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Optical Absorption of Polarons in the Feynman-Hellwarth-Iddings-Platzman Approximation
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The optical absorption of polarons at rest at zero temperature is calculated starting from
the Feynman-Hellwarth-Iddings-Platzman (FHIP) theory of the impedance. The results are
compared with the results of theories whose physical interpretation is clearer [weak-coupling
theory of Gurevich, Lang, and Firsov (GLF) and product-ansatz strong-coupling theory of
Kartheuser, Evrard, and Devreese (KED)] in order. to obtain a better understanding of the
FHIP approximation. We are particularly interested in the possible role of lattice relaxation
[leading to relaxed excited states {RES)j in the optical absorption process. If the FHIP pertur-
bation method were used to expand the conductivity {this would be the normal procedure), es-
sentially Franck-Condon transitions would be found in the spectrum, and lattice relaxation
would be absent. In this case the results do not fit with the product ansatz and provide merely
the asymptotic limit & 0, where 0' is the electron-phonon coupling constant. If, however,
the impedance function rather than the conductivity is expanded (as preferred by FHIP for in-
tuitive reasons, without further justification) more reliable results for the optical absorption
appear. For G' &5, intense absorption peaks now occur, which presumably correspond to tran-
sitions to RES, and the results are in qualitative agreement with the predictions of the pro-
duct-ansatz treatment in this coupling region. Also in the limit e —0 the correct behavior is found.
For 3 & e & 5, the interpretation of the results is somewhat delicate but the possibility that
RES contribute to the oscillator strength as soon as 0: &3 should be considered. The results
so obtained for the optical absorption seem reliable at all &. This provides an indirect justi-
fication for the expansion of Z{Q) rather than 1/Z{Q) in FHIP theory and a confirmation of the
qualitative strong-coupling predictions of KED. The present study indicates that optical ab-
sorption peaks due to free polarons should be observable experimentally in crystals for which
a &1.

INTRODUCTION

The optical absorption of Frohlich polarons has
been studied in the asymptotic limit o.'-0 (n is the
electron-phonon coupling constant) by Gurevich,
Lang, and Firsov (GLF). ' The result of this study
at T = 0 to order n for a one-polaron approach gives
a single peak which is due to absorption accompanied
by emission of one phonon. The theory of Gurevich
et al. is highly involved. A simple derivation of the
optical absorption coefficient of polarons for T = 0,
n-0 is given in Ref, 2.

For large coupling, Kartheuser, Evrard, Dev-
reese~ (KED) have presented a theory of the optical
absorption of polarons based on the product-ansatz
strong-coupling theory. These authors have em-
phasized the role of the internal structure of the
polaron. They find that for values of +, where the
Born-Oppenheimer approximation is meaningful,
the so-called relaxed excited states (RES) play a
predominant role in the absorption process. (The
authors of Ref. 3 claim that the Born-Oppenheimer
approximation leads to qualitatively correct re-
sults if o'. &4; I arsen has made reservations on
this point. ) The energy level of the first "RES" had
been studied before (see Refs. 6 and 6). Let us
recall that RES correspond to an excitation of the

electron in the polaron potential for which the lat-
tice is adapted to the new electron distribution. In
Ref, 3 it is argued that absorption from the ground
state into the RES gives the most pronounced peak
as soon as e & 3 and that the sideband structure of
this RES peak gives a broader envelope with a maxi-
mum at the Franck-Condon transition frequency.
The Franck-Condon transition occurs from the
ground state of the polaron to an excited state with-
out any lattice readaptation taking place.

The results of Ref. 3 are at most qualitatively
valid for a & 8. It is an open question how impor-
tant the role of RES is in the absorption at inter-
mediate o..

The purpose of the present investigation is to cal-
culate the optical absorption of polarons at all cou-
pling using the Feynman-Hellwarth-Iddings-Platz-
man (FHIP) approximation' and to discuss the valid-
ity of the results so obtained. This study also
throws some light on the nature of the Feynman
polaron. The extreme accuracy of the Feynman
model in describing the ground-state properties has
been shown on an exactly soluble model.

It should be realized that the quantity Imp(Q) '

(where 0 is the frequency of the incident light)
plotted by FHIP is not the optical absorption coef-
ficient. To obtain the optical absorption coefficient
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we can start both from the expansion of the conduc-
tivity [1/Z(Q)] or from the expansion of the impe-
dance function [Z(Q) in the FHIP approximation].
The former expansion is the only one which is really
justified in the framework of the FHIP perturba-
tion scheme; the latter is preferred by FHIP for
intuitive reasons.

