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A model calculation of lattice thermal conductivity is presented and applied to measure-
ments on LiF and NaF. crystals of high purity. The treatment is in the spirit of a Callaway
analysis, but at a somwhat more fundamental level: The Ziman variational principle for
thermal conductivity derived from the phonon Boltzmann equation is used, with the phonon dis-
tribution function approximated by a displaced Planck part plus another term reducing the de-
viation from equilibrium for high-frequency phonons. An isotropic Debye approximation for the

phonon spectra of LiF and NaF gives a good fit to the conductivity data, with only two semi-
adjustable parameters {Gruneisen constant and a zone-edge longitudinal phonon frequency) for
the anharmonic contribution. '%e most important feature of the calculation is the failure of
the thermal conductivity to approach the Ziman limit of resistanceless phonon-phonon N pro-
cesses. This is due to the important role played by high-frequency phonons in thermal con-
duction. Even for an infinite perfect crystal at arbitrarily low temperatures, the Ziman limit
underestimates the conductivity by at least 50'fo. If this prediction is correct, it is not a pecu-
liarity of LiF and NaF alone, and should be of importance for the theory of second-sound propa-
gation in insulators.

I. INTRODUCTION

In discussions of the lattice thermal conductivity
of relatively pure insulators, the following assump-
tion is usually made: As the temperature is low-
ered, phonon-phonon umklapp processes become
increasingly frozen out in comparison with the much
more rapid normal processes, so that eventually
the normal processes alone must determine the
way in which the energy transported through the
lattice is distributed among the phonons. This is
the Ziman limit. ' One finds that the thermal con-
ductivity in this limit is independent of the (essen-
tially infinitely rapid) normal-process collision
rates. The Ziman limit is a theoretical limit; any
experimental evidence that it is ever approached
or achieved is always indirect. The theoretical
evidence is meager. Fir st-principles calculations
of the thermal conductivity in the Ziman limit have
been performed only for rare-gas crystals, 3 and

appear to come out low. Such appearances are
however obscured by uncertainties in parameters
of the interatomic potential.

In this work we present model calculations of
lattice thermal conductivity, which when applied to
high-purity LiF and NaF crystals give the same
information as a Callaway analysis4 but with fewer,
more interpretable adjustable par ameters. The
thermal conductivity of the model does not approach
the Ziman limit, for reasons sketched in Sec. II.
This is not an academic point; in both experiments
to be examined, at temperatures as low as T
= &'~ OD, the thermal resistance due to defects and
impurities is still demonstrably negligible, so if
the Ziman limit is valid at all it should be achieved
in these cases. The model calculation, however,

predicts a conductivity more than 50%%uo higher than
the Ziman limit at these temperatures.

More importantly, though, the validity of the
Ziman limit is assumed in the hydrodynamic theory
of second-sound propagation in insulators. ' It
seems clear that the theory is really not critically
dependent upon this assumption, but it will lead to
quantitative inaccuracy: The second-sound damping
rate due to thermal conduction is clearly affected,
and so is that due to viscosity, which should have
a non-negligible contribution from umklapp proces-
ses. This would of course lead to extra dispersion
in the second-sound velocity when the damping due
to either mechanism is large, but even in regions
of small damping the propagation velocity will not
be that of "drifting" second sound if the Ziman
limit is never completely achieved. Second-sound
propagation is not discussed in this work, but it
is felt that the question of the validity of the Ziman
limit is at least as relevant to the analysis of re-
cent second-sound data, "' in NaF as it is to the
thermal conductivity.

II. MOTIVATION

In this work we emphasize the role of high-en-
ergy phonons in thermal conduction. The argu-
ment of the work is this: Consider phonons of en-
ergy 5»& 4T which belong to a high-frequency
branch of the phonon spectrum. Then, (a) normal-
and umklapp-process relaxation times w" and y
for these modes, in the single-mode relaxation
time approximation, are independent of tempera-
ture. (b) Because of (a), such phonons can make
the same size contribution to the thermal resistance
as "thermal" phonons (those with h&u =kT), upon
which previous treatments have concentrated. (c)
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The contribution of high-energy phonons to the
thermal resistance is not correctly given by the
Ziman limit, because 7"=7. for these modes.

