
Zg EFFECT IN THE STOPPING POWER. . .
the estimate derived from g' and g range data.

Note added in proof .A tabular presentation of
the functions I, F, and 1. is given in a paper to be
submitted to Atomic Data by the authors, as yet
unpublished.
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The formalism of nuclear spin-lattice relaxation at low temperatures is developed, leading
to a new relaxation time T~ and a straightforward method of interpreting very-low-temperature
relaxation data. .Data for 6 Co in Fe, Ni, and Co hosts and for ~ Co in Fe are summarized.
The use of NMR in oriented nuclei for determining relaxation times is discussed, and some
comments are made on the role of frequency modulation in NMR experiments with oriented
nuclei.

I. INTRODUCTION

Nuclear magnetic resonance in oriented nuclei
(NMR jON), in which resonance is detected through
the distribution of nuclear radiations, was sug-
gested by Bloembergen and Temmer' and first ob-
served in nuclei oriented by thermal-equilibrium
methods by Matthias and Holliday. It was used to
study relaxation in ferromagnetic metals, a phe-
nomenon that has also been studied by nonresonant
methods.

In 1964 Cameron et al. ' suggested that, for nuclei

relaxing in a metal through interaction with con-
duction electrons, the spin-lattice relaxation time
T, will approach a constant value at temperatures
low enough that the magnetic quantum yH is larger
than k T. This effect was observed by Brewer
et al. , who reported it in abbreviated form in
1968. These authors made a detailed interpretation
of their relaxation data in terms of simple rate
equations, finding multiexponential decay of the
orientation parameters. ' They found that Ty

was no longer a useful relaxation time at very low
temperatures, however, and their data in CoFe
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were interpreted in terms of a single-exponential
decay constant.

The body of this paper is divided into three parts.
Section II contains a detailed discussion of the rate-
equation approach to a relaxation theory for oriented
nuclei, with emphasis on the physical significance
of the single-exponential fit at very low tempera-
tures. Several applications to experimental data
are given in Sec. III. Section IV contains a brief
discussion of the extent to which resonant destruc-
tion of nuclear orientation may be achieved through
fr equency modulation.

II. RELAXATiON THEORY

The theory of longitudinal, or spin-lattice, re-
laxation of oriented nuclei is discussed in this
section. The effect of relaxation on the time evolu-
tion of statistical tensors in the high-temperature
limit is reviewed and its modifications for finite
temperatures is considered. For nuclei in metals
relaxing through AS I interactions with conduction
electrons, it is shown that the characteristic
single-exPonentiaL relaxation time in the low-tem-
perature limit (later denoted by T„, not to be con-
fused with T, ) is temperature independent and equal
to kC/AvI, where C is the high-temperature
Korringa constant (C= T, T) and vis the Larmorfre-
quency.

The rate-equation interpretation is described
below essentially as it was originally used by
Brewer et al. ' Two other derivations are now
available. Using the Liouville-space formalism,
Gabriel developed a general theory of relaxation
which gives the results discussed below as a spe-
cial case. More recently Hartmann-Boutron and
Spanjaard' '" have also discussed this problem,
obtaining the same results. Two other analyses
of experimental measurements —in CoCo' and in
~CoI'e and ~CoNi ' —have also been made. These
later theoretical approaches " are more general
than ours. They can easily treat cases entailing
transverse relaxation, for example. In applica-
tion to the present problem, however, only longi-
tudinal relaxation is involved, and the three ap-
proaches give identical equations. Thus we shall
retain the sjmpler formulatj. on of Brewer et gl .

A. The Question of Spin Temperature in Ferromagnetic Metals

Spin systems relax differently when a spin tem-
perature exists than when one does not. Although
both cases are treated below, it seems useful to
discuss first whether spin temperatures are ex-
pected in NMR/ON experiments.

Moriya's theoretical work' on relaxation in fer-
romagnetic metals showed that the relation T, = T~
should hold, thereby precluding the existence of a
spin temperature T~, but early measurements on

Let us assume that spin-lattice relaxation occurs
via an interaction with the conduction electrons,
of the form

AI S = AS, Ig + 2 A (S,I + S I,)

and that first-order perturbation theory is appli-
cable. Here S is an effective electron-spin operator
that can be related to either the orbital or spin
operator of conduction electrons, or to both. The
discussion below is quite general, requiring only
that the nuclei relax by exchanging energy with a
degenerate Fermi gas, via magnetic-dipole transi-
tions. If the nuclear energy levels are equally
spaced by hv and the [ I = —I) states lies lowest,
we may write for the transi. ion probabilities be-
tween states (m) and 1m+1)

W „=Bhv [I(I+1) —m(m + 1)]/(e —1)

W „=Bhv[I(I+1)—m(m+1)]/(1 —e ) .
(2)

Here I3 is a constant that contains various numer-
ical factors including the density of states at the
Fermi energy, and x~ =hv/AT~ It is easily shown, .
by choosing I= ~, substituting into Eq. (2), and

comparing with the rate equations in the high-tem-

stable isotopes indicated T, & T, . Therefore the
first relaxation work with oriented nuclei was inter-
preted under the assumption that a T~ existed. '
In 1967 Walstedt' reported spin-echo measure-
ments on several stable nuclei which showed defini-
tively that Tp Ty and subsequent analyses ' have
all been made with no spin-temperature assumption.
It has been pointed out that the observation of re-
laxation in oriented nuclei could provide a definitive
test of the existence of a spin temperature in these
systems. ' This follows because the simultaneous
measurement of the time dependence of several
statistical tensors would provide data that were
extremely sensitive to deviations of substate popu-
lations from a spin-temperature distribution. Un-
fortunately it is experimentally difficult to set up
initial conditions that are both reliably known and

appropriate for testing the Ts hypothesis. The ex-
periments to date have been done under conditions
that were not conducive to such tests, ""and the
results could be fitted either with or without as-
suming that a spin temperature exists. %hile it is
very unlikely that the systems studied to date by
nuclear orientation can have spin temperatures,
this question has not really been tested experimen-
tally. It is also probable that spin systems that do
have spin temperatures will be studied by nuclear
orientation in the future. For these two reasons
an expression for the time evolution of the spin
temperature is given below.

