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Expressions have been obtained for the envelope-modulation effect in spin-echo experiments
of the two- and three-pulse type by partitioning the matrices which describe the evolution of
the quantized system. The initial results are quite general. and may be applied to a variety
of systems. Simplified expressions are derived for the case of an electron spin transition
split by small nuclear hyperfine interactions. The results are given in matrix product form.
The problem of computing the envelope-modulation parameters in specific instances is dis-
cussed. Algebraic results are given «r 8=2, I=2 and S=2, I= 1.

I. INTRODUCTION

In spin-echo experiments a periodic variation of
amplitude or "modulation" associated with small
splittings of the resonance line is sometimes ob-
served in the envelope of echoes. ' This modula-
tion effect has been used to measure splittings
which could not be seen by cw methods because
they were too small to be resolved in the presence
of inhomogeneous line broadening. Examples in
the field of nuclear resonance are the measurement
of the 8 I, facoupling'~ in organic molecules and in

metals, and the measurement of nuclear quadru-
pole coupling. ' Here we shall be primarily con-
cerned with electron spin echoes, where modula-
tion effects are due to coupling between electron
spins and nuclei in the host lattice, i. e. , to the
superhyperfine structure (shts) of the resonance.
Such modulation effects are a common feature of
electron spin-echo experiments.

In Secs. II and III the modulation phenomenon is
discussed from a general standpoint without refer-
ence to any specific system. This helps to focus
attention on the origins of the effect, and makes it
possible to derive results for two- and three-pulse
echoes (stimulated echoes) without undue mathemati-
cal complexity. The method of analysis follows
closely that which is used in the treatment of a sim-
ple two-level system. The basic formulas can be
applied in a wide variety of cases covering both nu-
clear and optical echo phenomena. '

The general results are applied to the special
case of an electron resonance with shfs splitting
in Secs. IV and V. The matrix expressions de-
rived in Sec. IV can be used either to obtain a plot
of the echo envelope or to find the amplitudes of
the frequency components which appear in it. A

procedure for performing the necessary calcula-
tions is suggested in Sec. VI. Explicit formulas
for coupled systems with S= ~, I= & and S= &, I= 1
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are derived in Secs. VII and VIII (see also Acknowl-edgments�).

Envelope- modulation experiments may sometimes
provide a convenient alternative to electron-nuclear
double-resonance (ENDOR) studies, in particular
when the shfs splitting is small and conventional
ENDOR experiments are difficult to perform. Two-
pulse and stimulated-echo sequences can both be
used in this way. The two-pulse echo envelope con-
tains sum and difference frequencies as well as the
ENDOR frequencies themselves. A display of the
ENDOR frequencies without such combinations can
however be obtained by performing a stimulated-
echo experiment and plotting the echo amplitude
as a function of the time between pulses II and III.

II. GENERAL EXPRESSIONS FOR ENVELOPE
MODULATION WITH TWO-PULSE ECHOES

Figure 1 shows a set of energy levels which inter-
act with a pulsed resonance field. The diagram is
used here to represent the transferred hyperfine
structure associated with two electron spin states
lo') and lp). Only those levels of the over-all

quantized system for which the transition I o'& )
~ I P~ ) has a significant amplitude are shown.
Levels corresponding to electron intervals which
are off resonance, and therefore not influenced
appreciably by the pulses, are omitted from the
diagram. It will be noted that transitions are shown
connecting each I &;) to more than one I p,). This
"branching" of the transitions is essential if enve-
lope modulation is to be observed, and is implicitly
assumed in the matrix calculations which follow.
The reason lies in the pattern of coherence induced
by the pulses. In the absence of branching the
resonance pulses cause the appropriate pairs of
states I&,) and I p~) to become coherent and hence
to generate signal amplitudes which add construc-
tively to form a spin echo, but the effect is the same
as if each I&&), j p~) pair belonged to an indepen-
dent quantized system forming part of an inhomoge-
neous line. The superhyperfine splitting is then
merely an additional source of inhomogeneous
broadening. When branching transitions occur,
the resonant pulses induce coherent relationships
within the & and P manifolds as well as between
states in opposite manifolds. This leads to inter-
ference effects in the spin echo and hence to the
modulation of the envelope.

The evolution of the & and P states during the
successive periods of nutation and free precession
which make up a spin-echo sequence (see Fig. 2)
can be followed by means of the density-matrix
formalism. If p stands for the density matrix and
K for the Hamiltonian, then the equation of motion
is

In order to calculate the echo signal, Eq. (I) must
be integrated to give the final density ps (corre;
sponding to the time of appearance of the echo) in
terms of the initial density pQ. The echo signal E
is then proportional to Tr (~,) where &, is the
portion of the Hamiltonian

X 3CQ+ Xg

which describes the interaction with the resonance
field. Thus we have

E = q Tr( pK|),
where p is a constant of proportionality depending
in part on the experimental arrangements. It may
be noted that two summations must be performed
to obtain Tr(pJC, ): a sum over the I o.,) and i P&)

states of each quantized system and a sum over
the systems which make up the inhomogeneous
line. If the distribution of values of +,

about a mean value +,„, is such that the spread in
the inhomogeneous shifts DK ~ is large compared
with the intervals in the n and P manifolds, then
the two summations can be factored out, the first
sum giving the envelope-modulation function and
the second sum the form of the spin-echo signal.
We shall assume that this factorization can be
made. We shall also assume that 6+ „only var-
ies the spacing between the z and P manifolds and
does not lead to an inhomogeneous distribution of
intervals within each manifold. "