What we will do is to make use of the results ob-
tained by FHIP for the frequency-dependent impe-
dance function Z=ReZ+iImZ of the polaron. FHIP
studied only ReZ(Q) in order to obtain an expression
for the mobility. Although this is sufficient to ob-
tain the optical absorption in the case of the ex-
pansion of the conductivity 1/Z(Q), we have to carry
through a mathematical and numerical treatment
starting from the quite involved analytical expres-
sions obtained by path-integral formalism for ReZ
and ImZ in Ref. 7, in order to obtain the optical
absorption coefficient for all n in the case of the
expansion of the impedance function Z(Q).

Both treatments will then be compared with the
existing results at weak and strong coupling, which
are understood physically, and the intermediate
coupling region will be investigated.

In Sec. I we recall some results of FHIP and dis-
cuss the approximations involved.

In Sec. II it is shown how the optical absorption
coefficient can be calculated starting from FHIP's
formalism. The necessary mathematical develop-
ments are presented.

In Secs. III and IV the analytic and numerical data
obtained for the optical density in the FHIP approx-
imation (both for the expansion of the conductivity
and the impedance function) are presented and dis-
cussed.

I. GENERAL FORMULAS FOR THE IMPEDANCE
OF THE POLARON AS OBTAINED BY FHIP

First a general expression for the frequency-de-
pendent conductivity 1/Z(Q) of the polaron obtained
by FHIP is recalled, together with the approxima-
tions made by these authors. This expression,
which is the starting point of the present calcula-
tions, is as follows:

I /Z(Q ) = Q (Go + G~),

where —iGO is the classical response function for
the Feynman model [see Ref. 7, Eq. (39a) ] and

Here P(P) = 1/(e" —1), P= I/kT, and lz=m= &go= 1,
where ~0 is the frequency of the longitudinal-optical
phonons at long wavelength. Furthermore, we have

K V -K
D(u)=~ a

V K V

+4P(Pv) sin (—,
'

vu)] iu-+"—
~ (5)

p
where v and zv are variational parameters, which
have been introduced by Feynman to minimize the
self-energy in the case of the harmonic approxima-
tion.

If one considers the "physical" model of two par-
ticles bound harmonically to each other' as cor-
responding to the Feynman polaron, v describes the
vibration frequency of this system and w= (u -K) ',
where K is the force constant of the model system.

In the strong-coupling limit, the vibration fre-
quency v of the Feynman polaron behaves as v
= 4o. /9m, which is the Franck-Condon transition
frequency of the Frohlich polaron as obtained from
the product ansatz.

The approximations made by FHIP are twofold:
(a) The "double" path integral

g= ff e"D'XDX', (6)

1 1
QZ(Q)=

( )
—

[ ( )], Gg(Q) . (8)

FHIP present intuitive arguments for preferring
this expansion of the impedance to the expansion of
the conductivity:

where P is the exact action for the polaron in a rel-
atively weak external oscillating field at any tem-
perature is replaced by

g„~.„=ff e"oDgDy + ff e"oi(Q —P,) DXDX,
(&)

where $0 is a "quadratic" approximation to P. This
is essentially Feynman's approximation of replacing
the potential energy part in the action, which is
Coulomb-like, by a quadratic approximation.

(b) FHIP calculate the expression G(Q)=1/QZ(Q)
.in the form (1), where Go and G, correspond to the
first and second terms in (7), respectively. To ob-
tain a resonance structure for Imp (which they call
dissipation), they expand the impedance function
Z(Q) as follows:

2 2

Gz
——iGO y(v)+ z 2 Q2 V —SU 2 1/QZ(Q) = Go(Q) + Gi(Q) . (9)

where g(Q) is defined as

y(Q) = J (1 —e'"")ImS(u) du, (3)

&(u) = (»/3&m) [D(u)] 'i ' [e'"+ 2P(P) cosu] . (4)

Of course, this is a delicate point because the dif-
ferent conclusions resulting from (8) and (9) ques-
tion the degree of accuracy of the approximation
(I). It may be recalled that only the expansion (9)
is justified in the FHIP perturbation scheme.

In the present study both the expansions (8) of
Z(Q) and (9) of 1/Z(Q) will be used.
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II. OPTICAL ABSORPTION COEFFICIENT OF
POLARONS IN THE QUADRATIC APPROXIMATION

A. Impedance and Absorption Coefficient of Polarons

The relation between the absorption coefficient
I'(Q) and the impedance Z(Q) of polarons is as fol-
lows:

I'(Q) = (I/cean) Re[1/Z(Q)] . (10)

I',(Q) = [(Q' —u ')'/Q'(Q' —v')'] imp(Q) . (1ib)

B. Evaluation of ReX

In the work of FHIP only Imp(Q) has been calcu-
lated (together with Iim„.a[imp(Q)/Q] = I/p, resulting
in the mobility p, ). In FHIP's theory a closed ex-
pression is given for Imp(Q) valid at all T and n

This expression involves integrals which were eval-
uated numerically for large P (P= 100), after using
an infinite-power-series expansion in terms of
Bessel functions of imaginary arguments. FHIP
also considered the limit T-0 (P- ~) for the first
two terms in the series expansion.

