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The Debye-Waller factors have been calculated for a number of zinc-blende-type crystals from
the eigenfrequencies and eigenvectors of the phonon states as obtained from the modified-rigid-
ion model of lattice .dynamics. On the average the contribution from the acoustic-phonon states
to the mean-square displacements of the constituent atoms was found to be more significant than
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that from the optical-phonon states. However, the relative optical-phonon-state contribution
was found to be more significant in the lighter atom, and in fact in some cases at low temper-
atures, it was found to exceed the acoustic-phonon-state contribution. In all the cases studied,
the mean-square displacements of the lighter atom were found to be larger. Lindeman’s cri-
terion for melting was tested by evaluating the ratio of the sum of the root~-mean-square dis-
placements of the constituent atoms to the nearest-neighbor distance. This ratio is approxi-

mately constant for the zinc-blende compounds.

However, the average ratio for the II-VI com~

pounds was found to be slightly larger than that for the III-V compounds. The calculated re-
sults are discussed in relation to available experimental data.

.

I. INTRODUCTION

The intensity of the scattered radiation from a
crystal is observed to be temperature dependent
and varies exponentially from its value at absolute
zero. This temperature-dependent exponential
factor is known as the Debye-Waller factor and is
related to the mean-square displacements of the
constituent atoms in the crystal.

Previous calculations of the Debye-Waller factor
based on theoretical lattice-dynamical models
have been primarily limited to crystals of the NaCl
structure, '~® cubic metals, °~'* rare-gas solids, **
and a few crystals of the CsCl structure. !* These
calculations were motivated in part by the avail-
ability of experimental data and reliable lattice-
dynamical models, especially in the case of the
NaCl-type crystals and the cubic metals. A few
experimental determinations of the Debye-Waller
factor for zinc-blende crystals exist!®~2? in the
literature, but, to date, no comprehensive calcula-
tion of this factor based on a consistent lattice-
dynamical model has appeared.

The reliability of some of the available experi-
mental measurements on the Debye-Waller factor
for zinc-blende crystals is in fact questionable.

In some of the previous experimental work no ex-
plicit correction to the x-ray Debye-Waller factor
measurements due to thermal diffuse scattering in-
tensity was made. The contribution due to this
correction was indeed shown!'® to have a signifi-
cant effect on the experimental results in some
alkali-halide crystals. Furthermore, the existing
experimental data are rather sparse and available
only for a rather limited range of temperatures,

jon

and in some cases contradictory. '®!" In view of
the aforementioned points, a more reliable tech-
nique to obtain the Debye-Waller factor might be
from the use of the eigenfrequencies and corre-
sponding eigenvectors as calculated from a lattice-
dynamical model. This, in fact, has been the pro-
cedure utilized in previous calculations on alkali
halides, cubic metals, and rare-gas solids.