Equation (I) can easily be integrated for the free-

STATES

STATES

FIG. I. Energy levels of a quantized system and tran-
sitions involved in the generation of spin-echo signals.
The resonance field at frequency cu is able to induce
transitions in all intervals ~

&
-~@ provided that the

corresponding matrm elements are not zero. It is es-
sential that transitions should occur from any given
state I &~) to more than one state I P&) if envelope-mod-
ulation effects are to be observed.
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FIG. 2. (a) Two-pulse spin-echo se-
quence. In the idealized 90'-180' sequence
the peak of the echo appears at a time w

after the end of pulse II. In some other
situations it occurs at a time v +) after
pulse II, where t - 2 g&. The envelope-
modulation function E~«(7) is obtained by
plotting the amplitude of the echo E against
the pulse separation 7. (b) Three-pulse
or stimulated-echo sequence. (The two-
pulse echo after pulse II will also be pres-
ent unless pulses I and II are ideal 90'
pulses. ) It is most useful here to ob-
tain the envelope-modulation function
E g(T T) by plotting the amplitude of
the echo E against the time T. Since T
may often be made much longer than v. ,
the modulation periods can be determined
more precisely from E~«(v. , T).

(b)

precession portions of the echo experiment, dur-
ing which 3C= + is a time-independent operator.
The density p(tz) at the end of any such period is
related to the density p(t, ) at the beginning by the
similarity transform

p(tz) = exp[- ~(t& —t, )/ff ) p(t7) exp[gc, (t& —t, )/h ] .
(5)

If we adopt the + representation ]in which the
matrices exp[i&(tt —t, )/It] are diagonal, with
elements exp i~„(t&—t, )], exp[i+~&(t& —t~)]) this
transform merely multiplies the off-diagonal ele-
ments of p by phase factors exp[i(ra, 7

—i~~, )(t& —t,)].
The evolution of the system during the pulses is

harder to describe. In order to formulate the
problem in a concise manner, we partition the ma-
trix for X, into four submatrices consisting of the
o. ,o, , o, ;P&, P&n;, and P&P&' arrays of matrix ele-
ments. The resonance field interaction

The time dependence can be r emoved from X,
by means of the transformation

f~c~/2 ~ -$'coc&tl2
y

—e ge

where (in submatrix form)

We therefore have

0 N

0 (10)

eicuC+tl2 ~&-fcoE~&/2

where N consists of the elements (o.*, IX„I t)&). By
making the analogous transformations

8 fcoc&t/2 ~ e-fruc&t/2

e tet +~-let

can then be written down in the form

(5)
for the other operators we can restate the problem
in a frame of reference' in which the equation of
motion can always be solved by an expression of the
form (5). Thus

(n states)
(n states) 0

(P states)
-let /2

(p states) +78 '"'"

where is the frequency of the oscillating field
and X„ is a time-independent Hermitian operator
which connects a states with P states, but which
has no elements making connections within the o.

or P manifolds. The partitioning procedure in-
dicated above will be used throughout the remain-
ing calculations. E= 7j Tr(pa Xg) (15)

p(t~) = exp[- iX(t~ —t, )/k ] p(t, ) exp[i SC(t~ —t, )/0 ],
(I4)

where K=~+X, or ko according to whether the peri-
od tf g ' is one of nutation or free precession.
final result



%'. B. MI MS

will of course be expressed in the transformed co-
ordinate system and will correspond to the amplitude
of an oscillation taking place at the frequency (d.

I et us denote the exponential operators appropriate
to the nutation and free-precession periods in the
two-pulse spin-echo sequence [Fig. 2( a)] as follows:

R„,= exp [i(5CO + 3CI) f& I/Ir ], (16)

RN I RTRN II RT+t (20)

R ' can be replaced by R since K and Kr are Her-
mitian and the exponential operators (16)-(18)are
unitary.

The calculations can be carried out in terms of
submatrices. Kr is given in (10) and we can denote
the remaining operators by

RN II exp[I(Q + +I) fp II/)I ]

R,=exp[iiq) r/ft ] .

Then the final density is related to po(= p, ) by the
transformation

pE= R poR=R poR

A 0
Po= 0

"P, 0
0 Q,

N I y

(21)

(22)

(28)

where
(with similar matrices for R, t Rrr zz). Perform-
ing the multiplication (20) we have

(Tr PT Tz, P T„t+ Ui QT V. rr PT+I) (T, P, Uzz QT+t+ Ur QT Wrr QT+t)
R=

( I T II PT+t + I QT VII T+t) ( Vr PT Urz QT+t I QT Iz QT+t)
(24)

Evaluating (19) and using the result in (15) we find that

E='6 Tr [(Q t UriP T +Q .t Wzr Q Ur )A(T P TriP .I+ Ur Q VrzP .t)N +(Q +t UizP Vz+Q .t Wiz Q ~i)

&& &(Vr P, Trz PT+t+ WzQT Vzi P„t)N + (PT+t TizPTTr+PT+t Vzz Q, Uz)A(TIP, UII Q, +I+ UzQT Wzr QT t)N

+ (P'+t TizPT Vz+P'+I V~II Q,
'

Wz) & (VrP, Urr Q.+I+ Wz QT Wzr QT+t)N ] .