In the present work we limit our attention to the
case T = 0. It is important to take the limit P- ~
in a rigorous way, starting from the expressions
obtained by FHIP. Therefore, we have demon-
strated (Appendixes A and B) that the exact zero-
temperature limit arises if the limit P- ~ is taken
directly in the expression (3) for y(Q). Doing so one

obtains immediately

d'u sin(Qu) e'"
Imp(Q) —Im

) (1 g„„) ~ ]3/a (P )

lima. „Rey(Q) has not been calculated by FHIP.
However, to study the optical absorption to the same
approximation as FHIP's treatment of the impedance
which corresponds to considering the expansion for
Z(Q), we have also to calculate lima „Rey(Q) and
use this result in (lla). This means that we must
evaluate

du (1 —cosQu)e'"
Rey(Q)=imj

( ( )„„) . ]ay (P= ) .

(13)
In (12) and (13), R= (v —w )/sv v.

co is the dielectric constant of the vacuum, n is the
index of refraction of the medium and c is the veloc-
ity of light.

One needs both the real and imaginary part of
Z(Q) or of y(Q) to express the absorption coefficient
at zero temperature if the expansion of Z(Q) is used.
We obtain the following formula in that case:

1 . Q Im)t (Q)
cean a Q —2Q Rey(Q)+ Iy(Q)I

(1la)

If the expansion for 1/Z(Q) is used one finds

Strictly speaking the mathematical contribution
of the present work consists of evaluating the inte-
gral (13). Developing the denominator of both in-
tegrals on the right-hand side of (12) and (13) the
calculations are reduced to the evaluation of a sum
of integrals of the type

du sinQu e" '""'"
ws /2+n (14a)

jR —iu j
Im '

du cosQu e' "'""'"
(R )a/ a+n (14b)

~„.ua ~„,„„, 1+sgn(Q —1-nv)
2

(15)
This expression is a finite sum and not an infinite
series FHIP .gave the first two terms of (15) ex-
plicitly.

Using the same recurrence relation it is seen
that (Appendix B) the analytical expression which

we find for HeX(Q) (P= ~) is far more complicated.
Moreover, this expression is not efficient for the
numerical work which has to be done. We have
written it down in Appendix B nevertheless, be-
cause it might be of some use for analytical in-
vestigations. To circumvent the difficulty with the
numerical treatment of ReX(Q) we have transformed
the corresponding integrals in (14) to integrals with

rapidly convergent integrands:

Im du (1 —cosQu) e'"'""'"
(R —fu)""ai'

dx[(n. .')~ "ae'"—R-."'".'—"]
r(n+ -",)

1/2
~ ln

(1+nv+ x)
0' —(1+nv+ x) ) (16)

The integral on the right-hand side of (16) is ade-
quate for computer calculations. These have been
performed on the IBM 1130 computer of our Insti-
tute at the University of Antwerp, using the Gaus-
sian-quadrature technique. In Appendix C some
supplementary details of the computation of (16) are
given.

We are now in a position to calculate the optical
absorption coefficient both from Eq. (lla) and Eq.
(lib).

III. NUMERICAL RESULTS

Starting from (15) and (16) we have obtained
Imp(Q), Hey(Q), and the optical absorption coef-

In Appendix B we show how such integrals are
evaluated using a recurrence formula. For Imp(Q)
at P= ~ a very convenient result appears:

Rtt Pt1

imX(Q)=
3 y Q C 3(a( —1) (2n+ I) 3
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FIG. l. Optical absorption of polarons
for & =1. Full curve: present calcula-
tions; dotted curve: perturbation result
of Gurevicheta). , Ref. 1. These peaks
are one-phonon peaks.
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ficient I'~(G) [corresponding to the expansion of
Z(Q)] for a number of n values and typically for
0& 0 & 10. Imp(Q) obtained here for P= ~ coincides
to the desired precision with FHIP's results for
Imp(P) at P= 100. ReX(O) and I'~(Q) are obtained
here for the first time. Also I',(0) is calculated.