The purpose of this paper is to utilize the eigen-
frequencies and eigenvectors of the phonon states
as obtained by a lattice-dynamical model, found
suitable for the zinc-blende-type crystals, in cal-
culating the Debye-Waller factor for these crystals.
The lattice-dynamical model used in this analysis
is the modified-rigid-ion (MRI) model. ®* This
model does not require extensive data on phonon
dispersion, such as neutron scattering data for the
determination of model parameters, but only the
three elastic constants c¢,;, ¢,, and ¢,y and the
two long-wavelength optical-mode phonon frequen-
cies wy,o and wWro as input data. This model has
yielded®*® reasonable agreement between calculat-
ed and experimental phonon dispersion for SiC and
ZnS. The applicability of the MRI model to zinc-
blende crystals has also been discussed?® in terms
of an invariance relation between the elastic con-
stants and the long-wavelength optical mode phonon
frequencies. The model has also predicted?” rea-
sonable agreement between the calculated and ex-
perimentally determined coefficient of thermal ex-
pansion for ZnTe. Recently, the model has been
incorporated into the framework of a Green’s-func-
tion technique to predict?® the local-mode behavior
in a large class of zinc-blende compounds with
success. The present model has, however, cer-
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TABLE I. Calculated mean-square displacements (in 107'¢ cm?) for various III-V zinc-blende compounds.
Temperature Acoustic? Optical ® Total ®
Compound (°K) (U, (dp (P (b p (w4 Hs
GaP 10 0.0039 0.0024 0.0004 0.0036 0.0043 0. 0060
30 0.0040 0.0025 0.0004 0.0036 0. 0044 0.0061
50 0.0042 0.0027 0.0004 0.0036 0.0046 0.0063
70 0.0047 0.0031 0.0004 0.0036 0.0051 0.0067
100 0.0056 0.0038 0. 0004 0. 0036 0.0060 0.0074
150 0.0074 0.0051 0.0004 0.0038 0.0078 0.0089
200 0.0093 0. 0066 0.0004 0.0041 0. 0097 0.0107
250 0.0113 0.0080 0.0005 0.0045 0.0118 0.0125
300 0.0134 0.0096 0.0005 0.0050 0.0139 0.0146
600 0.0261 0.0187 0.0009 0.0086 0.0270 0.0273
GaAs 10 0.0029 0.0031 0.0015 0.0012 0.0044 0.0043
30 0.0030 0.0033 0.0015 0.0012 0.0046 0.0044
50 0.0034 0.0037 0.0015 0.0012 0. 0050 0.0049
70 0. 0040 0.0043 0.0015 0.0012 0.0056 0.0055
100 0. 0050 0.0053 0.0016 0.0012 0.0066 0.0065
150 0.0069 0.0073 0.0018 0.0014 0.0088 0.0087
200 0.0090 0.0094 0.0021 0.0016 0.0111 0.0110
250 0.0110 0.0116 0.0024 0.0018 0.0135 0.0134
300 0.0131 0.0138 0.0028 0.0021 0.0159 0.0159
600 0.0259 0.0272 0.0051 0.0038 0.0310 0.0310
1511 0. 0650 0.0682 0.0126 0.0093 0.0775 0.0775
GaSb 10 0.0024 0.0033 0.0024 0. 0005 0.0048 0.0038
30 0.0027 0.0036 0.0024 0. 0005 0.0051 0.0041
50 0.0033 0.0043 0.0024 0.0005 0.0057 0. 0048
70 0.0041 0.0053 0.0024 0.0005 0.0065 0. 0058
100 0.0054 0.0068 0. 0026 0.0005 0.0080 0.0073
150 0.0078 0. 0097 0, 0030 0.0006 0.0108 0.0103
200 0.0101 0.0126 0.0036 0. 0007 0.0137 0.0133
250 0.0126 0.0156 0.0042 0.0008 0,0168 0.0164
300 0.0150 0.0186 0.0049 0.0010 0.0199 0.0196
600 0.0298 0. 0369 0. 0092 0.0018 0. 0390 0. 0397
979 0. 0486 0. 0601 0.0147 0.0292 0.0633 0.0630
InP 10 0.0038 0.0022 0.0002 0.0044 0.0040 0.0067
30 0. 0040 0.0025 0.0002 0.0044 0.0042 0.0069
50 0.0047 0.0030 0.0002 0.0044 0.0048 0.0074
70 0.0055 0. 0036 0.0002 0.0045 0. 0057 0.0081
100 0. 0070 0.0048 0.0002 0.0045 0.0072 0.0093
150 0. 0099 0.0068 0. 0002 0.0049 0.0101 0.0117
200 0.0128 0.0089 0.0002 0. 0054 0.0130 0.0143
250 0.0158 0.0110 0.0002 0.0061 0. 0160 0.0171
300 0.0188 0.0131 0.0003 0.0069 0.0191 0.0200
600 0.0372 0. 0260 0.0005 0.0121 0.0377 0,0381
1343 0. 0830 0.0582 0.0010 0.0260 0. 0840 0.0842
InAs 10 0.0035 0.0026 0.0006 0. 0022 0.0041 0.0048
30 0.0039 0.0030 0. 0006 0.0022 0..0045 0.0052
50 0.0047 0.0037 0.0006 0.0022 0.0053 0. 0059
70 0. 0057 0.0046 0. 0006 0.0023 0.0063 0.0069
100 0.0074 0.0062 0.0007 0.0024 0.0081 0.0086
150 0.0106 0.0089 0.0008 0.0028 0.0114 0.0117
200 0.0139 0,0117 0.0009 0.0034 0.0148 0.0151
250 0.0171 0.0145 0.0011 0.0040 0.0182 0.0185
300 0.0205 0.0173 0.0013 0.0046 0.0218 0.0219
600 0. 0406 0.0343 0.0024 0.0088 0. 0430 0.0431
1215 0.0820 0. 0694 0.0048 0.0174 0. 0868 0. 0868
InSb 10 0.0030 0.0032 0.0013 0.0011 0.0043 0.0042
30 0.0036 0.0037 0.0013 0.0011 0.0049 0.0048
50 0.0046 0.0048 0.0014 0.0011 0.0060 0.0059
70 0. 0059 0.0061 0.0014 0.0011 0.0073 0.0072
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TABLE L. (Continued)
Temperature Acoustic? Optical® Total *
Compound K) @ha  @hp Wha  @hp (¥4 @5
InSb 100 0.0080 0.0082 0.0016 0.0013 0.0096 0.0095
150 0.0116 0.0120 0.0020 0.0016 0.0136 0.0136
200 0.0153 0.0158 0.0024 0.0019 0.0177 0.0177
250 0.0190 0.0196 0.0029 0.0023 0.0219 0.0219
300 0.0227 0.0234 0.0034 0.0027 0.0261 0.0261
600 0.0453 0.0466 0.0065 0.0052 0.0518 0.0518
803 0.0605 0.0623 0.0086 0.0069 0.0692 0.0692
AlSb 10 0.0022 0.0039 0.0051 0.0001 0.0073 0. 0040
30 0.0025 0.0041 0.0051 0.0001 0.0076 0.0043
50 0.0030 0.0048 0.0051 0.0001 0.0081 0. 0049
70 0.0037 0.0058 0.0051 0.0001 0.0088 0.0059
100 0.0049 0.0074 0.0052 0.0001 0.0101 0.0075
150 0.0070 0.0104 0. 0056 0.0001 0.0126 0.0105
200 0.0091 0.0136 0.0062 0.0001 0.0153 0.0137
250 0.0113 0.0168 0.0069 0.0002 0.0182 0.0169
300 0.0135 0.0200 0.0078 0.0002 0.0213 0.0202
600 0.0268 0.0395 0.0136 0.0003 0. 0404 0.0398
1338 0.0596 0.0879 0.0293 0.0007 0.0889 0.0886