Equation (25) contains a number of terms which
will not in fact contribute to the spin echo. To see
this let us consider what will happen when the trace
is summed over the inhomogeneous line. The dia-
gonal matrices P, Q, P~, Q~ consist of elements
exp[+I'(IAr I —

2 td)r], exp[+I'(~tr&+ 2&v)v], which con-
tain, as part of the frequencies

&
and &z&, the

shifts generated by the inhomogeneous broadening~ „[Eq. (4)]. In the submatrix notation this
broadening term becomes

"I 0
~yk +Net 2@+ztrt 0 —I (26)

Thus, by Eqs. (18) and (22), it introduces scalar
factors e' "~'~, e ' "~' into P, and Q . Only those
products in Eq. (25) for which such scalar factors
cancel out will contribute to the echo. When the sum
is made over the inhomogeneous line, the remain-
ing products will be associated with factors of the
form g„et "I" and will correspond to the free-in-
duction signals appearing only for relatively short
times v after the pulses. Eliminating these un-
wanted terms, and making use of the fact that A, B
a:..e real diagonal matrices, we thus have, in place

of Eq. (25),

E = 2I) Tr (Q'„, U„P', T', AU, Q, Viz P„,N
+ Q„t Uzz PT Vz 8 Wz QT V„P„tN) . (2'1)

[In simplifying (25) we obtain the terms in the
parentheses above and their Hermitian conjugates;
hence the factor of 2 in front of the trace. ] Exact
cancellation of the phase factors associated with
inhomogeneous broadening will occur when I;=0,
i. e. , when the two pulses and the echo are approx-
imately equally spaced. (Small discrepancies in the
timing may arise from phase factors 8'4"ktP/~

contained in the nutation operators. '
)

The echo envelope can be derived from. the Ham-
iltonian by calculating the following quantities: (a)
the initial densities A and 8 (i. e. , the occupation
probabilities for the states in the n and P mani-
folds), (b) the eigenfrequencies zd „~@which en-
ter into P and Q, and (c) the nutation submatrices
T, U, V, W from 3CI and t~ and by summing (27)
over all ensembles for a range of values of 6+, .
A procedure for making these calculations is sug-
gested in Sec. VI. In practice it is sometimes pos-
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sible to simplify the calculations by assuming that '4

3C0&3Cz. Since Rrr =e'~z'~", the inhomogeneous
broadening term 63CO ~ then appears only in the free
precession matrices P, Q and can be taken outside
the trace [see Eq. (26)] which need only be com-
puted once. The condition 3CO &Cz is analogous to
the common assumption that "AC, is larger than
the linewidth. " It may, however, be harder to
justify since there are a number of different ma-
trix elements in X, to be considered, some of them
perhaps small because of the partially forbidden
nature of the transitions concerned. In Sec. IV we
show that when 3Cr»3C0, and when certain additional
conditions are met, the nutation matrices R„can
be written down at once from X,.

If 3CO& 3C„or if the assumptions in Sec. IV can-
not be made, it is possible to obtain the nutation
matrices by the following straightforward, if some-
what tedious, method. The Hamiltonian is first
diagonalized by the unitary transformation
Uzz(3CO+3Cz) U~=3Czz. Inthe new representationof the
(diagonal) nutation matrix R„' = er+&'r ~" is written
down using the elements of K~. The inverse
transformation UD R'„U~ is then appli d to obtain
R„ in the 3C representation. This is equivalent to
the procedure sometimes used in two-level prob-
lems where nutations are described as taking place
about an "effective field" made up of the resonance
field and a portion of the original Zeeman field.

R —Rg z RTRN zz Rg Rg zzz RT+t (28)

in place of the operator defined in Eq. (20). Rr
here describes the free precession of the system
between pulses II and III and may be written in
terms of submatrices Pr and Qr as in Eq. (22).

The calculation of the final density p~ can be sim-
plified by taking account of the effects of inhomoge-
neous broadening of the resonance. As was pointed
out earlier, the diagonal matrices P„Q„&&,
Q&, etc. , contain phase factors e" "~', e" "~

where b~ varies according to the position in the
resonance line. When calculating the echo, we
need only retain those products of submatrices for
which these phase factors approximately cancel.
If the density matrix corresponding to the end of
pulse II is written schematically in the form

Xzz Xsa-
pzz =

-Xai Xaa -'
(29)

it is easily verified (by finding R« ~ pzz R» s where

III. GENERAL EXPRESSIONS FOR ENVELOPE
MODULATION IN STIMULATED-ECHO SEQUENCE

The pulse sequence required for the generation of
a stimulated-echo signal is shown in Fig. 2(b). The
echo amplitude for this sequence can be calculated
by the methods already outlined by setting

Rzz s = Rr Rrz zzz R& r) that the off-diagonal subma-
trices X», X» do not contribute to the echo and may
be discarded at this stage of the problem. The re-
sidual portion of p» is a Hermitian matrix consist-
ing of the elements

&i i = (T iz P' &i+ Vzz O' Uzz) &(Tz PT T zz+ Uz QT Viz)

+ (Tzz P ~ Vz+ Vzr Qr Wr) B(VzP~ Trz+ Wz Q~ Vzz),

(30)
Xgg= (UzzPz Tz+ Wzz Q~ Uz) A(Tz P~ Uzz+ Ui Q Wzz)

+(Uz, P, V, + Wzz Q, Wz)B(V, P, U„+ W, Q, Wz, ) .