We have plotted here the optical absorption co-
efficient I'~(Q) for n = 1 (Fig. 1), n = 3 (Fig. 2),
o.'= 5 (Fig. 3), n = 6 (Fig. 4), o. =7 (Fig. 5) of polar-

ons at T= 0. Furthermore, the frequencies where
I',(0) diverges are indicated for n= 5, o. = 6, and
0= 7.

IV. DISCUSSION

A. Weak-Coupling Limit

The development (7) should lead to the exact re-
sult for the absorption coefficient in order z for
weak coupling. For o. -0 one has (see Appendix B)
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(f0 cn) FIG. 2. Optical absorption I' of
polarons for 0' =3.
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From (15) and (11) it then follows immediately that

lim& (Q)=(I/eton) —'o. [(Q —1) t /Q ] for Q&1
iit ~ 0

=0 for 0&1 (17)
I', takes the same form to order n. This is exactly
the result found in the Green's-function treatment
of Gurevich et al. ' (see also Ref. 2).

Equation (17) corresponds to a "one-phonon peak":
The polaron (with the initial momentum equal to
zero) emits a phonon during the absorption process
and takes recoil energy from the incident light.

B. Behavior of the Optical Absorption in the FHIP
Approximation as a Function of the Coupling Parameter n

1. Case of the Expansion of the Conductivity
I/Z(Q)

The natural expansion to which the FHIP approxi-

rnation scheme would lead is given in Eq. (1) and
leads to I", [Eq. (lib)].

Equation (lib) gives the exact asymptotic limit
for Qt -0. The main characteristic of I', is that it
becomes divergent for 0 = v. The parameter e de-
scribes the vibrational frequency of the Feynman
two-particle model of the polaron at all coupling
and corresponds to a Franck-london transition of
this Feynman polaron. For large a one has v
=4n /9v —(4ln2 —1) following Feynman, which is
close to the Franck-Condon (FC) frequency QFc
= 4ns/9v obtained with the product-ansatz strong-
coupling theory for Frohlich polarons.

The result for I', is not unexpected because it
corresponds only to a perturbative correction to
the Feynman two-particle polaron model. Such a
model (corresponding to Go and 40) would have an
allowed transition at 0= v only. The structure in
I', due to the factor Imy(Q) (which is plotted in
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FIG. 3. Optical absorption I' of
polarons for n =5. The main peak at
0 = 3.51 is interpreted here as due to
transitions to relaxed excited states.
A "shoulder" at the low-frequency side
of the main peak is attributed to one-
phonon transitions. The structure at
about 0= 6 to 7 is attributed to a
Franck-Condon band. The frequency
0 =g is indicated.
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FHIP) seems difficult to interpret because of the
unrealistic nature of I",: The total intensity (inte-
grated over all frequencies) described by 1, is di-
vergent.

It may be noted however, that I', tends to zero for
0- ~ in the same way as I'~. In practice the prom-
inent structure shown by FHIP for ImX(Q) is
smeared out in I", after the first maximum of Imx
for all ~.

We may conclude that the expansion of the con-
ductivity in FHIP leads essentially to divergences
for the optical absorption coefficient at Q = v and
to Franck-Condon-type transitions.

2. Case of the Expansion of the Impedance
Function Z(Q)

FHIP present intuitive arguments to prefer an
expansion of Z(Q) rather than an expansion of
1/Z(Q). However, they did not study the optical
absorption of polarons with these expansions.

Using Eq. (11a) we obtain results for the optical
absorption based on the expansion of Z(Q) which are
plotted in Figs. 1-5.

First it should be remarked that these absorp-

tion curves do not present any divergences. The
most striking feature of the curves, obtained from
Eq. (1la), is the appearance of sharp absorption
lines for n = 6 at 0 = 4. 3 and for Q. = '7 at 0 = 4. 86.

In Fig. 6 (curve a) a plot of the positions of these
peaks as a function of n is shown, together with the
peak position of the main peaks at &=5 and @=11.
It seems plausible from this plot that the peak at
0= 3. 59 for ~= 5 is of the same nature as those
for m=6 and &=7. The problem of the physical
interpretation of these peaks arises.

In Fig. 3 (u=5), Fig. 4 (u=6), and Fig. 5 (u=7)
we have indicated the frequencies 0 = e, which mea-
sure the FC transitions in the Feynman polaron.
It is seen that the intense absorption peaks arising
from the expansion of Z(Q) are shifted substantial-
ly from the FC frequencies, at which the absorption
diverges for the expansion of 1/Z(Q) towards lower
frequencies. Such a shift would be typical for RES.