2AB represents the zinc-blende compound of interest.

tain drawbacks. Whenever experimental data
have been available, the present model predicts
the phonon dispersion for the TA branch to be
somewhat higher near the Brillouin-zone boundary.

1t is hoped that making available extensive data
on the Debye-Waller factor of zinc-blende com-
pounds will serve a useful purpose. In the case
of the interpretation of neutron and x-ray scatter-
ing and in the Mdssbauer effect, the calculated
results can be used when experimental data are
either unreliable or nonexistent. Very recently
there has been interest!”'?*'?% in calculating the
temperature dependence of the energy gap of zinc-
blende-type crystals, in particular, HgTe and
GaP. A knowledge of the Debye-Waller factor is
necessary in order to interpret the effect of the
electron-phonon interactions on the temperature
dependence of the energy gap. Further, the know-
ledge of the root-mean-square displacements of
the constituent ions in a crystal at temperatures
approaching the melting point might enable one to
gain insight into the melting process.

Explicit calculations for the temperature de-
pendence of the Debye-Waller factor have been
performed for GaP, GaAs, GaSb, InP, InAs,

InSb, AlSb, ZnS, ZnSe, ZnTe, CdTe, HgTe, and
SiC. These results are then compared to existing
experimental data. Also, the sum of the root-
mean-square displacements of the constituent
atoms is compared to their nearest-neighbor dis-
tance at the melting temperature.

