating there with rate y„, be-
comes

dn„(t), , dM (t)
(5)

where by Eqs. (1) and (8), in terms of a mean pos-
itron-diffusion constant D,

() af V=p-(Kt) d S, (f),
dt

(8)

QP = —y P+DvP ]et

subject to the condition p(%, t ) =0, where 0 de-
scribes the surface S(K) of the solid of volume
V(%}, acting as an absorbing boundary. The frac-
tion of positrons in the solid, n, (t ), is then

n, (t ) = fp(r, t )d V(0) . (2)

With the substitution p( r, t) = p( r, t) e '&', Eq. (1) re-
duces to the usual diffusion equation for stable par-
ticles (y, =0). In terms of the remaining fraction
of stable particles,

M (t) = f P (r, t) d V(Ã), (8)

Eq. (2) can be written as n, (t)=M(t)e '~'. The rate
equation governing n, (t) becomes

by Gauss's theorem.
The solutions of Eqs. (4) and (5), subject to the

initial conditions n, (t= 0) = 1 and n„(0) = 0, can be
combined into n(t) =n, (t)+n„(t) to give the lifetime
spectrum

The function M(t) is known for different geometries
of the solids. " For foils (dimension p= 1) of thick-
ness 2R, long fibers (p= 2) of radius R, and spheres
(tj,= 8) of radius R, it is given by

oo D
M„(t) = 2P, g &~„aexP ——

a A„„at
v~1

(8)

where, depending on the geometry of the solid p, ,
the constants ~„„take the values

1 2 3

They fulfill the normalization condition

with the abbreviations

p'=D/yg',
g' -=1 —y„/y, .

(io)

The intensity 4' of the diffusion-controlled lifetime
component is given by

(Pg)= 4 ~ P
—= P I (/)

(12)
where f„(x) is the modified Bessel function of order
n. Spec if ically,

C', (P/g) = (P/g) tanh(g/P) (foil), (Is)

( / )
(P/g) (g/P) (f.b )f.(g/P)

C' (P/g) = 8 (P/g) [coth(g/P) —(Pic)j (sphere). '

(15)
For / 3 and g= 1, we retrieve the expression

derived oy Flugge and Zimens" for the escape of
emanation from solid spheres in the limit of zero

2p+A. „+=1.
Vn1

The constants ja„are the solutions of Za(x) = 0, where

Ja(x) is the Bessel function of the first kind of order
zero; they are tabulated. '

Equation (7) with Eq. (8) yields the lifetime spec-
trum for a target composed of solids of type p. ,

ao ]
n (t)=20+ ~ a ~ apa a~~. p +g

x exp [ —(X,„ap'+ 1)y, t] + C, (p, g) exp( —y„t),
(8)
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Another estimate of the error incurred by treat-
ing the sum in Eq. (9) as a single lifetime com-
ponent results if one retains terms v only up to a
v, for which, say, (&„„P + 1)& 5 corresponding to
a time resolution -0.27„

P IJ ~ y 2 ) 2 2 2

0.50

0.25

0. 25 0, 50 0.75 1.00

+ C~ — . 17

The dotted curves in Fig. 1 display Eq. (17) for
g= 1 with discontinuities where, in our example,
successive terms are cut off sharply by the con-
dition X~„P +1= 5.

These approximate results follow the exact curves
closely. We conclude that, in general, only errors
small compared to the usual uncertainties in life-
time decompositions are introduced by treating the
sum in Eq. (9) as representing a, single lifetime
component. "

A reevaluation of the data reported in Ref. 2
according to Eq. (16) for p. = 3 with Eq. (15) yields
the Ps diffusion constants

D(Si02) = (1.45 ~0. 15) &10 'cm'sec ',
D(AlzO~) = (5. 5 +1) &&10 ' em~sec ',

and
FIG. 1. Dependence of 4„E'P, g=1) on P for different

geometries. The approximations are discussed in the
text.

recoil depletion. The exact result Eq, (15) super-
cedes Eq. (3) of Ref. 1, which does not exclude
all random walks crossing the surface more than
once' and does not exhibit, through g, the depen-
dence on y, . The solid curves in Fig. 1 show 4„
(P, g= 1) for the three geometries p. = 1, 2, 3.