To motivate point (a), observe that if the phonon
energy I+» kT, the dominant attenuation mechan-
ism for the phonon is the anharmonic decay into two
other phonons of energy - -',h~. Whatever their
relative sizes, both normal- and umklapp-process
decay rates will be temperature independent, cor-
responding to spontaneous emission, but the emis-
sion process is only allowed if the original high-
energy phonon belongs to a high-frequency branch
of the yhonon spectrum. For instance, high-ener-
gy longitudinal phonons will decay spontaneously
via the processes l-t+t and l- I, +t. Orbach and
Vredevoe have considered the nominal-process
contributions to these decays, but me shall argue
that if the longitudinal phonon has a large enough
wave vector the decay process can just as easily
be umklapp as normal.

Point (b) amounts to asserting that the very small
portion of the heat current carried by high-energy
phonons is attenuated so rapidly that these modes
deveiop much of the thermal resistance. Consider
a typical thermal phonon, called 1; h(d& =kT. For
low enough temperatures, phase-space considera-
tions dictate that the dominant attenuation mechan-
ism for this phonon is an absorption process,
1+2- 3. Ziman points out' that only the umklaPP
absorption process is expected to contribute sig-
nificantly to the thermal resistance, and the transi-
tion rate for that process is dominated by a factor
exp(- k&uz/kT) =exp(- Ses "/kT) owing to the ex-
ponentially small number of available 2 yhonons of
high enough energy to make the U process allowed,
mhich requires that phonon 3 be on a high-frequency
branch with k&3& 8~3"» kT. The resulting con-
tribution of thermal phonons to the thermal resis-
tance is dominated by the familiar dependence
exp(- e(os ™/kT).

Now turn things around and consider a high-en-
ergy phonon like 3 above. It attenuates via 3- 2+1
(neither 1 nor 2 need be thermal phonons, though),
and point (a) above applies. The temperature de-
pendence of the contribution of such high-energy
phonons to the resistance is thus determined not

by the temperature dependence of the relaxation
time, but of the heat capacity, which varies like
e ""3 . Summing over high-energy phonons, one
thus expects a resistance dominated by exp[- 8'&us "/
kT], i.e. , the same temperature dependence as
the contribution of thermal phonons. Are the mag-
nitudes of the two contributions also similar? One
must now delve into phase-space integrals; for
the model of Sec. III they are.

To motivate point (c), we first remark that if it
is indeed true that spontaneous-emission lifetimes
satisfy r" =rv, then Uprocesses never become

frozen out for high-energy modes, and mill always
compete with N processes in determining how the
heat current is distributed over the phonons. Thus
the argument for the Ziman limit given in the In-
troduction breaks domn.

The point about lifetimes is simply that if phonon
1 has a large enough mave vector, then the decay
process 1-2+3 can just as easily be umklapp as
normal. In fact one quite generally expects the
relation r"«r, which the Ziman limit assumes
is valid for all phonons, to be violated nea~ the
surface of the Brillouin zone, simply because one
must have r &rv on a considerable portion of the
zone surface. To prove this latter assertion, focus
attention on a phonon with wave vector q, on that
face of the zone surface which bisects the recipro-
cal lattice vector G, . We shall show that if the vec-
tor q, —6, is in the star of q„ then to every allowed
normal process, for which

q~+q2+q3= 0,
there corresponds an allowed umklapp process of
form

q, +q, +q3=6, , (2)

q~ + Bq2+ Bq 3
= 6~, (2')

which is Eq. (2). The contribution of (2') to the
single-mode relaxation time 7&~...depends on the
q's and polarizations only through the polarization
vector e&.. . frequency co&„,, the factors e'~~',

g8y P

~where 1 is a direct lattice vector, and similar quan-
tities for (Rqs, ss) and (Rqs, ss). None of these
quantities are changed by replacing q, by q) —Gg

(the polarization vector may at most change sign,
which does not affect the final result). Further,
we can replace q, —6, by Rq, and then Aq„Aq„
Aqs by q„q2, q3 without changing the contribution;
the last replacement merely corresponds to evalu-
ating a coupling constant in a rotated direct lattice.
But now one is evaluating the contribution of pro-
cess (1) to P&,„. Thus we have the desired result.