8, Transition Probabilities: Analogy with Two-Level Radiative
Systems
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= W „„+ fI(I+1) —m(m+ 1)j . (3)

Thus the downward transition probability contains
two parts, a temperature-dependent part which is
equal to the upward probability (in analogy to stim-
ulated emission and absorption) and a temperature-
independent part, analogous to spontaneous emis-
sion. Here temperature plays a role analogous to
the occupation of the radiation field in photon pro-
cesses. The appearance of stimulated and spon-
taneous transition probabilities is in fact a general
property of transitions whose quanta of excitation
obey Bose statistics and are thus more likely to
enter states which are already occupied.

C. Relaxation with Spin Temperature

At high temperatures (kT» nuclear substate level

spacings) the familiar expressions

P= —(1/T )(P —P )

is approximately correct. Here P=1/kT~ and

P~ =1/kT~, where T~ and Tz are the spin and lat-
tice temperatures, respectively. At lower temper-
atures this relation breaks down, and it is neces-
sary to go back to the master equation, "

p =Z„(p„W„—p W „) (4)

Here p is a diagonal element of the density matrix
and 8' „ is the transition probability from state
lm) to state (n). Starting from Eq. (4), at least

perature limit, that B = (2kC) ', where C is the
high-temperature Korringa constant. Relation (2)
was given in slightly different form by Brewer
et al. and follows from the expressions given by
Cameron et al. '

The appearance of the Bose-Einstein distribution
function 1/(e ~ —1) in W„„suggests that the above
transition probabilities should possess an interest-
ing analogy with the radiation problem. Of course
this is also expected because the states

~ m) and

Im+1) could be connected by the emission and

absorption of photons. In the case of magnetic re-
laxation they are in fact connected by spin-flip ex-
citations in the conduction electrons, i.e. , by spin
changes AS = + 1. These excitations clearly have

boson character. In the case of nuclear-quadrupole
relaxation the boson character is even more ob-
vious, since in this case relaxation processes are
accompanied by emission or absorption of lattice
phonons which clearly obey Bose statistics. At
absolute zero there are no more lattice phonons to
absorb but a nucleus can still relax by exciting a
phonon; i.e. , spontaneous emission remains.

We can rewrite W, „as follows:

W„., = ]l]1~ 1].— ] 1)], ~ 1)
hv 1

where

BI(Ix) = coth x ——coth
2

2I+1 (2I+1) 1 x

d fB,(Ix)]

In a system for which hv, I, and C are known, and
for which a given lattice temperature exists, Eq.
(5) is a useful differential equation relating the spin
temperature to its time derivative. It may be
solved numerically. In the high- and low-temper-
ature limits, for x-xz «1, Eq. (5) goes to

»mp=(1/T, )(p. - p) as T.--,
limP=(1/T„)(P~ —P) as T~ 0,

where T„=kC/kvI, a temperature-independent re-
laxation constant that is discussed in Sec. II G.

D. Relaxation with No Spin Temperature

For most experiments in which nuclear radia-
tions are used to study nuclear spin-lattice relaxa-
tion, the active nuclei are present in such low con-
centration that they may be taken as independent.
Let us again consider nuclei in a metal, subject to
a relaxation interaction of the form —,'A(S+ +S I, )
arising from conduction electrons. The t.ime evolu-
tion of the set of (2I+1) diagonal elements of the
density matrix 1p j is still given by Eqs. (2)-(4),
but without a spin-temperature constraint. Bather
than dealing with the (p ) themselves, it is con-
venient to define a new set of quantities (P j that
measure the deviation of the elements p from their
equilibrium values p,

0
Pm ~m Pm ~ (9)

Since p =0 at equilibrium, Eqs. (4) and (9) may
be combined to give

three papers' ' ' have quoted expressions for P.
Shirley' gave an equation that is not valid at very
low temperatures. Spanjaard et al. "give an ex-
pression that should be valid at all temperatures,
but their P is given implicitly in several equations.
Jauho and Pirila' give expressions for the nuclear
polarization and alignment which contain P implic-
itly. A derivation following the procedure given

by Slichter" but valid for all temperatures leads to
the following result:

~ ~ kv e I —e" I(I+1)—(I ) —(m)
2kC 1 —e "& (I) —(m )

or, expressing the sums on m as Brillouin func-
tions,

~ kv e "I —e " I+1 —B,'(Ix) —IB21(Ix)+Bz(Ix)
2kC 1 —e B'(Ix)
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P.=Z„(P„W„.-P.W.„) .

p=Fp

where F is a "tridiagonal" matrix with nonzero
elements

E = —W, —W „=—WL [I(I+1)—m(m —1)]

+ [I(I+1)—m(m+1)] e "&}

= W, = W[I(I + 1) —m (m —1)]I', = W, = W[I(I+1)—m(m —1)] e *

(12)

Here W=kv[2kC(1 —e "&)] '. The factor e "~ in
the "upward" transitions assures that detailed
balance obtains at equilibrium.