We now specialize to the case of an electron nu-
clear system described by the Hamiltonian

3CO —3Cg + 3Cr + 3Cgz (82)

The electron term 3C~ generates a level scheme
from which we select the two levels n and P defining
an interval = K~. (Other levels not defining reso-
nance intervals can be ignored. ) The nuclear term
X~ and the electron nuclear coupling term X» are
both small and give rise to the superhyperfine split-

Some further terms which do not lead to the cancel-
lation of the line inhomogeneity factors e' "r "' (i. e. ,
terms which correspond to free-induction effects)
can be relinquished in the final expression for ~.
We thus obtain the expression

E zz
= 2z) Tr (Q +r Urzz Pr ~zz P Tz&Uz Q Vzr Pr ~zzz P +r

+ @.+t Uzzz&z&zz&. ~z &&z Q. ~zz&r &zzz&v. t
t

+ QT+t &zzz @r Uzz&~&z&Uz QT ~'zz Qr ~zzz&T+t

+ Q .i Wzzz Q Uzr P Vz&Wz Q Wr Qr V»z P +r) ~

(sl)
It should be noted that by discarding the off-diagonal
submatrices in p'„we have not ceased to consider
all free-precession effects during the interval T
but merely those free-precession effects associated
with the resonance interval (d. Phase relationships
within the a and P manifolds are still accounted for
by the off-diagonal elements belonging to the sub-
matrices X«and X&&. If, as we have so far as-
sumed, the intervals within these manifolds are not
subject to inhomogeneous broadening at all, then
the modulation effects associated with the time
evolution of X«and X&& will continue to be visible
for as Iong as it is possible to detect stimulated-
echo signals. Actually some broadening (i. e. ,
ENDOR broadening) will be present, and, since the
phase factors which result from this broadening are
not cancelled out in the stimulated-echo sequence,
the modulation will eventually be erased. "

IV. NUCLEAR MODULATION OF ELECTRON SPIN-ECHO
ENVELOPE
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ting.
Since the resonance field interacts mainly with the

electron spin, K& canbewritteninthe %~+K& repre-
sentation in the form

0 I
+1 2 @N

g 0

0

0- (34)

where M= M M~ is also unitary. This transforma-
tion by means of submatrices derived from the shfs
terms X»+K~ only is permissible here because 3C»
is too small to cause any significant mixing of the
eigenstates of X~.

The form (34) for fC, leads to major simplifica-
tions in the nutation matrices and in the final re-
sults. Let us suppose that K'&»Xo. Then R&
= e' "~'" and can be expanded to give

0 &
lp

R~= cosy ~tp+ E~ 'slQp g tp . (35)

The two-pulse-echo result (27) reduces to

E(r) = ,'i @~vs sin(u„—t~,sin —,'u)„ t~ „
xTr(Q~„, M P,AMQ, M P„,M

—Q~„M P„MBQ,M P„,M) (36)

and the stimulated-echo result (31) to

Estim(r T) 8 ~@~Nt) sin~~ 4 j sin~~ 4 n»n~~tp III

xTr(Q„,M PrP,AMQ, M~PrP„, M

+ Q~, ]QgM P~AMQ~QpM P~, ]M

—Q„, QT, M P, MBQ, QrM P„,M) . (37)

If, in addition, we assume that A = aE and B =bI
(i. e. , that the initial Boltzmann populations of all
the o. sublevels are the same and likewise for the
P sublevels), then

E(r) =- —,.'(a b) (ia~„7l) i s(o„nt„si ''n~„t, n

xTr(Q, +&M P, MQ, M P„,M) (38)

and

E,«~(r, T)= 8(a —b) (ih~„7I) sm~Nt~r sin~n 4n
x sin~„t»„Tr(Q„,M'Pr P',MQ, M 'Pr P„,M

+ Q„,QrM P,MQ, QrM P„,M) . (39)

The transformation to the + representation can then
be made by operating on the n and P state vectors
separately with unitary matrices M and M~, which
describe the state mixing caused by 3C» in the cy and

P manifolds. In this way we obtain

The normalizing factor for the envelope-modulation
function (i. e. , the envelope amplitude when r-0
and T- 0) can be found by setting P = Q = I in the
above expressions. In (38) it is

—,(a —b) (i@~„q)sin~„t» sin —,~„t», Tr(I)

and in (39) it is

—,'(a —b) (ih~~7I) sin~„t» sin~A, t~, z sin~„t~ i„Tr(I),
where I has the dimensions of the submatrices J',
Q, M. The normalized modulation functions E,„(r)
and E,~(r, T) are therefore given by the trace ex-
Pressions divided by the number of shfs levels in
the tu'o Pulse c-ase or by turice the number of shfs
levels in the stimulated-echo case. As was pointed
out earlier, it is essential that K& should be able to
induce branching transitions between the &; and P&

states. Otherwise M = I (or can be put into this
form by a rearrangement of rows and columns) and,
as may easily be verified, the trace in Eqs. (38)
and (39) becomes ~Tr(I), indicating no envelope
modulation. The same thing happens if the fre-
quencies in either of the 0' or j8 manifolds become
degenerate, i. e. , if P=e'"~' I or Q = e'"~'I.