In Fig. 6, the transition frequencies for a transi-
tion from the ground state to the first relaxed ex-
cited state resulting from product-ansatz calcula-
tions have been plotted (curve b). ' One can make
the following remarks. (a) The peak positions of
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FIG. 4. Optical absorption I'g of
polarons at n =6. The RES peak is
very intense compared with the Franck-
Condon peak. The frequency 0=v is
indicated.

0.5-

the intense absorption peaks found here (curve a)
are shifted towards lower frequencies with respect
to the FC frequencies of the Eeynrnan polaxon
(curve d) in qualitatively the same way as the re-
laxed excited states (curve b) are shifted from the
FC states (curve c) for the Frohlich polaron in the
product ansatz. (b) Further arguments will be giv-

en to consider curve e (and not curve d) as corre-
sponding to the FC transition frequencies in the
FHIP approximation. In that case the shift from
the FC-transition frequencies (curve e) to the fre-
quencies of the intense absorption peaks (curve a)
in the FHIP approximation is comparable to the
shift between the product-ansatz approximation for
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FlG. 5. Optical absorption I' of

polarons at & =7. An extremely in-
tense RES transition occurs. The

frequency Q =g xs indicated.

FC- and RES-traneltlon fr eguenciee (curves c and
b) for 5 & o & 10. This again would indicate that
curve a describes transition frequencies towards
relaxed excited states in the FHIP approximation.
Ther6 ls a frequency difference b6tween curve a
and curve b (Fig. 6) of about 2@~0 for 5 & u & 10.
However, the precision of the product-ansatz cal-
culation of the RES energy is questionable to some

extent, because it does not lead to an upper bound
for the energy contrary to the product-ansatz treat-
ment of the ground state.

The intense absorption peaks at n = 5, a = 6, and
a= 7 should be investigated further. Nevertheless,
in our opinion, the arguments pxesented above indi-
cate that the peaks at 0=3.59 for m=5, at 0=4. 3
for +=6, and at 0=4. 86 for @=V describe transi-
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FIG. 6. Transition frequencies (in
units Mp) as a function of the coupling
parameter G: curve a: frequencies of
the RES transitions from the present
calculations; curve b: frequencies of
the RES transitions in the product-an-
satz approximation; curve c: Franck-
Condon transition frequency in the prod-
uct ansatz; curve d: Franck-Condon
transition frequency p of the two-par-
ticle Feynman polaron; curve e;
Franck-Condon transition frequency
from the present calculation.

0 10

tions from the ground state to the BES of polarons.
Therefore, these peaks are indicated with the des-
ignation BES in Figs. 3-5.

Before discussing the broader, less intense peaks
to the high-frequency side of the BES peaks, let
us briefly recall the main predictions of KED from
their product-unsated strong-coup/ing treatment,
based on the Fermi Golden Rule: (a) There is an
intense absorption peak (zero-phonon line) corre-
sponding to a transition from the ground state to the
first RES (at Q„«). (b) At Q„a~+1 a phonon side-
band structure appears. (A one-phonon sideband

at Q„as+ 1, a two-phonon sideband at Qazs+ 2, etc. )
KED expect that this structure has a maximum at
O~c, the FC-transition frequency.

The treatment of KED is a strong-coupling treat-
ment and shows the following limitations: (a) KED
calculate only the one-phonon sideband. This treat-
ment is incomplete for strong coupling where many-
phonon processes enter the picture. The present
authors have calculated the two-phonon sideband.
They showed that, in the product ansatz, this side-
band is more important than the one-phonon side-
band if n &6. The treatment of three-phonon side-
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bands seems unrealistic (because of the mathema-
tical complexity) in the KED treatment. (b) The
lifetime of the RES has been calculated only in the
one -phonon approximation.

In conclusion, the treatment of KED is incom-
plete as soon as three-phonon processes are im-
portant (say for n & 6) and at most qualitatively
valid if mainly two-phonon processes are important
(4& o, & 6).

Nevertheless, the KED results are very useful
for a comparison with the present results because
they are obtained in an entirely different manner
than the results obtained here and because they are
physically well understood and similar to the zero-
and multiphonon transitions in color centers.

It is immediately clear that our results for &=6
and a=7, and even for ~=5, obtained with the FHIP
approximation by expanding the impedance func-
tion, have the qualitative behavior predicted by
KED: an intense zero-phonon (RES) line with a
broader sideband at the high-frequency side. This
is very reassuring.