II. THEORY

The temperature variation of the scattering
amplitude from a particle K in a crystal is incor-

porated in the term

e VKT

where the factor Wy (T) is known as the Debye-

Waller factor.
In the case of zinc-blende crystals, which are

cubic, the Debye-Waller factor is related to the
total mean-square displacement of the Kth par-

ticle, {(u®)y, as follows:

WK<T>=%752—(

A is the wavelength of the incident radiation and
The

siné
A

)2 )

26 is the corresponding scattering angle.
mean-square displacement of the Kth particle is
temperature dependent and can be expressed in
terms of the eigenfrequencies and eigenvectors of

the phonon states of the crystal lattice as®®

n

2y o
<u >K—Nmk =

w,(k) is the eigenfrequency for the jth phonon

15 (K152 [n
2 S

E j

(@, (R) + 3]
k) '

branch corresponding to the wave vector k and

1)

(2)

®)

G(K %) is the corresponding eigenvector of the Kth
particle with mass m . The quantity #(w,(k))
is the phonon occupation number defined as
7 (@ (K) ) =(eMes R/eBT — 1), (4)

The sum over k in Eq. (3) is performed over an
equidistant mesh of N wave-vector points in the
first Brillouin zone.

The MRI model®® is used to obtain the eigen-
frequencies and eigenvectors of the phonon states
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TABLE II. Calculated mean-square displacements (in 10~ ¢cm?) for various II-VI zinc-blende compounds and SiC.

Temperature Acoustic? Optical? Total?®
Compound K (w4 (u¥p (W a ) p (ha (G

ZnS 10 0.0048  0.0031 0.0006  0.0042 0.0054  0.0073
30 0.0051  0.0033 0.0006  0.0042 0.0057  0.0075

50 0.0057  0.0038 0.0006  0.0042 0.0062  0.0080

70 0.0065  0.0045 0.0006  0.0042 0.0071  0.0087

100 0.0081  0.0058 0.0006  0.0043 0.0086  0.0101

150 0.0110  0.0081 0.0006  0.0047 0.0116  0.0127

200 0.0141  0.0105 0.0007  0.0052 0.0148  0.0157

250 0.0174  0.0129 0.0008  0.0060 0.0182  0.0189

300 0.0206  0.0154 0.0009  0.0068 0.0215  0.0222

600 0.0405  0,0304 0.0016  0.0121 0.0422  0.0425

1923 0.1292  0.0970 0.0051  0.0374 0.1343  0.1344

ZnSe 10 0.0033  0,0040 0.0022  0.0011 0.0055  0.0051
30 0.0036  0.0043 0.0022  0.0011 0.0058  0.0054

50 0.0044  0.0051 0.0022  0.0011 0.0066  0.0062

70 0.0053  0,0061 0.0023  0.0012 0.0076  0.0073

100 0.0069  0.0078 0.0025  0.0013 0.0094  0.0091

150 0.0098  0.0110 0.0029  0.0015 0.0127  0.0125

200 0.0128  0,0144 0.0035  0.0018 0.0163  0.0162

250 0.0159  0.0178 0.0041  0.0021 0.0200  0.0199

300 0.0190  0,0212 0.0047  0.0024 0.0237  0.0236

600 0.0376  0.0419 0.0089  0.0046 0.0465  0.0465

1373 0.0859  0.0956 0.0200  0.0103 0.1059  0.1059

ZnTe 10 0.0026  0.0040 0.0032  0.0005 0.0058  0.0045
30 0.0032  0.0045 0.0032  0.0005 0.0064  0.0050

50 0.0041  0.0057 0.0032  0.0005 0.0073  0.0062

70 0.0052  0.0071 0.0033  0.0005 0.0086  0.0076

100 0.0071  0.0094 0.0037  0.0006 0.0108  0.0100

150 0.0103  0.0135 0.0045  0.0007 0.0148  0.0142.

