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We consider in a classical formulation the interaction of a particle of charge Z&e incident

at a given impact parameter with an electron bound isotropically and harmonically to the

origin with a frequency cu. Using a perturbation expansion that assumes that the displace-
ment of the bound electron is small compared to the impact parameter, and integrating over
the impact parameter from some minimum value to infinity, we are led to an expression for
the stopping power. The leading term in this expansionis proportional to (Z&e ) and is the

usual result for this type of model, while the second term gives us the (Z~e ) correction.
The Z& correction for the Lenz-Jensen statistical model for the atom is presented. The
predictions of this theory are in excellent agreement with available experimental data.

I. INTRODUCTION

According to recent reports, ' the ranges of p'

mesons in nuclear emulsions are shorter than those
of m mesons such that the z' stopping power is
some 14/p larger than the 7t stopping power at -1.2
MeV/amu. Measurements in several metals by

Andersen et a/. yield stopping powers for ~ par-
ticles that are systematically larger than four times
the stopping power for protons or deuterons as pre-
dicted by Bethe' s stopping-power theory. This
theory is based on the first Born approximation,
in which the stopping power for a particle of veloc-
ity v„energy E, , and charge number Z~ ++ vt/vp,
where vp= e /b, is proportional to (Z,e)p. This

paper extends the stopping-power theory to include
the term proportional to (Z,e)' in an impulse ap-
proximation, i. e. , the classical equivalent of the
second Born approximation. It accounts for the
observed differences between the stopping powers
of a particle and its antiparticle, and for differ-
ences between the stopping powers of z particles
and protons which, so far, have remained unex-
plained. The Z& term is important for the proper
assessment of shell corrections in stopping powers
and of the ranges of charged particles in matter.

f(t) =Re f (fl b) M(t tt ) dfl

At time t, the electron has thus gained the energy
—,m(f'+~'g'). Using Eq. (1), this energy is given

by

f (t', b)e'"' dt'

Thus the energy lost by the incident particle per
unit distance dR, i. e. , the stopping power of the

II. THEORY

Consider an electron bound isotropically and

harmonically with a frequency & to the origin (i. e. ,

the nucleus of the atom) in a ta.rget composed of
atoms of atomic number Zz at a density n~. A

heavy particle of charge Z&e approaches the oscil-
lator with nonrelativistic velocity e, at an impact
parameter b relative to the origin. f(f, b) is the
classically prescribed force on the electron set up

by the moving particle at time t. The displace-
ment of the electron at time t from its equilbrium
position (at the origin with zero velocity at. f = —~),
g(f), is then found by solving the equation f+tp
= f/m, which we write in the form
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fraction E„of target electrons bound with a fre-
quency , becomes

= 2vn, Z, F„ / df W, (-, f )
4l 0

p
ao

) dbW, (, ()) ' (3)

f (f, b)= fo(t, f/)+ &f (f, f/),

where f 0(t, b) is given by the well-known expression

2 b 2 —
vent j

fo(I, b)= —Zse
(
~, f)2]~/~b +tv, t

(8)

The new term ~f becomes

Z 2

&f(&, &)= —
(

'
f ]

/
—([( 2f)'+,'f') g-„(t)

5 + vlf

where 5'„ is the energy transferred to resonance
excitations of the electrons and 5', is the energy
transferred in close single collisions. The param-
eter a„gives a lower limit of the impact paramet
where the electrons can still be viewed as being
harmonically bound. For b & g„ the electrons are
treated as unbound. If the incident particle moves
along the line x= —b in the +y direction, the force
on the electron can be written in terms of Eq. (1)
as

[&+4(f)J~ —[v I —f.(&)]j
([f.~.(f)]"[v, f —t,(f)]']'"

(4)
where i and j are unit vectors in the +x and+y di-
rections. We expand for small electron displace-
ments such that f(t)/(b + v, t )

/ «1 and retain
first-order terms. One can write

+ 3f)vgt g~(t') ]2

+ [3 hvar f f„(t)+ (b —2vg I ) K~(t) ]j] . (7)

We solve Eq. (7) by iteration, replacing f by fo

when calculating f(t) from Eq. (1). We insert the

Fourier transforms fo„and bf„ into W(~, b) and ob-
tain by Eq. (3) the stopping-power correction due to
gf e

1 2 2 & blab
Vl

f4

~ Re iZ„+ Imfo„ lm&f ) . (8)

where

The dipole approximation underlying Eq. (8) re-
stricts its validity range to distances from the nu-

cleus outside the atomic volume in which the elec-
trons responding with frequency & are bound. This
limits a„ to values larger than the respective shell
radius, For smaller impact parameters the mo-
mentum transfer becomes so large that the elec-
trons behave as if essentially free and their con-
tribution to the Z& effect becomes small, because
the cross section for Rutherford scattering with

free electrons is exactly proportional to Z &. Such
a division into glancing collisions and close col-
lisions leading to large momentum transfers is
well known from Bohr's early semiclassical treat-
ment of stopping powers. '

Equation (8) can be written in the form

Eg 4 'll'fEg 22(d +
Z P 3~ (d&dE

du
8 oO

I(&) == . -I~,(.)
Q

cos uvdv, )„,— [(v —2) r, (u, v) —3VE,(u, v)]

00

+tC(M)' Ck, „, [3vF(u, u) —() —Rs')E(, v))) . ()0)
a dO

The functions E, and E~ are defined by

sin [u (v —y) ]
(u v)

y sin[u(v -y+)
E2(u) V) ' dy gl P)3/2

A„ is the modified Bessel function of the second
kind of order v. For t'= ~a„/v, « 1, the function

I(() can be represented by I(g) = ——27(lnt +/1, where
A = —2. 4 is a constant. In this limit the function

I($) is insensitive to the choice of the minimum im-
pact parameter a„. For large arguments I($) van-

ishes approximately as I($)=(4v/g )8 ~. The com-
puter evaluation of Eq. (10) is presented in Figs.
I and 2.

