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We consider in a classical formulation the interaction of a particle of charge Zje incident
at a given impact parameter with an electron bound isotropically and harmonically to the
origin with a frequency w. Using a perturbation expansion that assumes that the displace-
ment of the bound electron is small compared to the impact parameter, and integrating over
the impact parameter from some minimum value to infinity, we are led to an expression for
the stopping power. The leading term in this expansion is proportional to (2162)2 and is the
usual result for this type of model, while the second term gives us the (Zie )® correction.
The Z correction for the Lenz-Jensen statistical model for the atom is presented. The
predictions of this theory are in excellent agreement with available experimental data.

I. INTRODUCTION II. THEORY

Consider an electron bound isotropically and
harmonically with a frequency w to the origin (i.e.,
the nucleus of the atom) in a target composed of
atoms of atomic number Z, at a density n,. A
heavy particle of charge Z,e approaches the oscil-
lator with nonrelativistic velocity »; at an impact
parameter b relative to the origin. (¢, b) is the
classically prescribed force on the electron set up
by the moving particle at time /. The displace-
ment of the electron at time ¢ from its equilbrium
position (at the origin with zero velocity af, ¢= o),
g(t is then found by solving the equation §+w g
= f/m, which we write in the form

According to recent reports, % the ranges of 7"
mesons in nuclear emulsions are shorter than those
of 7~ mesons such that the 7* stopping power is
some 14% larger than the 7~ stopping power at ~1.2
MeV/amu. Measurements in several metals by
Andersen et al.® yield stopping powers for o par-
ticles that are systematically larger than four times
the stopping power for protons or deuterons as pre-
dicted by Bethe’s stopping-power theory. This
theory is based on the first Born approximation,
in which the stopping power for a particle of veloc-
ity »,, energy E,, and charge number Z; < v,/vy,
where v, = ¢?/7, is proportional to (Z,e)?. This
paper extends the. stopping-powgr the.ory to include Z(t) -Re i J' f(t' . b) é'“"“""dt' . 1)
the term proportional to (Z,e)® in an impulse ap- mw )
proximation, i.e., the classical equivalent of the
second Born approximation. It accounts for the
observed differences between the stopping powers
of a particle and its antiparticle, and for differ- by

At time ¢, the electron has thus gained the energy
sm(£2+w%c?. Using Eq. (1), this energy is given

ences between the stopping powers of a particles 1 t o, - 2

and protons which, so far, have remained unex- w,(t, b) = om j £, et at'| . (2)

plained. The Z} term is important for the proper -

assessment of shell corrections in stopping powers Thus the energy lost by the incident particle per

and of the ranges of charged particles in matter. unit distance dR, i.e., the stopping power of the
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fraction F, of target electrons bound with a fre-
quency w, becomes

dE )
(_ —dél‘)f 2mnyZ, F, (fo bdb W,(, b)

+I bdb W, (o, b)) ) 3)

w

where W, is the energy transferred to resonance
excitations of the electrons and W, is the energy
transferred in close single collisions. The param-
eter a, gives a lower limit of the impact paramet
where the electrons can still be viewed as being
harmonically bound. For b<a, the electrons are
treated as unbound. If the incident particle moves
along the line x= ~ b in the +y direction, the force
on the electron can be written in terms of Eq. (1)
as
[0+ 80]i-[wt-£,0)]]
{6+ P+ [vrt - ¢, (P2
@)
where 7 and ]A are unit vectors in the +x and +y di-
rections. We expand for small electron displace-
ments such that £(£)/(6%+ 03?2« 1 and retain
first-order terms. One can write

ft, by= - Ze?

£, 0)=1,, 0)+ 210, 0), (5)
where f:,(t, b) is given by the well-known expression

b;—”l)lt]‘\ (6)

fo(t, b)= ~ Z,e® 0%+ )2

The new term Af becomes

A{(t,b)=—[ Zye’ w57 1L 202+ v} 1?)

b2+ (v11)%) ) &0

dv% [*-2)F

(0= "G (x|
, .