We note that the first term of Eq. (9) consists of
a sum of infinitely many components v of rapidly
descending importance. This apparently poses
difficulties for the decomposition of experimental
lifetime spectra. However, the terms v & 1 normally
decay so rapidly that they submerge in a shortest
lifetime component or in the prompt spectrum of
the instrument. We demonstrate this by plotting,
as dashed curves for g = 1 in Fig. 1, the apparent
4~" (P/g) that will be extracted from experimental
data if only the leading term v = 1 in Eq. (9) is identified
as a short lifetime component,

2 2=—A. &Py (Is)

and omit the subscript p, for brevity, we retrieve
the lifetime spectrum derived earlier,

(t)= (1- e '"V'K x+ t
K+ y, —y„ K+y, —y,

(»)
The escape rates K for various geometries are

tabulated in Table I. '6 Equation (19) is an excellent
approximation for internal microscopic sinks and
has been applied to the trapping of positrons in crys-
tal defects. ' More precisely, for spherical voids
of radius r present in a, concentration N= 3/4vx, ' and,
hence, a relative volume concentration c=(r/r, )',
the fraction of particles trapped according to the

D(MgO) = (25 a 15) & 10 ' cm sec '.
A simple, transparent, and yet in many instances

adequate, formulation of the P dependence of C', ob-
tains if one retains only the first term v = 1 in both
the sums of Eqs. (9) and (12) renormalized by di-
viding with 2p/X»~. If we denote the effective escape
rate from the solid as
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TABLE I. Escape rates from solids and trapping rates
into voids.

Structure

Foil (thickness 2R)
Fiber (radius R)
Sphere (radius R)
Rectangular slab

(dimension XX YxZ)
Cylindrical pores (-dis-

locations) [radius g,
concentration N (pol'es/area)
=(~) ']

Spherical voids (-vacancies)
[radius g, concentration

N (voids/volume) = 3/47ty31j

7('D/4R'
5. 78D/R2

~2D/R'

~2 D (X'-2 + Y-2 +g-2)

4mÃD

ln(]./7lN~2}

4m&ND

first-term decay mode retained in Eq. (19) is
1-—', (r/r, ) +O(x'/y', ). ' That is, Eq. (19) is exact
to O(c't'). Even at trap concentrations as high as
c-10 ppm, Eq. (19) describes the trapping process
correctly for more than 99% of all positrons. If
propagation as wave packets dominates, ~ must be
expressed in terms of quantum-mechanical trapping
cross sections. '

dn, (t) = —y,n, (t) + ,xn(t), (2o)

where n, (0) = 0, a component of intermediate life-
time y~ = 7'&, appears in the positron-lifetime spec-
trum with an intensity proportional to x, :

In macroscopic solids, a "spurious" low-inten-
sity component (1-3% of the total spectrum) with
a long lifetime is often observed with an external
positron source which, in some cases, can be
traced to "surface effects. " Indeed, such com-
ponents may be a common phenomenon, of intensity

, = P/2g, Eq. (13), where the effective R is some
fraction of the width of the positron range profile
in the solid, if the surface conditions provide states
that act as an absorbing barrier with positron life-
time longer than the bulk of the solid.

Qn their diffusion path to the surface of a solid,
the positrons may be trapped at a rate z„ in defects
(last two entries in Table I) where they annihilate
with a distinct rate y~ such that y„& y„&y, . This
changes Eqs. (4) and (5) in that y, is replaced by

y, + ~„. %'hen solved in combination with the rate
equation describing A-center formation by positron
trapping on defects,

1
n(t) = 2p. Z

v~1 tt v

p'
X „P+g„yg&

tf 1 @ e gyes @, e 'y~t 21

where

g'. =g'+ (&~/y. ),
+ (~a+ y —'4)/y

(22)

(23)

and g is defined in Eq. (11).
If data are analyzed in terms of Eq. (19), the

intensity 4', (P/g„) of the longest-lived component
due to annihilations in the voids depends, then,
on the a.rgument P/g„= (P/g)f 1+ (Ic~/ , y)g] '~, re-
sulting in an effective diffusion constant

D"' = D(I+ (~./y. g')] ' . (24)

One estimates that D"'=D for all defect concen-
trations at which defect trapping remains a distinct
process (e &10' ppm). " In particular, the interest-
ingly large variations noted earlier' between the
measured positronium-diffusion constants quoted
above for different solids could not be accounted
for by differences in defect concentrations. %hen
the voids are of atomic dimensions, one has g & 1 and
retrieves, in the approximation of Eq. (19), the
lifetime spectrum of positrons annihilating in a
solid with two types of noninteracting traps. "