The interpretation of the broad peaks centered at
0=6. 3 for n= 5, at 0=7. 5 for a=6, and at 0
= 8. 62 for n = 7 as phonon sidebands is now natural
in view of the prediction of such sidebands by KED.
However, the absorption sidebands in Figs. 4 and
5 fail at least in one respect: The exact sidebands
should start at OREs+ 1, while the "sidebands"
shown in Figs. 3-5 start at about A~K~+2. The
maximum of these "sidebands" are indicated in
Fig. 6 (curve e). The maxima indicate the posi-
tions of the FC levels in the FHIP approximation
if the interpretation is based on KED. It may be
recalled that the frequency differences between
curve e (FC position in FHIP approximation) and
curve a (RES position in FHIP approximation) on
the one hand, and the frequency differences between
curve c (FC position with the product ansatz) and
curve b (RES position with the product ansatz) on
the other hand, are close to each other for 5 & n & 10.

It thus seems that although the FHIP approxima-
tion [with expansion of Z(Q)j gives the gross fea-
tures of the phonon sidebands, the results are not
quantitatively exact. Because the lineshape of the
sidebands is related to the lifetime of the RES this
would also imply that the shapes of the RES peaks
are approximate.

The next point to discuss concerns the absorption
for n & 5. For ~= 1 there is no doubt that the peak
found from Eq. (lla) has the meaning of a "one-
phonon" peak. From Fig. 1 it is seen that the peak
of the absorption coefficient obtained here from
FHIP approximation for n = 1 is less intense than
that obtained from perturbation theory. '

For n = 3 the absorption peak is relatively broad
and has a maximum for 0 = 2. 2. This peak has a
shape which connects the absorption curve at n = 1

with that at n = 5 in a smooth manner.
The interpretation of the absorption peak for n

= 3 is an unsolved problem. It might correspond
to a one-phonon peak at this larger coupling, but it
is also possible that part of the oscillator strength
in the absorption for n = 3 is due to lattice relaxa-
tion in the final states, be it to a smaller extent
than for n = 5. As noted by KED, arguments on

conservation of energy and momentum indicate that
RES should play a role in the optical absorption for
n & 3. Considerations following I.arsen's calcula-
tions, however, tend to restrict the role of RES
to n & 6. So this point is not clear and the physical
interpretation of the optical absorption curves ob-
tained here for a =3 needs further investigation.

Despite the uncertainties and difficulties in the
understanding of our results for ~ =3 we find it
worthwhile to propose the following interpretation
of these results: For n = 1 the optical absorption
spectrum consists of a one-phonon peak. For in-
creasing n more and more oscillator strength
is added due to transitions towards final states for
which lattice adaptation to the (excited) electronic
configuration has occured. For futher increase of
the coupling the one-phonon line and the RES sep-
arate off and this is visible for n = 5 where the
"shoulder" at the low-energy side of the main peak
can be attributed to a one-phonon line and the main
peak at Q = 3. 59 to a RES transition. For o. = 6 and
~ = 7 this splitting-off between the one-phonon line
and RES is completed. From n= 5 on, a sideband
structure leading to a broad FC peak, which is much
less pronounced than the RES peak, appears.

Although this interpretation is probably not a
unique one, it has the feature of joining the weak-cou-
pling behavior (one-phonon peak) in a natural way to
the strong-coupling behavior (essentially RES ab-
sorption).

It should be remarked indeed that the FHIP ap-
proximation with expansion of the impedance leads
to much more realistic results for the optical ab-
sorption than the FHIP approximation with expansion
of the conductivity. This then provides an indirect
but convincing argument in favor of the expansion
of the impedance rather than the conductivity. Es-
pecially the appearance of the well-known results
for the optical absorption at weak and strong cou-
pling gives evidence for the reliability of the meth-
od. The results on Fig. 3 (n = 5) illustrate the pow-
er of the FHIP approximation which allowed us to
obtain a kind of envelope function for the optical ab-
sorption as a function of frequency. This envelope
function accounts at the same time for both the life-
time of the RES (which is unstable for n = 5) and the
shape of the FC band (which is a superposition of
multiphonon sidebands and which is almost untrac-
table in the product ansatz if more than two phonons
are included).
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It would be possible to improve the accuracy of the
present results by using the recent developments
(similar to the FHIP treatment) by Thornber and
Feynman and by Thornber. However, although
Ref. 12 contributes to the justification of the ex-
pansion of Z(Q), neither in Ref. 12 nor in Ref. 13
has it been found that an expansion of Z(Q) leads to
sharp resonances in the optical absorption of po-
lar ons.

It is reasonable to expect that the main absorp-
tion peaks calculated here can be observed experi-
mentally certainly for a & 1. Indeed, the peak for
n = 5 at 0 = 3. 59 is about three times more intense
thari the one-phonon peak at n = 1. The one-phonon
peak now has been observed experimentally by
Finkenrath et a/. ' in CdO, where o. =0. 75, as a
function of temperature. If a sufficient density of
polarons can be obtained for n & 3 this should then
lead to the first observation of optical absorption
due to free polarons for highly ionic crystals.