The general solution of Eq. (11) has the form

p(f)=e "p(o) . (13)

If F has or thonor maliz ed eigenvector s g
'" and

corresponding eigenvalues k~ (A = 0, 1. . . 2I), then
the matrix U with columns q' ' diagonalizes F:

V 'F V = K, where K&~ =k~5„~

Using U Eq. (13) can be rewritten as

p(f) =U e '-'U-'p(o), (14)

or, in component form,

P (f)=Z„ II„,e""2,U,'.P, (o) . (15)

It is instructive to discuss separately the solutions
for the high- and low-temperature limits as well
as those for intermediate temperatures.

Under the 2A(S, I +S I,) interaction only transitions
to the states n =m +1 are allowed. It is instructive
to regard P and P as components of (2I+1)-
dimensional vectors with entries labeled in the or-
der m=I, I 1,-. . . I(o-r we can use the corre-
sponding label X which runs from 0 to 2I). Then
Eq. (10) can be written

The eigenvectors have components

q"' =fI, = (-1)'-(I- mIm
~
~0), (is)

which are closely related to the familiar statistical
tensors"

p,'=Z (-1)'-(I-mIm~~0)p

which describe the orientation of nuclei [see Eq.
(27)]; the pt are equivalent to the usual orientation
parameters B~, but are defined according to the
phase convention of Matthias et al. ' In fact for
p' ' = (2I+1) ' (equal populations at equilibrium) and

using the symmetry proper ties of the Cl ebs ch-
Gordan coefficients, we have

Z., II„-',P, (o)=(1 —5 o)P,'(&=o) . (2o)

Combining Eqs. (15) and (20), a.nd left-multiplying
by U ', we have

p,'(I) = e ""po'(0) . (21)

These well-known results were first given, in
somewhat different form, by Abragam and Pound'o

in connection with the effects of spin-lattice relaxa-
tion on the angular correlation of y rays. Those
authors found that their perturbation factor III„~(t)
decayed, under an AI S interaction, with a single-
exponential-decay law, e &', with (in our nota, tion)

(A/@) I(I + 1)S(S+1)[l —(2I+ 1)W(I1XI;II)] .
(22)

After substituting for the Racah coefficient
W(I1AI;II) and accounting for conduction-electron
statistics by absorbing extranuclear factors in the
constant W (Abragam and Pound dealt with simple
paramagnetic atoms), Eq. (22) reduces to Eq. (17).

There is nothing in the structure of U that de-
A A

pends uniquely on the AI. S interaction. In fact U

will reduce a more general transition matrix ~G

to its diagonal form GH,

The eigenvalues of F„T are all different. They
are given by

k, = —WX(A+1), where X=0, 1, 2, . . . 2I . (17)

E. High-Temperature Limit ~G' = V '~GV (23)

F„T= —2W

I —I
-I 3I-1 1 —2I

1 —2I 5I —4 3 —3I
3 —3I ~

3I —1
—I I

When x~ «1, the F matrix is symmetric about
both diagonals, and is Hermitian. The eigenvector
matrix U is thus unitary. F has the form

Of course Eqs. (15) and (21) will still hold, and the
po's will therefore each follow single-exponential
decay, provided that perturbation theory is appli-
cable. Abragam and Pound gave an explicit expres-
sion for the decay constant arising from randomly
oriented axially symmetric quadrupole perturba-
tions, for example. We note that for a system in
which both AI S and quadrupole relaxation were
present, the transition matrices would simply add,
and, from Eq. (23), so would the decay constants.
Thus the high-temperature expression for AI $
relaxations, obtained by combining Eq. (17) with
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Eq. (21),

piL(t) px(0) e wx(iX+1) t (24)

Eq. (25), T, = 1/2W=(kC/kv)(1 —e "&), or, at high
temperature, T, =(kC/kv)x~ =C/T~, giving the
Korringa law for x~ «1.

which is relevant to this paper, is only one instance
of a more general result. " A special case that is
contained in Eq. (24) is that of X = 1:

Po(t) = Po(0) e '" = Po(0) e "'~
This expression is applicable in conventional NMR,
in which the magnetization M is studied, because
M transforms as the first-rank tensor po. From

F. Intermediate Temperatures

As the lattice temperature is lowered through
the region xz -1/I (not, as we shall see later,
xz-1), the relaxation behavior changes dramatical-
ly. The matrix F loses its symmetries about both
diagonals and takes the form

I —IQ
I IQ+2r-1 Q-2IQ

1 —2I 2IQ —Q+ 3I —3

~ Q —2IQ
1 —2I 2IQ —Q +I —IQ

—I IQ

(28)

with Q=e
The eigenvalues are still all different, but the

eigenvectors g are now linear combinations of the
q' ' encountered above in the high-temperature
case. The statistical tensors are still the param-
eters of interest, however, because it is they that
determine the magnitudes of the observable radia-
tion distributions, which are given by'

2I

W(8, t) =Z p,'(t)A, (x,)P,(cos8) (27)

It is still possible to solve the relaxation equations
for po(t). From Eq. (19) po(t) =1 independent of
time. For X & 1,

P'(t) = + IG" (t) ] *Po' (0), (28)

where"

IGoo„(t)]*= & (-1)"-'-'(I-mIm
~
XO) U,

m, m', k

x e "U, '(I —m'Im'~ X'0) (29)

Four transformations are represented in this equa-
tion, from a statistical tensor representation (X')
through the m' representation into the diagonal rep-.
resentation (i), then through the m representation
into (X). This equation displays clearly the way
in which the statistical tensors lose their simple
relationship to the eigenvectors as the temperature
is lowered. As the lattice temperature approaches
infinity the matrix F becomes symmetrical, the
elements U, and U,