Two different kinds of numerical computation
may be performed with the trace expressions de-
rived here and in the previous sections, one yield-
ing the time development of the modulation function
and the other the amplitudes of the various fre-
quency components. The first computation pro-
ceeds along obvious lines. The trace is evaluated
for a series of values of 7 or T extending over. the
experimental interval, and the modulation function
is multiplied by some suitable function represent-
ing the decay of signal intensity. To see how the
frequency amplitudes may be extracted instead,
let us consider the following example. We take the
product Q„M P,MQ, M P,M from (38) and insert
unity for the diagonal elements e' t', e' &, e
e '~" in P„Q„P„Q~. All other elements in
these matrices are set equal to zero. When the
trace is computed with these values the resulting
number is the coefficient c«.». of the term c«.,;.
x exp[i(~„—~„'+ ~~~ —~@.) r] The coe.fficient
c,.;,', of the complex conjugate term can be found
by inserting unity for e' ~", e' ~"e ' ~', and e ' ~'

in the same four submatrices. The amplitudes and
phases of frequency components belonging to the &

manifold only are derived by evaluating the sums of
the form g, c«...', amplitudes and phases of fre-
quency components belonging to the P manifold only
by evaluating g, c, , &&,. The constant term is de-
rived from g;~c;;». Stimulated-echo results can
be treated in the same way. For example, by in-
serting unity for the elements e' ~', e' ~', e ' ~,
e ' &', e ' &", e ' ~', and 0 for the remaining ele-
ments of &„Q„&~,&„Q,', P~ in the first matrix
product in Eq. (39) and taking the trace we find the
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coefficient c«...'» of the term in exp{i [((o,. &u„,).(~sr - ~s,')1~) exp[i(~., —~., ) T].
A frequency analysis may be more economical

than a time development of the modulation function
when the experimental times are long. It has also
the merit of affording a better insight into the way
in which the amplitudes in the modulation envelope
are related to the shfs transitions. In this connec-
tion it is worth noting that the T-dependent factors
in the stimulated-echo envelope will contain either
a frequency &

— ~. from the & manifold or a
frequency from the P manifold but not sum and dif-
ference frequencies from both manifolds. For this
reason (as well as because of the longer times
which are generally available) a, stimulated-echo
sequence may be more convenient if the modulation
function is to be used to measure shfs frequencies.

V. COUPLING WITH SEVERAL NUCLEI

Simultaneous coupling of an electron spin with N
nuclei leads to submatrices of dimension (2I+ 1)".
Fortunately, however, the dimensions can usually
be reduced to (2I+ 1), as we show by means of the

following example. Let us consider the eight states
associated with an electron transition coupled to
two nuclei of I= 2. The free-precession Hamiltonian
ls

0 @s'++lg++E ++s 1 + +S I ++5 Ig ~ (40)

The resonance field Hamiltonian Kq can be obtained
as before by writing it down in the jt's.+ &r&+ Krs
representation [in which it contains two off-diagonal
4x4 unit submatrices located as in Eq. (33) ] and
transforming to the &0 representation by a suitable
unitary operator. If we ignore the small term

&, ,~ we can make this transformation by means of
the tensor products M = M

&
&&M z and Mz = M, z

~ M~&. The subscripts 1, 2 indicate that the ma-
trices operate on the states of nuclear spins I& and
I~, and are derived from Ks, +&spy and +r~+&sr
respectively. Thus M may be factored as the
tensor product M =M&&&M&, where M&=M& M&z, etc.
Factoring the remainipg matrices as tensor prod, —

ucts we can obtain the over-all products in Eqs.
(38) and (39) in the form Y= Yr x Ys. Then, using
the theorem Tr(Y) = (Trq Y&)(Trs Ys) we can pro-
ceed at once to the result

E~ g =E~ E~ (41)

for the two-pulse envelope-modulation function and
to a similar result in the case of stimulated echoes.
For N nuclear neighbors Eq. (41) becomes

(42)

Equation (42) holds good for nuclei with I &-', and
for systems in which an electron is coupled to sev-
eral different types of nuclei. As will be apparent

We consider the case for which X&»X0 and $Cs

»X«+'Kj. The interaction of the resonance field
with the nuclear moment is neglected, so that &&

can be written down as in Eq. (33) in the Ks+ JCr

representation. [These are the assumptions used

in deriving Eqs. (38) and (39) in Sec. IV. ] The aim
here is to obtain values for the eigenfrequencies
which appear in the free-precession matrices, P,
Q and to find the elements of the unitary matrix M
which determines the amplitudes of the various fre-
quency components in the echo envelope.