It should still be remarked that for n & 7 the re-
sults which are obtained numerically using the FHIP
treatment with the expansion of Z(Q) are unreliable.
Indeed, the linewidth of the FC peak becomes then
much smaller than &0, the LO phonon frequency.
However, as pointed out by KED, a FC state has a
lifetime of the order of 1/&uo, as follows from the
uncertainty relations, because this is the time nec-
essary for lattice readaptation. This is presum-
ably the well-known failure of the Frohlich model at
strong coupling (due to the contradiction between
the continuum polaron concept and the small po-
laron radius at large n) and not a failure of the
FHIP approximation.

Nevertheless, we have assumed that for a =11
the Position of the RES peak is meaningful for com-
parison with other strong-coupling treatments.

It may still be noted that Fig. 4 (n = 6) is a quan-
titative picture for the qualitative results shown in
Fig. 11 by Devreese et al.

CONCLUSIONS

We have calculated the optical absorption coef-
ficient of polarons at rest at zero temperature using
the FHIP theory.

Essentially different results are found if the op-
tical absorption is calculated starting from an ex-
pansion of the conductivity rather than of the impe-
dance function. As the results are unquestionably
more realistic in the latter case, we have given an
indirect justification for the expansion of Z(Q)
rather than 1/Z(Q).

The results which we obtain for the optical ab-
sorption coefficient in the FHIP approximation [ex-
pansion of Z(Q)] give the exact weak-coupling be-
havior as first derived by Gurevich, Lang, and
Firsov and join qualitatively the product-ansatz

It is a pleasure to express our thanks to L.
Lemmens for valuable comments. One of us (M. G.)
acknowledges the support of the IWONL (Instituut
ter bevordering van het Wetenschappelijk Onderzoek
in Nijverheid en Landbouw).

APPENDIX A

The expression for Imp(Q) and its zero tempera-
ture limit will be calculated starting from FHIP's
formula

I (Q)-1' 2 n v P3/p sinh( —,
'

PO)

~. „3v m ur sinh(-,' P)

d u cos Qu cosu (Al)(u'+a' —bcosvu)"' '

a, b and R are defined as

a =-,' P +RPcoth(2 Pv),

RP
sinh( —,

'
Pv)

'

Because

2 2
R=

S6 V

(A2)

bocvsu (/u+cP)~ &1 if v&0 and P&0

Imp, (Q) can be written as

(Q) I v P3I2
g ~ 3~7 K Sill(2 P)

strong-coupling treatment of the optical absorption
of KED if n&5.

The somewhat unexpected result appears that the
FHIP approximation [with expansion of Z(Q)] takes
into account the possibility of lattice relaxation to
the electronic configuration of internal excited-
polaron states. This is seen from the analysis of
intense peaks which the present study reveals for
n & 5 in the optical absorption spectrum obtained
here with the FHIP approximation.

Therefore, although FHIP thought that their trial
action could not "give such detailed results (excita-
tion spectrum) correctly" our study of the optical
absorption of polarons with their approximation
shows that the polaron excitation spectrum, in-
cluding the fundamental possibility of lattice re-
laxation, should be described quite accurately by
the FHIP approximation at all n.

It may still be emphasized that the function
Imp(Q) studied by FHIP is not simply related to the
optical absorption coefficient.

The physical interpretation of our results pre-
sents some difficulties for 2 & n & 5. This does not
affect our conclusion that the main absorption
peaks, which are calculated here, should be detec-
table experimentally certainly for ~ & 1 ~ This last
conclusion follows from comparison with the case
of CdO (o.'=0. 75) where the absorption calculated
here has been observed for finite temperatures.
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APPENDIX 8

The calculation of
((R Q ) I du (1 —COSQu) e'

(R —iu)"'"

Im
du sinnu e'"

[R(1 —e*"")-i ]"'
(BB)

it is easily seen that (/& and ()) satisfy the following
relation:

d u(1 —cosQu) e'"
[R (1 —e'"") —iu]" ' (B2)

R —iu

The equality occurs if and only if u = 0, so that

1
[R(l —e'"") —iu]"'

gft 077 VQ

[R
~ ]3/8 Z 'C-3/2 ( I)

[
~

]n=0

Therefore, the following equalities hold

du slllQu e g R ( 1)R
[R (1 —e'"") —iu]" '

du slnQu e
xIm

[
. ]/+„

du(1 —cosQu) e" ~ „( I)„
[R (I e i()R) ]

3/ 3 -3/2

"
du(l -cosQu) e'"'""'"

&& Im ~ ~

0 qA —zu~

Making use of the following notations:

is performed. In the complex plane it is easily seen
that

S Q (R, Q, n, n + 1/n) v

n+ 3/2 eR =P(R, Q, n+ 1, v),

(»)
so that, to calculate all (/& and p it is sufficient to
evaluate

u e-qua
E(a, R)=

(0

for real a and R .