200 0.0136  0,0178 0.0054  0.0008 0.0190  0.0186

250 0.0169  0.0220 0.0065  0.0010 0.0234  0.0230

300 0.0202  0.0263 0.0076  0.0011 0.0278  0.0275

600 0.0401  0.0523 0.0145  0.0022 0.0546  0.0545

1511 0.1009  0.1315 0.0361  0.0054 0.1370  0.1369

CdTe 10 0.0035  0.0039 0.0018  0.0012 0.0053  0.0051
30 0.0046  0.0050 0.0018  0.0012 0.0064  0.0062

50 0.0064  0.0069 0.0019  0.0012 0.0083  0.0081

70 0.0084  0.0089 0.0020  0,0013 0.0104  0.0102

100 0.0115  0,0122 0.0023  0.0015 0.0138  0.0137

150 0.0169  0.0179 0.0030  0.0019 0.0199  0.0198

200 0.0224  0.0237 0.0038  0.0024 0.0261  0.0261

250 0.0278  0,0294 0.0046  0.0029 0.0324  0.0324

300 0.0334  0.0353 0.0054  0.0035 0.0388  0.0388

600 0.0665  0,0702 0.0105  0.0067 0.0770  0.0770

1371 0.1517  0,1603 0.0239  0.0153 0.1756  0.1756

HgTe 10 0.0036  0.0027 0.0006  0.0023 0.0043  0.0050
30 0.0049  0.0040 0.0006  0.0023 0.0055  0.0063

50 0.0070  0,0057 0.0006  0.0024 0.0076  0.0082

70 0.0092  0.0077 0.0007  0.0027 0.0099  0.0104

100 0.0127  0.0107 0.0009  0.0032 0.0136  0.0139

150 0.0188  0.0158 0.0011  0.0043 0.0199  0.0201

200 0.0249  0,0210 0.0015  0.0055 0.0263  0,0265

250 0.0310  0,0262 0.0018  0.0067 0.0328  0.0329

300 0.0371  0.0314 0.0021  0.0080 0.0392  0.0394

600 0.0740  0.0626 0.0041  0.0156 0.0782  0.0782

943 0.1163  0.0983 0.0065  0,0245 0.1128  0.1228
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TABLE II. (Continued)
Temperature Acoustic ? Optical® Total?

Compound °K) (% a (hp (W4 ) p (P4 ()5
SiC 10 0.0041 0.0022 0.0004 0.0042 0.0044 0.0064
30 0.0041 0.0022 0.0004 0.0042 0.0045 0.0064
50 0.0041 0.0022 0.0004 0.0042 0.0045 0.0065
70 0.0042 0.0023 0.0004 0.0042 0.0045 0.0065
100 0.0043 0.0024 0.0004 0.0042 0.0047 0.0066
150 0.0047 0.0027 0.0004 0.0043 0.0051 0.0070
200 0.0053 0.0031 0.0004 0.0043 0.0056 0.0074
250 0.0059 0.0036 0. 0004 0.0043 0.0063 0.0079
300 0. 0067 0.0041 0. 0004 0.0044 0. 0070 0.0085
400 0,0083 0.0052 0.0004 0.0047 0.0086 0.0099
500 0.0099 0.0063 0.0004 0.0051 0.0103 0.0114
600 0.0117 0.0074 0.0005 0.0056 0.0121 0.0130
2973 0. 0550 0.0355 0.0018 0.0215 0.0568 0.0570

2AB represents the zinc-blende compound of interest.

of the zinc-blende compounds. This model incor-
porates short-range noncentral nearest-neighbor
interactions, equal central interactions for second-
nearest neighbors, and long-range Coulomb in-
teractions among ions of appropriate effective
ionic charge. There are consequently, essentially
four model parameters, three short-range force
constants, and the effective ionic charge as param-
eters in the model. The model parameters are
determined by relating them to the three cubic
elastic constants and the long-wavelength optical
mode phonon frequencies. Reliable data on these
exist for the majority of zinc-blende cyrstals.