For the fcc direct lattice, the portion of the Bril-
louin-zone surface on which q, -6, is in the star of

q, consists of the entire surface of the square faces
and the points at the centers of the hexagonal faces.

which makes the same contribution to r~ as (1) does
to r . Since (1) exhausts all N processes but (2)
does not exhaust all U processes (other G's than
G, are almost always allowed), we conclude

Here s, denotes the polarization
branch.

Operate on (1) with some operation R of the point
group of the lattice:

Rgq + Rgs+ Rqs = 0 .
Choose R such that Rq, =j, —G, . Then (2) can be
written
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For the bcc and simple cubic lattices, it consists
of the entire zone surface.

The considerations of this section are certainly
not definitive, but our object is merely to provide
a reasonable motivation for the variational ansatz
(18) of Sec. III.

H, = (e'""~ —1) '+n, , (4)

where P = 1/k T.
In a wave-packet description, the space and time

dependence of N, is governed by the linearized pho-
non Peierls-Boltzmann equation. To discuss the
steady-state deviation from equilibrium caused by
a uniform temperature gradient V'T, one can put the
equation in the form

III. VARIATIONAL PRINCIPLE; TRIAL FUNCTIONS

The quantum state of an insulating crystal is
specified by the number of phonons N, in each mode

q,s„which we write as a part corresponding to
thermal equilibrium plus a deviation n, from equi-
librium, imagined small:

be rapidly driven by the N processes toward a dis-
placed, or drifting, Planck distribution:

H;, = [exp(Ph&2, —Phq ~ c) —1] ',
so the deviation from equilibrium is

n;, =hq c/4kTsinh (2'Phe;, } .
This displaced Planck distribution represents pho-
non convection; the phonons are in equilibrium in
a reference frame moving with velocity c relative
to the lattice. " Resistive processes tend to slowly
reduce the convection velocity to zero, while an ap-
plied temperature gradient counteracts this tenden-
cy; in the steady state one would thus expect c
~ —VT, and via (7) a trial function lu ) correspond-
ing to a displaced Planck distribution is then

g Aq

Substituted into (11), this trial function gives the
thermal conductivity in the Ziman limit, E~, which,
using (6) and (9), can be put in the form

Xl +2H12v2 ~

where

X, = -(h(u, /T')v, ~ &T/sinh2 pl(u, ,

(s)

(6)

2 R+z = CPV117 g

Here C p is the heat capacity per unit volume,

c,= v'Qc,-, ,
-

(14)

H=H +H +H +H -=H +H (8)

In the notation of (5)-(7), the diagonal elements of
H/4k are the single-mode inverse relaxation times.

The thermal conductivity R is'

3'
V(WT/T)' '

where V is the crystal volume, and the "reduced"
thermal conductivity

X=Z, X,v, =- (Xiv & . (io)

In the variational procedure, " one discovers or
invents a trial phonon distribution function u~, ap-
proximating the exact solution v;, of the Boltzmann
equation (5). The functional

with v1 the phonon group velocity V'g1+q1+1y the devia.
tion from equilibrium is now described by

v, = n, sinh( —,'Ph~, ),
and the symmetric collision operator H is the sum
of N- and U-process parts from 3-phonon interac-
tions, 'o plus contributions from "impurity" (includ-
ing defect) and boundary scattering,

with

C2, = (5~;,) /4kT sinh (—2'Ph&u;, ),
v» is the velocity of drifting second sound,

2 (FRYER Cfzq ' va~/Apts)

avco Fc.C2A'/~2.

(is)

(i 6)

and the Ziman-limit relaxation time v& is given by

I/Tz=Z pg ' Hggp, 4kB pg ' V.g, (17)
122 1

with )T, =—p~„, as in (13) above. The Ziman limit
(14)-(17) has been obtained in several ways, ' ' '
the essential ingredient always being physical in-
tuition to motivate the displaced Planck distribu-
tion.