Practically all positrons in solids annihilate
with electrons into two y quanta. The y rays
emerge from the site of the annihilation in opposite
directions with small deviations from 180', of or-
der milliradians, which for thermalized positrons
reflect the distribution in momentum of the elec-
trons in the domain of overlap between the positron
wave function and the electron wave function of the
solid. If positrons become trapped in voids, their
wave functions overlap at the boundary with elec-
trons of lower density and lower momenta than in
the solid. Therefore, trapped positrons give rise
not only to a long-lived component in the lifetime
spectrum but also to a component with narrower
angular correlation than positrons annihilating in
the solid. Such interrelations between lifetime and

angular correlation with changing defect concen-
tration are observed experimentally. ' If positrons
are trapped as Ps, the narrow component attributed
to the self-annihilation of p-Ps changes: Confine-
ment in microscopic voids widens the narrow com-
ponent by an, amount that corresponds to the zero-
point energy of the p-Ps atom in the confining po-
tential well. If o-Ps diffuses from small solids
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into macroscopic voids, pickoff annihilationfrom
the solid surface can normally be neglected. The1

contribution of this component to the angular cor-
relation is merely the small fraction of the 3y
self-annihilation spectrum of o-Ps in the void that
can be registered by the 2y coincidence apparatus.

It is of interest, then, to exhibit the relation be-
tween the diffusion-controlled lifetime component
4 „and the fraction F„of annihilations in voids
which changes the angular correlation. The num-
ber of positrons in the solid at time t is

n, (t) = 2p. E &,„exp[—(P'&„„+1)y, f ], (25)
v=1

so that

F, (P) = 1 —y, f n, (f)dt = 4'„(P, g =1) .

tration in a material is varied. By Eq. (2V) the
bvo observations are proportional to first order,

LC/C' = g'( nF/F') . (29)

Thus even when ~ varies significantly, &@' can
remain too small to be resolved, if g is small,
and the presence of defects will manifest itself only
through an increase of the mean lifetime. ' The21, 22

rate of capture by small internal positron traps in

solids or liquids, w, can be determined in the ap-
proximation Eq. (19) directly from either &' or
from F, or any characteristics of the angular cor-
relation curve that is proportional to F, such as
the change in counting rate at the maximum or the

change in the width of the angu]. ar-correlation curve,
because

It follows that only in powders with large voids,
where p„«z, and thus g = 1, is the intensity @„
equal to the fraction F„of positrons annihilating in

voids. In dense materials with microscopic voids
such as vacancies, g is typically of order 0. 5,
and thus F & C'. Specifically in the approximation
of Ecl. (19),

g'+ (1-g')F (2V)

Normally only changes in F and C' are of interest
as observed, for example, if the defect concen-

~ = ( y, —y„) @/(1 —C') = y, F/( 1 —F) . (29)

Otherwise, the escape rate D/ft must be deter-
mined with the aid of Eqs. (12) and (26) by a fitting
procedure.

If the material contains large voids that are
filled with a gas dense enough to stop positrons to
form initially asignificant fraction of Ps, n0„, in the
voids so thatn, (t = 0) = np = 1 —no bu—tnotso dense as
to reduce significantly the energy that Ps atoms
can gain by diffusing into the voids, the intensity
of the long-lived component becomes

20,

4pproxima

Exact for 5

IO—

FIG. 2. Relative error in P de-
termination from@ inunits of itsun-
certainty 64.

0 0.25
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0.50
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0.75 I.00
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~.' ( p, r) = s~+ no. ~.( p, g) .

The fraction annihilating in the voids is

~.'='. (P, g=l) - ~.'(P, g)

(30)

(31)

from independent observations to determine the
third. The relative unce rtainties propagate as

5P /P = 5D/D+ 5t, /r, + 6R /R

where in the approximation Eq. (19)
These interrelations apply in many instances, for

example, to the study of molecular sieves and semi-
crystalline polymers. Moreover, important as-
pects of positron chemistry, in particular re-
lations between lifetime spectra and angular-corre-
lation data in solutions, can be understood through
these formulas in terms of positron diffusion and

reaction rates.
We conclude with a brief comment about the prin-

cipal uncertainties encountered in determining P~

from a diffusion-controlled component in positron-
lifetime spectra. Since Is depends on D, R, and

y, , any two of these parameters must be known

6P~/P = 54/4 (1 —4) . (32)

Figure 2 shows Eq. (32) together with the exact
curve for spheres calculated from Eq. (15), for
fixed 54. There is a broad optimal range of @'„

values centered around C', = 0. 5, where the error
in extracting P' from lifetime measurements is the
smallest and dependent only on 64'f . For 4,„&0. 2

the uncertainty becomes large because then 5C'„- 4');
for 4„&0.8 only a lower limit for P can be esti-
mated from the experimental data.
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