'
~ become Clebsch-Gordan

coefficients IEq. (18)] and, after the orthogonality
of the Clebsch-Gordan coefficients has been used
twice, Eq. (29) becomes

lG~'~(t)]*= ~~~~a &
e "' (3o)

which, when substituted into (28), reduces to (21).
At lower temperatures the above statements no
longer hold because U, eUe, . Thus Go&„o~(t) can be
finite for X eX', and p,'(t) shows a multiexponential
dependence upon time,

2I
p'(t) =Z R, e '& '

$~0

The coefficients

R~, = Q ( —1) ~' ' U, U, '.(I—mIm~XO)
m, m', V

x(I —m Im'~ X'0) p'

(31)

clearly depend both on the initial conditions and on
the transformation U that diagonalizes F. Using
Eqs. (27), (31), and (32) it is possible to make a
multiexponential fit to experimental relaxation
data. Such an analysis has been made by Brewer,
Shirley, and Templeton, by Barclay and
Gabriel, ' ' and recently by Spanjaard et aE. "
Somewhat different points of view about this proce-
dure have been taken in these studies, and it seems
useful to describe one of them' more fully here.

There are excellent physical reasons for "the"
spin-lattice relaxation time T, to be regarded as
a fundamental quantity in conventional NMR. The
most compelling single reason is probably the fact
that observable quantities relax as e '

~, i.e. , T,
is, under usual conditions, truly a relaxation time.
"Usual conditions, "however, means both that the
high-temperature approximation is applicable and
that only quantities which transform as first-rank
tensors (i. e. , the magnetization) a.re observed.
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In the intermediate-temperature range, xz -1/I,
the first condition no longer applies, and for most
nuclear orientation experiments neither condition
applies. In this range T, as defined by'

—= —Z W.„(Z.-E„) Q E„ (33)

is no longer a directly useful parameter: No ob-
servable quantity relaxes as e ' ~. For this r"a-
son Brewer et al. abandoned T, in favor of an ef-
fective relaxation time T'„which they obtain d by
force fitting their data with a single exponential,
Of course there is no problem in defining the pa-
rameter T, . From Eqs. (4) and (33) we obtain

T, = (2kC/kv) tanh(kv/2kTz) (34)

The point, however, is that T, is not very directly
related to observables, and its use therefore might
tend to obscure the real physics of the relaxation
process. For example, the upward and downward
transition probabilities 8', and 8' are grossly
different, as previously pointed out. Brewer et al.
took this into account and kept the two separate,
plotting (2W, )

' and (2W )
' in their Fig. 1. The

explicit expressions for these ' quantities are ob-
tained from Eq. (2):

W, = kve "&/2kC(1 —e "z)

W = k v/2k C(1 —e "z ) = W

(35a, )

(35b)

Brewer et al. obtained an unexpected result from
their single-exponential analysis: T,' approached
constancy at a relatively high temperature. The

Of course lV, and S' can still be combined to yield
the parameter T„

1/T, =W, +W

but it seems preferable to seek a different quantity
that can serve as a more useful relaxation time.
Such a quantity is discussed in Sec. IIG.

Brewer et al. analyzed their data in two ways.
First, the radiation intensity W(8= 0, f) was followed
as the nuclei relaxed to the lattice temperature
after resonant excitation, and the data were fitted
to the function

W(0, t) —W(0, eq) = [W(0, t =0) —W(0, eq)]e '

(37)
to obtain the parameter T,', an "effective" spin-
lattice relaxation time. Second, the relaxation
theory outlined in Eqs. (2V)-(32) was applied to the
data to make a multiexponential fit and yield T,.
This latter procedure, however, seemed less sat-
isfactory, because it depends crucially on a knowl-
edge of the initial conditions, and the resultant Ty

was omitted from Fig. 1 of Brewer et al.

G. Low-Temperature Limit: New Fundamental Spin-Lattice
Relaxation Time

"characteristic temperature" T'" at which Ty ap-
proaches constancy is, from Eq. (34),

r"'-kv/2k

For the ~CoEe case, T"'-4mK. IIoueeex, the
temPexatuxe at zvhich T,' aPPxoached constancy u, as
about an order of magnitude kigker T.he reason
for the faster approach of T,' than T, to constancy
as the temperature is lowered is a combination of
two features of 8', and W: namely, their inequality
and their different temperature dependences.
All observable phenomena depend on the density-
matrix elements p„, whose time derivatives p„
vary as (1 —e "z) x(the difference between W, and
W ), rather than as their sum. Thus the effective
relaxation rate approaches its low-temperature
limit much faster than does T, . To seek a clue
as to how this might happen, let us consider for
example the time variation of pi:

hvI
Pr(f) = —

kC(1 -gz) (PI —Py g & ~)

Now this equation reaches its limiting form,

PI(t) = —(hvI/kC)P,

only at absolute zero (xz-~). However, for xz -1
and larger, and provided that pl j does not exceed
p, by too much, the simultaneous decrease of the
e "~ terms in numerator and denominator of Eq.
(39), together with the fact that they both have
negative signs, helps pz(t) approach its limiting
form [Eq. (40)] rapidly. By contrast, the "rate"
1/T, varies as the sum of W, and W [Eq. (36)].
This sum approaches constancy relatively slowly,
and T, therefore seems to be a singularly inap-
propriate parameter in terms of which one might
discuss the approach of relaxation rates to their
low-temperature limiting values.

Of course this qualitative discussion does not
prove either that T,' will approach constancy at any
particular temperature or that Tj will approach
T„exactly. Further study of this question is
needed.