If the fraction E„of oscillators responding in the
frequency range between & and &+ d is given by

g(~)d~, where g(~) is the differential oscillator
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L(x) = ln — —— dr r p(r)XXI J Zz
0

(13)

20 The second term is the statistical approximation
to the inner-shell correction; the integration limit
r, is given by the relation h&0(r)/Z2=4(Rx/C with a
cutoff constant C =1. ' With K»='7. 583 eV" and
K~ = 9. 76 eV, ' one obtains X = 1.29. The function
L(x) was evaluated on a computer for C= 1. The
result is shown in Fig. 3.

The function I" is given by

0
10 ~ 10 10

FIG. 1. Function l($), Eq. (10), as a function of t for
$(]

strength normalized such that fo" g(~) der = 1, the
total stopping-power correction becomes

8 00

(ii)
For a comprehensive study of its v, and Z, de-

pendence, we evaluate the Z, term for the statisti-
cal model of the target atoms in the Lenz-Jensen
(I J) approximation for the electron density distri-
bution p(r). Then

where a is the Bohr radius. We omit an inner-
shell correction term analogous to the second term
in Eq. (13) because it makes a negligible contribu-
tion to the total stopping power in the validity range
of Ecl. (14). We have calculated the function E(w),
where so—= qyZ', /x', by numerical integration
with the result shown in Fig. 3.

The relative change in the stopping power can be
calculated from the expression

xS(x, Z ) —L(x) Z, F(qgZ ~ /x'~ )
L, (x) Z" ' x"'L( )x

The dominant dependence of this correction on
particle velocity is proportional to x

g ((u) = Z, ' 1 d'r p(r) a (~0(r) —u),

where vo(r) = y[4vp(r)e /mj ~; the constant y is a
number of - v 2 ." The minimum impact parameter
is taken to be approximately the same size as the
radius of the shell of charge associated with the
frequency &0(r), i. e. , we take a„=g r where q is
a number of order one. The total stopping power
can then be written in the reduced form

III. COMPARISON WITH EXPERIMENT

We compare the theory with the experimental
results of Ref. 3. In Fig. 4 we plot Eg. (15) as a

fBVy dEg
4a(Z, e ) n2Z2 dR

= xS(x, Z, ) = L(x) + Zf
Z2

(12)
where S(x, Za) is a dimensionless stopping cross
section in terms of the reduced variable x= vq/

voZz. Numerically, v&/v0=40. 2 E,(in MeV/amu).
For x» 1, L(x) approaches the Bethe-Bloch for-
mula L(x) = In(4(R/Ka)x, where 8, = ,' mvo= 13.6 —eV;

Zs = I/Z~ is Bloch's constant as determined by the
mean excitation potential I of the target. We cal-
culate L(x) by setting

20

C
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FIG. 2. Function I($), Eq. (10), plotted as —ln($) as
a function of ( for $

« l.
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the estimate derived from g' and g range data.

Note added in proof .A tabular presentation of
the functions I, F, and 1. is given in a paper to be
submitted to Atomic Data by the authors, as yet
unpublished.
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The formalism of nuclear spin-lattice relaxation at low temperatures is developed, leading
to a new relaxation time T~ and a straightforward method of interpreting very-low-temperature
relaxation data. .Data for 6 Co in Fe, Ni, and Co hosts and for ~ Co in Fe are summarized.
The use of NMR in oriented nuclei for determining relaxation times is discussed, and some
comments are made on the role of frequency modulation in NMR experiments with oriented
nuclei.

I. INTRODUCTION

Nuclear magnetic resonance in oriented nuclei
(NMR jON), in which resonance is detected through
the distribution of nuclear radiations, was sug-
gested by Bloembergen and Temmer' and first ob-
served in nuclei oriented by thermal-equilibrium
methods by Matthias and Holliday. It was used to
study relaxation in ferromagnetic metals, a phe-
nomenon that has also been studied by nonresonant
methods.

In 1964 Cameron et al. ' suggested that, for nuclei

relaxing in a metal through interaction with con-
duction electrons, the spin-lattice relaxation time
T, will approach a constant value at temperatures
low enough that the magnetic quantum yH is larger
than k T. This effect was observed by Brewer
et al. , who reported it in abbreviated form in
1968. These authors made a detailed interpretation
of their relaxation data in terms of simple rate
equations, finding multiexponential decay of the
orientation parameters. ' They found that Ty

was no longer a useful relaxation time at very low
temperatures, however, and their data in CoFe