+K0(u)J‘

The functions F, and F, are defined by

) ]‘ sin u(v y)

1+y
Folu, v)Ef dy

K, is the modified Bessel function of the second
kind of order v. For {= wa,/v; <1, the function

v sinfu(v ~ y_]_
T+’
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+3buyt £, 17

+[3bwy £ L,(8) + (B2 = 202 )5, () 17} -

We solve Eq. (7) by iteration, replacing f by f’g
when calculating g(t from Eq (1). We insert the
Fourier transforms wa and Af into W,(%,b)and ob-
tain by Eq. (3) the stopping-power correction due to

af:
dE 2mnyZ o F ° >

Al - 1 - 22t
( = )w faw bdb (Ref,,

*Re A-f.w+ Imﬁ,w . ImAfw ). (8)

The dipole approximation underlying Eq. (8) re-
stricts its validity range to distances from the nu-
cleus outside the atomic volume in which the elec-
trons responding with frequency w are bound. This
limits a, to values larger than the respective shell
radius. For smaller impact parameters the mo-
mentum transfer becomes so large that the elec-
trons behave as if essentially free and their con-
tribution to the Z?} effect becomes small, because
the cross section for Rutherford scattering with
free electrons is exactly proportional to Z ¢ Such
a division into glancing collisions and close col-
lisions leading to large momentum transfers is
well known from Bohr’s early semiclassical treat-
ment of stopping powers.*?

Equation (8) can be written in the form

dEl _ 47”’ngng 23 rfwa
A(— 2 ) 2o b (e 1(—#) ,
(9
where
1@, v) = 3vF 5(u, v)]
dv(_smz%vwm Fi(u, v) - (1 —20%) Fylu, m]) . (10)

I(£) can be represented by I(¢§)~ — 37lné+ A, where
A~ -2.4is a constant. In this limit the function
I(¢) is insensitive to the choice of the minimum im-
pact parameter a,. For large arguments I(£) van-
ishes approximately as I(£) ~ (4n/t%) e"®. The com-
puter evaluation of Eq. (10) is presented in Figs.
1 and 2.

If the fraction F , of oscillators responding in the
frequency range between w and w+ dw is given by
glw)dw, where g(w) is the differential oscillator
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FIG. 1. Function I(¢), Eq. (10), as a function of ¢ for
=1,

strength normalized such that [;” g(w)dw=1, the
total stopping-power correction becomes

dE\\ 4mny,Z ° wa

Al 1\ 243 2\3 (_ gg>'

< R ) s (Z,e%) J dw glw)w I o
0

(11)
For a comprehensive study of its v, and Z, de-
pendence, we evaluate the Z} term for the statisti-
cal model of the target atoms in the Lenz-Jensen
(LJ) approximation6 for the electron density distri-
bution p(#). Then

glw)=23' [ a®rp(1)d(wo(?) - w)

where wo(7) = x[4np(v)e®/m]'/?; the constant y is a

number of ~v2 ."® The minimum impact parameter

is taken to be approximately the same size as the
radius of the shell of charge associated with the
frequency wy(7), i.e., we take a,=n 7 where 7 is
a number of order one. The total stopping power
can then be written in the reduced form

mus dE,
A7 .52 - |\~ gp
417(218 ) n322 dR)

=xS(x, Zy)= L(x)+

z, _Fxzyl®/s"?)

Z;l 2 xS/ 2 ’
(12)

where S(x, Z,) is a dimensionless stopping cross
section in terms of the reduced variable x= %/
Ve Z,. Numerically, v%/4%=40.2 E,(in MeV/amu).
For x> 1, L(x) approaches the Bethe-Bloch for-
mula L(x)=1n(4®/Kp)x, where &= $mvi=13.6 eV;
Kp=1/Z,is Bloch’s constant as determined by the
mean excitation potential I of the target. We cal-
culate L(x) by setting
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48x 47 Yo
L(x =ln< ) -— dvv?
) K os Z, £ v r2p(v)

4Rx

X In (ﬁwo(r)/Zg> . (13)
The second term is the statistical approximation
to the inner-shell correction; the integration limit
7, is given by the relation %wq(7)/Z,=4Rx/C with a
cutoff constant C ~1.'" With K;;=7.583 eV '! and
Kp=9.76 eV,'? one obtains y=1.29. The function
L(x) was evaluated on a computer for C=1, The
result is shown in Fig. 3.

The function F is given by

Fe _‘ll‘ezﬂ_fwdrvzp(r)wo@n(mw(ﬂ) ,  (14)
0

Y4 V1

where aq is the Bohr radius. We omit an inner-
shell correction term analogous to the second term
in Eq. (13) because it makes a negligible contribu-
tion to the total stopping power in the validity range
of Eq. (14). We have calculated the function F(w),
where w=nxZs'¢/x'/%, by numerical integration
with the result shown in Fig, 3.