At very low temperatures x~-~, Q-O, and I'

approaches the limiting form

I 0
-I 2I-1 0

1 —2I 3I- 3

1 —2I I 0
—I 0

(41)
The matrix E« is singular„and thus nondiago-

nalizable. The roots k, of its characteristic equa-
tion ) ELT —k~ I I = 0 may be used, however, to find
the limiting values of the eigenvalues of the general
transition matrix I" at low temperatures. These
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roots are simply the diagonal elements of EL~.
Thus the low-temperature limiting decay constants
are, for integral I: 0 (appearing once), I(kv/kC),
(2I —1)(kv/kC), . . . ,'I(I—+l)(kv/kC) (each appearing
twice). The two smallest nonzero rate constants,
having the values hvI/k C, will strongly influence
the rate of change of all observables as the lattice
temperature approaches absolute zero, provided
that secular equilibrium is established. In most
practical experimental situations the initial con-
ditions will lead to secular equilibrium rather
quickly, and T,' as obtained from a single-expo-
nential analysis will approach its low-temperature
limiting value

limT, '=kC/kvI as T-0 (42)

(43)

%e shall call T„ the magnetic sPin-lattice relaxa-
tion time. In the low-temperature limit T„plays
a role which is similar to, but more general than,
that of T, in the high-temperature limit. The fol-
lowing properties of T„are of interest:

(i) ln the low-temperature limit, and provided
that the spins are close enough to equilibrium that
all p can be neglected for m ~ 2-I, T„becomes
a true relaxation time for all observables. Since
p z.t = —(1/T, )p z, q in this limit, it follows that

lim[ po(f) —po(eq)] = - (1/T, ) [pt(f) —po4'q)]

for all tensor ranks X under these conditions. This
follows because the tensors po are linear in the p

[Eq. (19)]. A similar relation also holds for any
linear combination of statistical tensors,

lim(Z„A, [po —po'(eq)]]

reasonably closely at a relatively high temperature.
Of course the actual rate characterized by 1/T,'

tends to be slower than 1/T„because the other
transition rates are not very much faster than
1/T„. It is important to know, in a given experi-
ment, whether or not secular equilibrium has been
established. This may be done by plotting lnR'(8, f)
against t for each run, and checking for constancy
in the slope. A final test is provided by inspecting
the values of T'„as obtained from least-squares
analysis, to see whether they do in fact approach
constancy as T decreases. %e emphasize these
precautions because for certain sets of initial con-
ditions careless data analysis can lead to erroneous
results. For example, in some cases Ty obtained
from a single-exponential fit can exhibit a maximum
before approaching its limiting value. Alternatively
a multiexponential analysis may be made to obtain
the smallest nonzero eigenvalue of E. However
the analysis is done, the final result is the funda-
mental spin-lattice relaxation time

= —(1/T )(~ & [po'(I)- po'(eq)]] . (44)

This result is independent, of whether or not a spin
temperature exists [see Eq. (8)].

(ii) T„ is temperature independent. The relation

T, II = const = Ck/ p (45)

In this section we present the results of relaxa-
tion studies based on the observation of radiation
patterns from nuclei oriented at low temperatures.

In 1966, Templeton and Shirley' showed that a
substantial decrease in the degree of orientation of
nuclei at low temperatures could be obtained by
frequency modulating the applied rf power, and that
spin-lattice relaxation could be observed by switch-
ing off the frequency modulation and watching the
angular distribution of emitted radiation decay back
to its equilibrium value. The rf power level was
maintained constant to ensure a constant lattice
temperature T~ during relaxation. The method
is summarized in Fig. 3.

The relaxation time is obtained by fitting the de-
cay with an appropriate function, as discussed in
Sec. II. At high lattice temperatures the decay is
a single exponential with a time constant which is
simply related to the rank of the tensor that de-
scribes the angular distribution being observed. At
low temperatures T~ «kvI/2k the decay is also to

is analogous to the Korringa relation T,T = C, but
expresses the fact that the relaxation rate depends
on the magnetic, rather than thermal, energy.
Equation (45) should hold true both for ordinary
metals and for ferromagnetics, provided that H is
the net field at the nucleus.

(iii) T„contains the same information that T,
does. It is clear that both contain the Korringa
constant C. It is perhaps less obvious that both
yield the nuclear spin. In fact both do, if combined
with a suitable set of auxiliary experiments.

(iv) Finally, the approach of Tf to constancy oc-
curs at a temperature that is approximately a fac-
tor of 2I higher than the temperature at which T,
approaches constancy. This is illustrated in Fig.
1. The practical consequence is that for the range
of parameters commonly encountered in nuclear
orientation experiments T~ easily reaches a satu-
ration value, provided that I is large, while Tj
barely shows any evidence of saturation. Of course
T,' may not be equal to T„even after T,' appears to
have reached a saturation value.

In view of the above properties of T,' and T„, we
advocate analysis of very low-temperature relaxa-
tion data in terms of the relaxation time T~ rather
than the parameter T, .

Figure 2 summarizes the rate-equation approach
to relaxation theory outlined in this section.