These quantities can be found from K0 in the
following foul steps:

(i) The (2S+ 1) -dimensioned matrix for 7Cs is
written down in a convenient representation. The
term

Ksr/h=g a(r S(Ir (i,j =x, y, z)

is factored to give

SCsr/II=I„y( ;a„(S+I E,a, S(+I,K, a, S(,
and the coefficients of I„, I„, I, are written down in
the representation used for 3{'.s.

(ii) Ks is diagonalized by making the unitary
transformation Uss Us = Ds The same transfor-
mation is applied to each of the matrices g,a &„S;,
etc. , only the diagonal elements being retained.

(iii) The three sets of diagonal elements derived
from &s& in this way are treated as numerical co-
efficients of the operators I„, I„ I,. The coeffi-
cients corresponding to the electron states n and P
are then selected and are used with the appropriate
nuclear operators and with X~ to form two new

Hamiltonians X and Xz operating on the & and P
shfs manifolds. Thus we have

K /8'=a'„ I„+a,' I +a,' I,+$Cr,

Ks/@=ax, sIx+a&, sI + a, sI + Kr ~

(43)

(iv) The (2I+ 1)-dimensional matrices K and Ks
are now written down and diagonalized. The eigen-
values give the frequencies & &, &~,. which appear

from the product form of the answer, frequencies
which are combinations (or multiples) of the ENDOR
frequencies due to a single nuclear spin may be
present in the modulation envelope, these frequen-
cies representing the energy differences between the
various levels in the & and P manif olds. In any practi-
cal situation some caution should be used in apply-
ing the product formula (42) in conjunction with ex-
pressions such as (38) and (39) which a.re based on
the assumption K& &&0. This assumption can easily
fail for some of the transitions when the level
scheme describes an interaction with many nuclear
neighbors.

VI. PROCEDURE FOR MAKING DETAILED CALCULATIONS
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in the free-precession matrices I', Q. The eigen-
vectors are assembled to form the columns of the
matrices M and Mz which are required in order to
evaluate M =M

Separate diagonalization of X& and of the nuclear
Hamiltonians can only be justified when the off-
diagonal elements derived from 'K~z in step (ii) can
be ignored, and when Ki has a negligible effect on

the composition of the electron spin states (as im-
plied by the condition K~ &X&,+ K, ). If large elec-
tron nuclear couplings, such as those which fre-
quently exist between an electron spin and a nucleus
belonging to the same paramagnetic ion, are pres-
ent, they should be included in K» leaving X&z+ Kl
to specify small shfs couplings only.

The transition matrix element between the & and

P eigenstates of X& does not affect the form of the
envelope function and need not be calculated here.
It is factored out in the parameters g [Eq. (3)] and

~„[Eq. (36)] and merely serves to determine the

experimental conditions required in order to gen-
erate satisfactory spin-echo signals.

It is easy to see that M =I (and hence that there
is no envelope modulation) when Kzz«Xz. The two
matrices X, K~ then become identical, M -M~
and M =Mt M~-I. A similar result may also be
obtained in certain cases when 5C»»XI. For
example, if X~ describes a Kramers doublet
(S = &), the diagonalization prescribed in step (ii)
can be performed by rotating the Cartesian axes of
S in such a way as to make S, a good quantum num-

ber. The coefficients a;& will be transformed to
a, giving in Eq. (43) the operators

S, lo&(&~~~.'~l, ) and &plS. lp&(~;u'~1;)

Both these operators are the same except for the
scalar factors (n IS, Io&, (p IS, I p) and can be diag-
onalized by a single unitary matrix U»= M~ =M&.

tween states Ia), Ib) and Ic&, Id&, respectively.
The parameters

fu f

= f&a*fZ, fb) f/(-,' h~„)

describe the extent to which the branching transi-
tions are allowed or forbidden (see Fig. 3). If one
transition is fully allowed and the other fully for-
bidden, then either Iv I = 0 or lu I = 0 and there will
be no modulation. Equation (46) illustrates how the
individual shfs frequencies, without their sum and

difference frequencies, may be measured in a stim-
ulated-echo experiment by plotting the echo am-
plitude as a function of T at constant r. (This holds

good in the more general case as well, see note at
the end of Sec. IV. )

If the two-electron levels belong to a Kramers
doublet (S'= &), the transformations required in or-
der to find jul and lv I can be described as rota-
tions of the electron and nuclear coordinate sys-
tems. As pointed out in Sec. VI, the diagonaliza-
tion in step (ii) is equivalent to the rotation of the
electron z axis along the direction of quantization
of the electron spin. [In the special case of an
axial site, the new ~ axis is at an angle 8~ to this
c axis, where sine~= (gjg) sine» where e„ is the
angle of the Zeeman field, and g= (g„cos 8„+g,
&&sin 8„)"'.] This change of axes transforms X~z

fb)