The relative change in the stopping power can be
calculated from the expression

xS(x, Z,) -Llx)  Z,
L(x) TozZi®

F(nxz3'%/x'?)
72 L(x)

(15)

The dominant dependence of this correction on
particle velocity is proportional to x~%/2,

III. COMPARISON WiTH EXPERIMENT

We compare the theory with the experimental
results of Ref. 3. In Fig. 4 we plot Eq. (15) as a
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FIG. 2. Function I(¢), Eq. (10), plotted as —In(¢) as
a function of ¢ for £=1.
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FIG. 3. Functions L (x) and F(w) in the statistical ap-
proximation of the Z? stopping-power correction, Eq.
(15), as a function of their respective arguments.

function of f=wv,/c for Z,=+1 particles in tantalum
(Z,="13) with the trial values n=% and n=2%. The
experimental points are taken from Fig. 1 of Ref.
3. A parameter value close to n=0.7 gives excel-
lent agreement for the high-Z, material over the
v, range investigated.

Figure 5 shows the comparison for Z;=+1 par-
ticles in aluminum (Z,=13) with the trial values
n=%n=3 and n=1. The experimental points are
taken from Fig. 2 of Ref. 3. A value close to
n=0.9 provides an excellent fit.

The trend of n with Z, may in part reflect the
approximate nature of the universal function L(x)
as given in Eq. (13), ! but it is also understandable
in terms of the deviations of g{w) of real atoms with
small Z, from that of the statistical atom. In fact,
if we rewrite the argument of F(w), Eq. (14), with
a constant a as

w= ﬂXZé/G/an= aaTFKBZa/ﬁvl ’

where app=0. 885a,/Z3/° is the Thomas-Fermi
screening radius, we can accommodate these de-
viations in an average way by inserting for Kz the
empirical relation'® K;=9.76(1+6.02Z;"!%) eV,
which represents the over-all trend for Z,=>13.

In other words, if in Eq. (12) we set nx=7yX
x(1+6.02 23", a single value of the constant

MoX =0. 8 brings our theory and the experiments on
widely different targets into close agreement. When

(16)
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FIG. 4. Theoretical predictions for the stopping-
power correction due to the Z% effect, for Z;=+1 and
values of the parameter n=%, 2, as a function of B=v;/c,
compared with experimental values from Ref. 3 for
Ta(z,=73).

w<<1, the function F(w) [Eq. (14)] depends only
logarithmically on w (cf. Fig. 3). That is, in the
limit of high-particle velocities our Z’i’ correction
becomes insensitive, as it should, to the choice of
.

We have made a calculation of the difference in
stopping power due to the Z} effect between Z,=+1
and Z, = - 1 particles in emulsion and find a 8-9%
difference at 1.2 MeV/amu, in fair agreement with
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FIG. 5. Theoretical predictions for the stopping-

power correction due to the Z? effect, for Z;=+1 and
values of the parameter n=%, 2, 1, as a function of
B=vy/c, compared with experimental values from Ref,

3 for Al(Z,=13).
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the estimate derived from 7* and 7~ range data. ?

Note added in proof. A tabular presentation of
the functions I, F, and L is given in a paper to be
submitted to Atomic Data by the authors, as yet
unpublished.
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The formalism of nuclear spin-lattice relaxation at low temperatures is developed, leading
to a new relaxation time T, and a straightforward method of interpreting very-low-temperature
relaxation data. Data for ®Co in Fe, Ni, and Co hosts and for %Co in Fe are summarized.
The use of NMR in oriented nuclei for determining relaxation times is discussed, and some
comments are made on the role of frequency modulation in NMR experiments with oriented

nuclei.

1. INTRODUCTION

Nuclear magnetic resonance in oriented nuclei
(NMR/ON), in which resonance is detected through
the distribution of nuclear radiations, was sug-
gested by Bloembergen and Temmer® and first ob-
served in nuclei oriented by thermal-equilibrium
methods by Matthias and Holliday.? It was used to
study relaxation in ferromagnetic metals,® a phe-
nomenon that has also been studied by nonresonant
methods. *

In 1964 Cameron ef al.’ suggested that, for nuclei

relaxing in a metal through interaction with con-
duction electrons, the spin-lattice relaxation time
T, will approach a constant value at temperatures
low enough that the magnetic quantum y H is larger
than 7. This effect was observed by Brewer

et al., who reported it in abbreviated form in
1968.° These authors made a detailed interpretation
of their relaxation data in terms of simple rate
equations, finding multiexponential decay of the
orientation parameters.™® They found that T,

was no longer a useful relaxation time at very low
temperatures, however, and their data in ®°CoFe