III. EXPERIMENTAL RESULTS
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T, (T=O ) = 2 kC/h v

Slow: I
k = i/T~ I-1

Fast )

'll'
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k= i/T+

C3
~ ~
«3
X
D
0)
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O I
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I

T I' =p. H/k

X
I

I

T = hv/2k

I'IG. 1. Comparison of relaxation times Tt and T~'. (a) at left represents relative rates of transitions between levels,
showing "bottleneck" effect of slower rates between topmost and bottommost pairs of levels, which leads to an effective
relaxation time close to T~ at relatively high temperatures. (b) at right shows temperature behavior of Tt and T~,
illustrating the saturation of the latter at a relatively high temperature T " . By similar triangles one sees that T /
T(i)

good approximation a single exponential with time
constant T~. At intermediate temperatures it is
a sum of exponentials with various time constants
but as explained previously the relaxation rate is
controlled by the slowest rate constant after secular
equilibrium is reached, and thus the last part of
the decay will always be a reasonable approxima-
tion to a single exponential. The time required to
reach secular equilibrium depends on the initial
conditions po(0) and thus if the whole curve from
t = to onward is fitted with a single exponential, the
resulting time constants T,' will be rather sensitive
to initial conditions, except at very high or very
low temperatures. [Of course the full multiexpo-
nential form, Eq. (31), may be used to fit the decay
and obtain T, but this procedure is also sensitive
to initial conditions as may be seen from Eg. (32). ]
The initial conditions are, in turn, influenced by the
distribution of source nuclei in the sample, the
presence of impurities, lattice defects, and surface
irregularities, the rf skin depth, and the rf power
level and modulation. Moreover, the only knowl-
edge of initial conditions in the sample comes from
the anisotropy measurement at t =to, which is an
integral measurement of averages over the whole
ensemble of decaying nuclei of the above variables.
Thus it is important for reliable relaxation mea-
surements that (a) the initial conditions be kept as
constant as possible throughout the experiments
and (b) the relaxation curves be fitted with single-
exponential functions, the starting Point for fitting
being t &to and approaching t = to only at very low

High temperatures

()tt. H«k T)
PI+1 Eigenvalues k~

kZ= X X( &+1)

Korringa's law

A special case
for X =1

'I T
k

General case

(pH -kT)
2I+1 different
E igenva lues of F

Spin temperature

special case

P, ~='"P

Low temperatures

(+H» k T)
Obser va bles re lax

as T+ = kC/p. H

FIG. 2. Block diagram outlining rate-equation. relaxa-
tion theory and showing relationship of Korringa's law to
general theory.

temperatures. The proper starting point for fitting
can easily be found by varying the starting points
and checking for consistency of the resulting T,'

values. It is our experience that fitting with a
multiexponential function to find T, is likely to give
erratic results due to the lack of accurate knowledge
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FIG. 3. Illustration of T& measure-
ment using NMR/ON with frequency modu-
lation. The counting rate along the polari-
zation axis 18 denoted as 8 (0) Sub-
scripts denote the values of N'(0) when
the nuclei are in thermal equilibrium
with the lattice fS'(0)I], in a partially
disoriented steady state I, R'{0)zsj, or
randomly oriented fS'(0)&j',. At time t~
fhe fm is turned on, causing resonant
destruction of the nuclear orientation in
the inhomogeneously broadened line. At
t, the resonance is saturated, giving a

-- —— steady state counting rate 8'(0)8&. At to
the fm is turned off and the nuclear
splns relax back to equilibrium with the
lattice, All ox' pax't of this relaxa, tlon
curve can be fitted to obtain either T~ or
T$ ~

of initial conditions. More important, T, is not a
relaxation time, in an operational sense, at very
low temperatures,

Figure 4 shows the experimental results fox
~CoEe obtained by the method described above.
The T', values are those given in Ref. 6; the T&

values (from multiexponential fits) are previously
unpublished. The large scatter in T, is a result
of variations in initial conditions. The results may
be compared with those of Spanjaard et aE. ,

'3 who
used the method of rapid eddy-current heating of

the sample to obtain relaxation curves. From the
slope of the T;vs-l/T curve one can evaluate the
Korringa constant C; in Table I the value so ob-
tained is compared with a value estimated from T,',
using T,'= T„=AC/hvf, and with the value given
by Spanjaard et al . '

Figure 5 shows similar r'esults obtained by
Bacon and Brewer for 56CoI'e. The sources were
made by the reaction 'eFe(P, n)'eCo on thin poly-
crystalline Fe foils. After irradiation the foils
were annealed and mounted in the NMR/ON appa-
ratus. The resonance, at 209. 0+0, 2 MHE, had
full width at half-maximum (FWHM) of l. 6 MHz

300—

260—
l 50—

l40—
~ l ~

0

0 25
I I l

50 75 l00
tt'T (K) '

FIG. 4. Relaxation data for 60COFe at lour temperature.
The multiexponential-fit T& points, indicated by circles,
are from Ref. 7; the single-exponential fit T{points
(triangles) are from Ref. 6. The dashed curve shows the
expected hyperbolic tangent dependence of T~. The solid
curve is simply an empirical curve drawn through the Tl'
data.

0
0

l I i

50 75 l00 l25 l59
]zT (K) '

FIG. 5. Relaxation data for ~6COEe. The triangles in-
dicate the single-exponential T& fit and the circles the
multiexponential fit. The dashed curve shows the hyper-
bolic tangent dependence expected for T~.
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TABLE I. Derived Korringa constants.

C from
Vp Tf T1

C ase (MHz) (sec) (K sec)"

"Core 165.7(2) 67(5) ' 2. 5
"Cove 2o9. o(2) 1.0
6 CoCo 1256 1 23(2) 0.69
"Co¹i 6e. o8(5) 15(3) 0.25

~Average of low-temperature values in saturation range.
"Using C =—&VITE/k, which approaches being exact as

T T ~

As 1/T 0, T&T- C. Errors given are random only.

C from slope
(K sec)'

C (other work)
(K sec) Ref.