VII. FOUR-LEVEL ELECTRON NUCLEAR SYSTEM

When I= & the unitary matrix M has the simple
form

V V U U

(44)

and the normalized-echo envelope functions de-
rived from Eqs. (38) and (39) are

E .,(r)= fv f'+ fu f'+ fv f'fu f'[2cos~.,r+2cos~„r
—cos(M~~ —Kz~)T —cos(~+~+ ~zg)T ] (45)

+ 2sin'&&„icos~, ~(r+ T)] . (46)

The frequencies , b, (d,~ denote the intervals be-

E .,(r, T)= fv f'+ fu f'+ fv f' fu f' [cos~.,r + cos~„~

+ 2 sin~ —,'&u,~r cos ~„(r+ T)

FIG. 3. Four-level scheme obtained when two-e1ec-
tron levels & and P are split by coupling with a nucleus
of I=2. The transition matrix elements connecting

I a) =
I b) and Ic ) l d) have magnitudes iSgl v f;

the corresponding elements connecting ta ) =
I d ) and

I b ) I c ) have magnitudes iS&~ I I l .
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= hg;, a, &S, I1 to Rz, = Kg~;a,'18,'I& from which we
extract the 8,' terms to give

and can be used in Eqs. (45) and (46) to obtain the
envelope-modulation functions. The results of this
calculation can also be expressed in the forms

The a,'& are the projections of the three vectors
(a„„~»,a„.) along the electron quantization axis.

The coordinate system used to define I need not
be the same as that used to define 8, and may con-
veniently be taken so that the nuclear ~ axis is par-
allel to the Zeema, n field Ho. Then XI is diagonal
with elements ~ z g,PjI,=+-zhcu, . A rotation of the
nuclear xy axes about the nuclear z axis can also
be made in order to eliminate the I, term. (This
choice of nuclear g, y, g axes may involve a further
transformation of the a,'&. ) We thus obtain the
Hamiltonians

X,/A= ~TI,+ zAI, + —,BI, ,

Xz/h= ~,I, —,AI, —,B—I„.—

The two eigenfrequencies are given by

~.= ~.b
= [(-A+ ~T)'+ (-'B)'j'",

~z= ~..= [.(-.A- ~.) (-'B)'j"'
and the diagonalization is effected by means of the
rotation operators e ' &', e ~", where

tan& =B/(A+ 2&1),

tanT) =B/(A —2~,) .
The rotation operators e ' ~ and e ' &" corre-

spond to the transformation matrices M, Mz of
Sec. IV. %Ye ean therefore obtain M = M~ M~ by
writing down e ' ~'" " in the @&&3 representation,
yleldlng a 2 &&2 matrix, as 111 Eq. (44), wl'tll 14

=sinz(1) —$) and a=cosz(q —$). The product
lz l lul is given by

41~i'l. l=»"(~-&)=(~.B/ .~z)'

&,~(T)=1 —
z z sin z&„Tsin z&u,zT

~N~ ~Ca

1

&moo(T, ~)= 1 —
z z Isln z+abT[1 —cos~cz(T+ T)]

g(dl g
ub Mcd

+ sinz-z'~, „T[1 —cos&,b(T +T)]) .

VIII. COUPLING VHTH I= 1 NUCLEI

Vfe consider here the restricted case in which the
electron states In) and l8) belong to a Kramers
doublet, and in which the nuclear quadrupole inter-
action is small enough to be ignored when calculat-
ing the matrix M which determines the modulation
amplitudes. It will be apparent from the results
that it is generally better to compute the modula-
tion amplitudes numerically in all but the simplest
cases. The algebraic expressions obtained here
may however be useful in view of the occurrence of
the nuclei H and N (both having small quadrupole
moments) in some commonly studied host materials.

The level diagram is the same as that shown in

Fig. 1 with the I o'&) states labeled a, k, c and the

IP&) states d, e, f. The Hamiltonians K, &z can
be approximated by (4'7) and give eigenfrequencies
~„, ~z as in (48) which can be adjusted to take ac-
count of quadrupolar interactions if necessary. %'e

thus have &,b= + ~, „= —&, +,„= &q + &, and

&„,= &&- 6, where & is the appropriate quadrupolar
correction. The matrix M is calculated in the same
way as in Sec. VII except that it is now necessary
to write down the operator e ' & " ' in the +q repre-
sentation. We thus have

z[1+ COS(q —()] (- 1/ V2 )Sin(q —() z [1 —COS(1l —F ) j
IVi = (1/v2)sin(q —$) cos(T) —$) (-1/v2)sin(ll —$)

-„-'[1 —cos(q —$)] (1/v2)sin(T) —$) z[1+ cos(q —$)]

where $, ll are as given in Eq. (49). The normalized envelope-modulation functions are

E,z(T) = (1 —4z k+ z4 kz)+ (f k ——,k')(cos &„T+cos& „T+cos&„,T+ cos +,zT)

—[z k —
z k + z k(1 —k')" j [cos(+„+(uz, ) T+ cos(&„—wz, )T+ cos(&b, + ~,&) T+ cos(~b, —&,z)T]

—[z k —~k —z k(1 —k ) ] [cos(&bb+ ~z~)T+ cos(&be,, —&zb)T+ cos(~~b+ ~ay)T+ cos((d~b —(d~~)T j

+ 4 k (cos&g~T+ cos~zyT) —~k [cos(&~g+ &zy)T+ cos(~g~ —&zy)T]