The eigenfrequencies and corresponding eigen-
vectors were calculated for a mesh of 4096 wave-
vector points in the first Brillouin zone. Due to
the symmetry properties of the Brillouin zone,
the eigenfrequencies and eigenvectors of the
phonon states were determined at the nonequiva-
lent points in k space, defined as

- T

k=g(qx; dy, qz)’ (5)
where

16=2¢,249,2¢,>0,

Qe+ dy+ g, > 24,

and a is the lattice constant such that the unit cell
volume equals 3a?

A divergence occurs for the k = 0 acoustic-
mode phonons in the sum over the wave-vector
mesh in Eq. (3). The contribution to the mean-
square displacement owing to the k= 0 acoustic-
mode phonon frequencies was therefore calculated
by converting the summation to an integral and
assuming a Debye distribution over the volume of
integration which was assumed to be 355 th of the
total Brillouin-zone volume.

III. RESULTS AND DISCUSSION
A. Mean-Square Amplitudes
Utilizing the eigenfrequencies and the corre-

sponding eigenvectors as determined by the MRI
model, Eq. (3) was solved for the mean-square
displacements of the constituent atoms in GaP,
GaAs, GaSb, InP, InAs, InSb, AlSb, ZnS, ZnSe,
ZnTe, CdTe, HgTe, and SiC. The contribution due
to the k=0 acoustic-mode phonons was found to be
small for all zinc-blende compounds considered.

In fact at temperatures near the melting point,
where this contribution was the most significant,

it was found to be less than 0. 4% of the total mean-
square displacement of any constituent atom.

The mean-square displacements of both of the
constituent atoms for the aforementioned zinc-
blende compounds at different temperatures are
presented in Tables I-III. With the exception of
GaP, the highest temperature represents the melt-
ing point of the compound of interest. The sepa-
rate contributions to the mean-square displace-
ments from the acoustic and optical phonons are
also summarized in these tables. The temperature
dependence of the meﬁn-square displacement of the
constituent atoms is linear from 300 °K to the melt-
ing point of the compound with the exception of SiC
where linearity begins around 500 °K. This is not
surprising, since the Debye temperature of SiC is
considerably higher than that of the other com-
pounds considered.

B. Acoustic- and Optical-Phonon Contributions

The separate listing of the acoustic- and optical
phonon contributions to the total mean-square dis-
placements enables some interesting observations
to be made. The contribution of the acoustic
phonons to the mean-square displacement is more
temperature dependent than the corresponding
optical-mode contribution. For the heavier atom,
the contribution to the mean-square displacement
from the acoustic phonons is greater than that from
the optical phonons at all temperatures. For the
lighter atom, the contributions from the acoustic
and optical phonons are comparable at low tem-
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TABLE III. Comparison of calculated and experimental values of root-mean-square displacements (in 10~% cm) for
various zinc-blende compounds.

Temperature uiyl/ze w22 (W2 Reference for
Compound (°K) Calc Expt Calc Expt Calc Expt expt. data
100 0.077 0.076 0.086 0.063 17, 16
GaP 200 0.099 0.1068 0.103 0.088 17, 16
293 0.117 0.129 0,120 0.107 17, 16
0.203 0.130
184 0.102 0.105 18
345 0,135 0,123 18
GaAs 380 0.141 0.127 18
425 0.149 0.131 18
434 0.150 0.132 18
485 0.158 0.137 18
332 0,148 0.191 0.148 0.121 19
GaSb 370 0.156 0,277 0.156 0.225 19
410 0.164 0.311 0.163 0.260 19
~
250 0.127 0.274 0.131 0.272 16
InP 380 0.155 0.291 0.157 0.288 16
450 0.168 0.308 0.170 0.305 16
525 0.181 0.331 0.184 0.325 16
184 0.138 0.116 18
386 0.167 0.181 18
InAs 432 0.176 0.200 18
482 0.186 0.220 18
528 0.195 0.220 18
578 0.204 0.258 18
332 0.169 0.191 0.169 0.147 19
InSb 370 0.179 0.320 0,179 0,242 19
410 0.188 0.416 0.188 0.294 19
ZnSe 296 0.153 0.214 20
359 0.182 0.230 0.181 0.155 0.182 0.192 21
ZnTe 440 0.201 0.263 0.200 0.212 0.201 0.231 21
503 0.214 0.298 0.214 0.255 0.214 0.276 21
242 0.177 0.233 0.177 0.212 21
296 0.196 0.236 20
CdTe 306 0.199 0,277 0.199 0.259 21
359 0,215 0.307 0.215 0.290 21
80 0.106 0.098 0.107 0.083 22
HeTe 100 0.116 0,110 0.118 0.092 22
g 200 0.162 0.155 0.163 0.130 22
300 0.198 0.190 0.198 0.160 22