1.76(1O)
1.46(1O)
0.54(7)

4 ~ 6

2. 6(2) 13
1.1 or 1.6 e

0.75 f
o. 5o(5) 13

"Errors in last digit given parenthetically.
'Calculated from C,6= (vep/v56) C6p.
~Reference 8, p. 78. The value 0.75 was obtained from

NMR data on stable 'Co, using C6p=. (V&q/vep) C~.

and a maximum of about 55% of the anisotropy could
be destroyed by frequency-modulated rf power.
We note that somewhat higher rf power levels are
required for this experiment than for ~CoEe be-
cause of the higher resonant frequency and shorter
relaxation time of 'CoI'e. The T,' values for
"Corle in the temperature range from 1/T= 30 to
115 K ' do not reach a constant value. Instead they
seem to show a maximum as described in Sec.
IIG. This effect results from the fitting of the ers-

tixe decay curve with a single-exponential function;
the percentage of anisotropy destroyed at t =to
varies by more than a factor of 2 for the data shown
in Fig. 5, being about 55/0 at 1/T=30 K ' and only
26% at 1/T =115 K '. The initial shape of the decay
curves (before secular eciuilibrium is established)
is quite sensitive to this percentage and the T",

fits are accordingly affected. Consideration of the
detailed shape of the curve shows that when the
initial resonant destruction of orientation is large,
a single-exponential fit to the whole curve will give
an erroneously large value of the time constant;
this accounts for the "hump" in the T,' values in
Fig. 5. Attempts were made to obtain T,' at lower
temperatures but the low rf power levels consis-
tent with maintaining low sample temperatures
were insufficient to produce a reasonable degree
of resonant destruction.

As before, the slope of the T, values can be used
to calculate C, the result being 1.46 sec K. This
value may be compared with the value obtained
from the Co measurements by using

C60/C56 = (~56/~60) i

i. e. , C„=1.1 or 1.6 sec K. Our value of T,' gives
an estimate of C,6-1.0 sec K.

Figure 6 shows data for CoCo obtained by
Barclay ' using single-crystal films of cubic Co.
These data were analyzed for T, using Gabriel' s
theory, as reported in Ref. 12. An attempt was
made to keep the initial conditions constant over
the temperature range studied; this wa, s feasible
because of the relatively low resonance frequency

I f

I 00—
60CoCQ (cubic )

75—
CD

Vl
~ pP ~

20—

I 0—

IO 50 IOO I 50
(K)

FIG. 6. Relaxation data for 6 CoCO from Ref. 12.
Here the circles, triangles, and curves have the same
meanings as in Figs. 4 and 5.

of 125. 1 MHz and good resonant destruction ob-
tainable. The resu'. ting T,' curve becomes constant
near 1/T = 100 K ', giving a limiting value for T,'

of 23 + 2 sec.
Finally, we give the results for relaxation of Co

in single-crystal nickel obtained by Barclay.
First attempts to find the resonance in polycrys-
talline Ni foil failed, apparently because of exces-
sive inhomogeneous broadening of the resonance
line. Later attempts using Co diffused into a Ni

single crystal and for ~Co%i uniaxially electro-
plated onto a single-crystal Cu substrate gave
resonance lines at v0=69. 08+0. 05 MHz with FWHM
from 0. 6 to 1.2 MHz. Some experiments with the
plated foils showed anomalies in the magnetization
curves (magnetic "hardness" and switching of the
easy magnetization direction) which were probably
due to differential thermal contraction of the Ni
foil and the Cu substrate on cooling. Only about
15% of the anisotropy could be destroyed at toler-
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tatively good agreement. A trend is obvious: Re-
laxation rates for Co increase as the host lattice
is changed from Fe to Co to Ni. From the reso-
nant frequencies alone one would expect the oppo-
site trend. However, relaxation rates depend on
the density of states at the Fermi energy X(E~) as
well as on frequency. Thus we conclude N(Ez)N,
&N(Ez)c, &N(Er, )r, . We also note that the values
of C as obtained from the single-exponential fits
are in approximate agreement with those obtained
by other methods. Detailed quantitative agreement
among the various values of C in Table I is not yet
available. Further work is necessary to establish
where the errors lie in each case.

IV. ON-RESONANT DESTRUCTION OF ORIENTATION
AND FREQUENCY MODULATION

FIG. 7. Relaxation data for CoNi (single crystal).
Only Tf is shown: An average value of 15 + 3 sec was
inferred from these data.

able rf power levels. The T,'values obtained are
shown in Fig. 7. These data show large scatter,
again due to unavoidable variations in initial con-
ditions and to fitting the whole decay curve with a
single-exponential function. Assuming that T,' is
constant, we find T,'=15+3 sec.

The values of Korringa constants C and magnetic
relaxation times T,' obtained from these experi-
ments are summarized in Table I and compared
with results obtained by other workers. Examina-
tion of the last three columns of Table I shows that the
values of C obtained in different ways are in quali-

In this section we address ourselves briefly to
the question: "Why can the nuclear orientation not

be completely destroyed?" It has been shown in a
number of favorable NMR/ON cases that the orien-
tation could be nearly destroyed (i.e. , perhaps
80% destroyed), but there is always some orienta-
tion left even in the best cases. This problem has
been ' ' or will be'6 discussed elsewhere in the
context of frequency-modulation phenomena. For
this reason an extensive treatment would be un-
warranted here: %e shall simply list and comment
on several problems that arise in trying to destroy
nuclear orientation resonantly. Most of our re-
marks apply to the case of a wide inhomogeneously
broadened resonance line that must be frequency
modulated in order to observe any resonance. ' For

O

~ 0.6—0
C
D

0.5—
O

~ 04—

o 0.3
O

0.2

O. I—

0
O.OOI 0.0 I O. I IO

I

IOO I 000 I 0,000

~ --" - o.--.-b-

FIG. 8. Fractional destruction
of 1 —W(0}, the nuclear orienta-
tion "effect, " for 0 = 0, plotted
against the modulation frequency.
Filled circles represent 6 CoFe,
open circles 6 Co¹i. Solid
curves connect points for which

T~~=95 K ~, and H& =5.6 mOe.
dashed curves connect points for
which T«~=240 K ~ and H~ =1
mOe. In both samples the car-
rier frequency was centered
around resonance [v( CoEe)
= 166.0 MHz, v { Cos =69. 1
MHz)].