E(a, R)= — iR +g a e- "C(I+I)(./I al)"'

x [1-isgn(a)] i2R—"'f die"' ], (Bll)

from which it follows that

(/&(R, Q, 1, v)

= —' Im( —iE[ —(Q+ 1+v), R]+ iE[Q —1 —v, R]]

= —',
I
Q —1 —v

I
e '" "' [1+sgn(Q —1 —v)];

(B12)
an analogous calculation gives

(/&(R, Q, 0, 0) =IQ —1I e "
&/

/ —'[1+sgn(Q —1)].
(813)

Using the recurrence relation p can be written as

7t 2 l ~ 1 Flvl )Q i iR

1+ sgn(Q —1 —nv)
2

(B10)
This integral can be evaluated in different manners
and it equals

(/ (R, Q, n, v) = Im
du slnQu e

(R —iu) "'" Also writing cosa as —,
' (e"+e ")there comes, after

a few elementary calculations,

2
y(R, Q, , v)= :(Q+ + )v'-"-"""" ~[(I/Q+I+vI)"' 2R"' f'df-e(" ' ""' ]--'(Q-I-v)'e-'"-'-""

x(-.'(w /IQ- I v)I[1--sgn(Q-I, )] 2R'/' f die«-&- »&g

The notation
y/ (I i ) e'+ & [(»/I 1+vI) / 2R&/ f d$e-&&+»»& ] (/15)

0

A(a, f& R)= —', a e' (5 —2R / f dte' ' )

is introduced. This gives the expression
1/2 112

((R R "='"( "'"' ()) )'" 'R' " '"'""'' ')R»)u'I1+vl j (l~+1+ vl

-R(IR-&-v, ~
~

— g ( — — )
R) . (RM)

1/2

(I Q —1 —v I
)'/ ' 2
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For every n, g takes the form

g(R, &, &, v)=2B„l —(1+&v), ~ 1/3, R,I-B. —(f1+I+&v),
~ 1 () /, R)Ijl 1+ nial j

' (IQ+I+nel

7T"' 1 —sgn(Q —1 —nv)—B„n—1 —n8,
~ 1 (1/2 p 2

B17

with B„defined as

( I)n-1 2n en-1
B„(a, b, R) —

(2 1) 6 3 1 sRg f A(a, b, R) .

The derivation is easily carried out and results in

2n ff 2 R1/2
2

B ( b R) n+1 ash -3 ~ I nN fz -8 d(2 ~ I) R-(2f+I)/P 2 n+1 mR d sv (Blg)=(2 1) 3. 1
& e +& u a'2'''2 i — — a e ve

[P means that for i = 0 one has —,
'

~
p ~ ~ ~ —,'(2i —1)= 1]

valid for every n ~ 1. In the case n= 0, B(a, b, R)
becomes

Bp(a, b, R)=R +ae (b —2R' f dt e'"' ) .
(B20)

For n = 0 the function g takes the same form as in
the case n& 1.

APPENDIX C

1I=lim, )Im dxx"' e
p r(n+ —,')'

x du (1 —cos&u) e'"'""'"'"'" (C4)
0

The integration over the variable u is elementary
and gxves

I= lim 3 Im dxx" en+1/ 2 -Rg

, r(n+-,')

To study the integral

I= Im J [du (1 —cosQu)e" '""'"/(R —iu)"' ]

(Cl)
numerically it is necessary to transform it to a
rapidly converging expression. Using the integral
transformation

e —i (I+nv+x)
[e —i(1+n +vx)] +II'

lQ'=0

, .p
2I' n+ 2

After a partial integration one obtains

(C6)

(R-iu)'/'" r(u+-,')

I can be written as

dx e- (&-s u)x n+1/2

(R & 0), (C2)

or

I"(n+ —,')

xlnl [~ —i(I+nv+x)]'+II"
0'=0

I= lim 1m f" du (1 —cosnu) e "'""'"[r(n+—', )]

(' d -Rx+/ux-aux n+i/2 . (C3)
0

or, interchanging the order of integration,

2
(1+nv+x)

xln IIp —(1+nv+ x)
(cv)

These integrals (u = 1, 2, . . . ) can be performed
numerically using Gaussian quadrature formulas.
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