2AB represents the zinc-blende compound of interest.

peratures and in fact in some cases the optical-
phonon contribution may be even larger. The con-
tribution from the acoustic phonons, however, pre-
dominates at higher temperatures. The relative
contribution from the acoustic phonons is more
predominant in the heavy atom while the relative
contribution from the optical phonons predominates
for the lighter atom. At any particular tempera-
ture the value of the mean-square displacement is
greater for the lighter atom. This difference in

mean-square displacement becomes even more
pronounced when the mass difference of the con-

stituent atoms is quite large, e.g. ,f;Ale. The
present analysis shows that the contj{ribution from

the optical-phonon states does in fact have a signif-
icant contribution to the mean-square displace-
ments, especially in the case of the lighter atom.

C. Comparison with Experiment

The available experimental data for the root-
mean-square displacements are compared to the
calculated results in Table III. The agreement be-
tween the calculated and experimental values is
excellent in the case of GaP, GaAs, and HgTe,
and tolerably good for InAs, ZnTe, and CdTe.
However, it is decidedly poor for GaSb, InP, and
InSb. There is a possibility that the reliability of
some of the experimental data may be questionable.
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TABLE IV. Ratio of the sum of the root-mean-square
displacements (in 10~% cm) to the nearest-neighbor distance
(in 10~ cm) at the melting temperature for various zinc-
blende compounds.

Melting Nearest-

temperature neighbor
Compound °K) @22+ (u?)/2*  distance  Ratio
InP 1232 0.5801 2.541 0.2283
GaAs 1511 0.5568 2.440 0.2282
InAs 1215 0.5892 2.615 0.2253
AlSb 1338 0.5958 2.654 0.2245
Gasb 979 0.5027 2.649 0.1898
InSb 803 0.5260 2.793 0.1883
ZnS 1923 0.7330 2.350 0.3117
CdTe 1371 0.8382 2.776 0.3020
ZnTe 1511 0.7402 2.628 0.2816
ZnSe 1373 0.6508 2.454 0.2652
HgTe 943 0.7008 2,754 0.2545
SiC 2973 0.4770 1.883 0.2533

2AB represents the zinc-blende compound of interest.

For example, proper correction for the thermal
diffuse scattering was not made in interpreting
many, if not all, of the experimental data. The
discrepancy in some of the reported data, e.g.,
GaP, also leads one to further question the relia-
bility of some of the experimental work. A further
source of error comes from the fact that the model
used consistently predicts slightly higher TA-mode
frequencies, which in turn affect the Debye-Waller
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factor.
D. Melting and Vibrational Amplitudes

It was originally proposed by Lindeman®! that the
melting process occurs when the root-mean-square
amplitude of vibration reaches a critical fraction,
presumed to be the same for all crystalline solids,
of the nearest-neighbor distance. It was later
shown®%2~% that in various cubic metals and alkali
halides this fraction was indeed not constant but
might in fact be a function of the crystal structure
and location of the constituent atom or atoms in
the periodic table of elements. This ratio hasbeen
calculated for the zinc-blende compounds and is
tabulated in Table IV. The present calculation
shows that the ratio is a constant for the II-VI and
III-V compounds, although the average ratio for
the II-VI compounds is slightly larger than the cor-
responding ratio of the III-V compounds. For SiC
the ratio seems to be closer to that characteristic
of the II-VI compounds. A more thorough lattice-
dynamical treatment including anharmonic effects,
which are more predominant at higher temperatures,
might give further insight into the melting process.
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