Modulating frequency ( Hz )
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FIG. 9. Fractional destruction
of 1 —W(0) for CoI'e, with an ap-
plied rf field of frequency 165.4
MHz, modulated to a bandwidth of
650 kHz by an applied modulation of
frequency vfm& =5 kHz. The carrier
frequency is also modulated at an
audio frequency of 20 Hz through a

P variable bandwidth &v~, shown as
abcissa. For the top curve H&

(applied, peak to peak) =2. 8 mOe
and 1/T = 175 K ~. In the bottom
curve H& =1 mOe, 1/T=250 K

clarity we shall refer to this as the "resonant re-
gion, " and to the homogeneous lines of which it is
composed as "lines. "

First, in successive sweeps through the reso-
nant region, the effects of the rf field on individual
lines will add incoherently. For any set of experi-
mental conditions a steady state is quickly esta-
blished in which orientation is reestablished by
relaxation to the lattice at the same rate that it is
destroyed by the rf field. Numerical calculations
based on an approximate model (but using a rea-
listic set of parameters) show that only -65% de-
struction of the orientation parameter Ba can be
expected at 0. 002 K even for a favorable case in
which the relaxation time is 100 sec and rf-field
strength 0. 1 G. '

Next, in order to be effective, the modulation
frequency v, must be neither too low ' nor too
high. If v, is too low the nuclei have time to re-
orient substantially between sweeps. This result
was predicted by Wilson, and it has been observed
for CoI'e and Co¹i, as shown in Fig. 8. Also
apparent from this figure is a decrease in resonance
destruction of anisotropy at high frequencies. This
result was postulated as arising from the fact that,
as v, increases, the frequency-modulation side-

band spacing eventually exceeds the effective line-
width of the homogeneous lines. Some of these
lines then fall between sidebands, where they are
not excited by the rf field. To test this explanation
a separate experiment with 'CoEe was carried out,
in which the carrier frequency was modulated by
a second, audio frequency v, ~

= 20 Hz, while hold-
ing v, , constant at 5 kHz. The results are shown
in Fig. 9. As expected, resonant destruction of
the anisotropy increases with hv~, the bandwidth
of the second modulation signal fm2. The effect
is completely restored when Av~ exceeds v, &.

Restoration occurs faster at a higher H, amplitude
since the intrinsic lines are more power-broadened
in this case.

Finally, the intrinsic lines are not simply
Lorentzians, but show multipole structure, ' if
even-rank statistical tensors such as B~ are
studied through y-ray anisotropy measurements.
For this reason a hard-core value of alignment
exists even at the resonant frequency. One would
then expect that any attempt to saturate the reso-
nant destruction effect would result in some of the
intrinsic lines exhibiting the "hard-core" response
function, thereby yielding an incomplete destruc-
tion of the nuclear orientation.
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Envelope Modulation in Spin-Echo Experiments
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Expressions have been obtained for the envelope-modulation effect in spin-echo experiments
of the two- and three-pulse type by partitioning the matrices which describe the evolution of
the quantized system. The initial results are quite general. and may be applied to a variety
of systems. Simplified expressions are derived for the case of an electron spin transition
split by small nuclear hyperfine interactions. The results are given in matrix product form.
The problem of computing the envelope-modulation parameters in specific instances is dis-
cussed. Algebraic results are given «r 8=2, I=2 and S=2, I= 1.

I. INTRODUCTION

In spin-echo experiments a periodic variation of
amplitude or "modulation" associated with small
splittings of the resonance line is sometimes ob-
served in the envelope of echoes. ' This modula-
tion effect has been used to measure splittings
which could not be seen by cw methods because
they were too small to be resolved in the presence
of inhomogeneous line broadening. Examples in
the field of nuclear resonance are the measurement
of the 8 I, facoupling'~ in organic molecules and in

metals, and the measurement of nuclear quadru-
pole coupling. ' Here we shall be primarily con-
cerned with electron spin echoes, where modula-
tion effects are due to coupling between electron
spins and nuclei in the host lattice, i. e. , to the
superhyperfine structure (shts) of the resonance.
Such modulation effects are a common feature of
electron spin-echo experiments.

In Secs. II and III the modulation phenomenon is
discussed from a general standpoint without refer-
ence to any specific system. This helps to focus
attention on the origins of the effect, and makes it
possible to derive results for two- and three-pulse
echoes (stimulated echoes) without undue mathemati-
cal complexity. The method of analysis follows
closely that which is used in the treatment of a sim-
ple two-level system. The basic formulas can be
applied in a wide variety of cases covering both nu-
clear and optical echo phenomena. '

The general results are applied to the special
case of an electron resonance with shfs splitting
in Secs. IV and V. The matrix expressions de-
rived in Sec. IV can be used either to obtain a plot
of the echo envelope or to find the amplitudes of
the frequency components which appear in it. A

procedure for performing the necessary calcula-
tions is suggested in Sec. VI. Explicit formulas
for coupled systems with S= ~, I= & and S= &, I= 1