—

leak

[cos(~ye+ ~gq) T+ cos (4&ze —(0~~) T+ cos(&zy+ cobb) T+ cos((hazy —Q)~b) T
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E~,d(r+ T) = (1 —
3 k+ 4 0 )+ (3 0 —4)'v )[cos(d, (,r+ cos(u&, r+ cos(oz, r

+ cos(d, yr+ cos~,((r+ T)+ cos&(,( r+T)+ cos~, (r+ T)+ cosa,&(r+ T)]

—[6 )'v —6 fv + ('( )'v(1 —)'v ) ] [cos(dbr cos(dz, (r+ T)+ cos(db, r cos a8&(r+ T )

+ cosQ)gor cosM~( r+T) + cos(d«r cos(0 ~({ r+T)] —[8 )v —8$ —
6 /{1 —/2 ) ] [cos~ r( os~ (v ~ T)

+ cos(d(„rcos(d~, (r+ T)+ cos~d, rcos(d~, (rq T)+ cos(o,~rcos(d, ~(rp 7') ]

+ 8 & [cos r+ cos(('«r+ co»((r+ T)+ cos~«( r+ T}]+~A [cos~„r cos&«(r+T)+ cos~gfr cos& (r+ T)]

—12k [cos sbtcos&«(r+ T)+ cos~«rcos&~b(r+ T)+ cos~y& rcos(deaf(r+ T)

+ cos&«rcos(d(„(r+ T)+ costs~, rcos(d«(r+ T)y costs„rcose~ (r+ T)

+ cos~«rcos(d„(r+ T)+ cosu&„r cos~,z(r+ T) ] .

In the above equations fv= sin (vl —$) = (&uv Bj(d, ( ~)'
Considerable simplifications may be possible in

some experimental situations. For example, if 4'
can be neglected, and if the quadrupole splitting is
too small to be taken into account at all, we have

2& ~ 2&E,d(r)= 1 —'3 csin &&„rsin'~(d8v, (55)

Expressions have been obtained for the modula-
tion effect in spin-echo experiments of the two-
and three-pulse type by partitioning the matrices
which describe the evolution of the quantized sys-
tem. The initial results are quite general and
cover all cases in which the resonance field inter-
action has the form

E,~(r, T) = 1 —3 )v ts in ~ u& (, r [1 —cos (d(((r+ T)]

+ sf '
n~2, r [1 —coerce. (r+ T)]} . (55)

These last expressions are formally similar to the
expressions (50) and (51) obtained for 8= 2, I= —,'.

IX. SUMMARY

where the submatrix N is proportional to a unitary
matrix. Electron transitions split by small nuclear
hyperfine interactions belong in this category. The
appropriate envelope-modulation formulas are de-
rived with the additional assumption that '0( is large
compared with the superhyperfine sp1.itting.

For experimental I easons envelope-modulation.
effects are only seen when the splitting of the reso-
nance by nuclear interactions is very small. '
This condition makes it possible to simplify the
matrix calculation by diagonalizing the electron
spin Hamiltonian separately. Two Hamiltonians
having the dimensions (2I+1)x(2I+ 1) of the nuclear
system can then be constructed and the quantities
in the envelope modulation formulas ean be derived
from them. The case of 8= ~, I= 2 is, as might be
expected, an especially simple one and is used here
to illustrate the general methods of solution. De-
tailed calculations have also been made for 8= &,

I= 1.
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The hyperfine structure of l5 Gd ' ions in Th4' substitutional cubic sites of a single crystal of
Th02 (fluorite structure) has been studied by means of electron-paramagnetic-resonance tech-
niques. The observation of "forbidden" transitions traditionally labeled by 4m =1 or 2 is re-
ported. Theoretical calculations using first-order perturbation theory for the hyperfine struc-
ture and nuclear Zeeman terms after a numerical diagonalization of the remaining {electronic
Zeeman plus crystal-field terms) spin Hamiltonian are in good agreement with experimental
results.

INTRODUCTION

The ground state of ions with half-filled shells
(S-state iona) is an orbital singlet. When such ions
are put in a crystal field, the spin degeneracy is
partially removed. Although the electric field
acting alone, regardless of its symmetry, cannot
split in first order the 8 state, group-theory con-
siderations show that, even in a cubic field, the
degeneracy will be split. Electron-paramagnetic-
resonance (EPR) results concerning "cubic" spectra
of Gd ' ion (4f, S7~2) substituted into tetravalent
Th or Ce sites in thorium or cerium dioxydes
are in good agreement with Bethe's predictions.

Forbidden fine-structure transitions with I hM i &1

were also observed. In the case of Gd'-doped
CeO&, Bir and Vinokurov gave explicit expressions
for the angular dependence of the positions and in-
tensities of various forbidden fine-structure lines
using first-order perturbation theory in a/gp, B 8,
where a is the constant representing the interaction
with the crystal field. They only obtained a satis-
factory agreement between theory and experiment
for the line positions. Nevertheless, their the-
oretical formulas gave a correct over-all picture
of the angular variation of intensity and of the posi-
tion of intensity maxima and minima.

Previous experiments were done with natural-