However, one should not expect the displaced
Planck function to adequately represent the steady-
state distribution of high-energy phonons. Because

and 7 are comparable for these phonons, they
should not be expected to drift at the same rate as
the low-energy "thermal" phonons, but should be
more nearly in equilibrium. Thus we propose the
following modification of the displaced Planck func-
tion (13):

X'(u) =
(u IH lu ) u2, =up, [1 —aO((u;, —(u, '"}5,, ] . (ia)

then gives a lower bound on 3'..
If for every phonon, umklapp and other resistive

collision processes really are slow in comparison
with normal processes, the phonon distribution will

Here a is a variational parameter and 0 the Heavi-
side step function. Longitudinal phonons with ~
& ~, '", the minimum frequency for the onset of the
umklapp process I- (2 other phonons), drift at a
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slower rate than all the otherphonons, if a comes
out between 0 and 1. In principle one should also
include a similar modification for the fast trans-
verse branch near the zone boundaries, since such
phonons can also undergo spontaneous emission de-
cay processes of the type envisaged in Sec. II, but
such refinements will be ignored.

The variational parameter a is chosen by putting
the function (18) into the bound (11) and maximizing
the resulting X (u) with respect to a. If we abbrevi-
ate (18) as

&1/ ")'
&I/ra+ I/~")„, ' (20)

The high-frequency average in (20) is defined by
-} Rr

&r-i) 5&f res~3sq /~ss
), Casq /&ss

The sum in the numerator is only over longitudinal
modes with &u& v, '". The form (20) is particularly
suggestive —it makes it clear that if there are a
large enough number of high-energy modes with r

to make a significant contribution to I/ra, then
the thermal conductivity lifetime y is greater than

r3, and the Ziman limit will never be approached.

IV. MODEL CALCULATION

Computation of the bounds X and X& of Sec. III
was performed using the simplified isotropic dis-
persionless lattice model proposed by Hamilton
and Parrott, ' with a few minor exceptions. We give

the result is

(Xlu')(u'IHIzv) —(XI~)(u'IHlu )
(Xlu ) (wlfflxo) —&XI30)(u IHI30)

Henceforth we denote by X the value of (11) com-
puted using (18) with this optimum value of a. It
is this quantity whose computation is described in
Sec. IV.

An approximate form of the bound 3'. , while not
crucial, seems instructive. At temperatures such
that kT«k&u, '", the terms in (19) involving the fac-
tor (ylm) will be small, so that

(u IHIM)
(30IH Iw)

Similarly the numerator in the expression (11) for
X' is also approximately (flu )'. In addition
the single-mode relaxation-time approximation of
H should be valid for energies S~» kT, so if we
also replace H" and H by their diagonal elements
4k/v~, and 4k/rf, everywhere a, matrix element
involving l3v) occurs, then R can be put in a form
similar to (14):

Con

details below.

Harmonic Phonons

The phonon spectrum contains two degenerate
transverse branches with frequencies

(eg, = c,q,
and a longitudinal branch with frequencies

kO&s = Sc~» (21)

where s stands for either l or t. In applying the
calculations to experiment, 0, (or equivalently 8„
since c, /c, is fixed) is used as an adjustable pa-
rameter to fit the conductivity data. This has the
effect of matching the model dispersionless phonon
spectrum to the real spectrum at the high-frequency
end, rather than at the low-frequency end, since
the actual conductivity in the umklapp region re-
flects phonon frequencies fairly near the zone
boundaries.

Anharmonic Interactions

We take the cubic anharmonic coefficients to be'

I
c l331 (o 0474k'~'/N~cs)~i~3~3«qi+q3+q3),

where N is the number of primitive unit cells in the
crystal, m is the mass per unit cell, ~ is the lattice
Kronecker 4 function, and the Qruneisen constant
y is treated as an adjustable parameter to fit con-
ductivity data. The device of Hamilton and Parrott"
is used to include umklapp processes: for the um-
klapp process (q~s~)+ (q3s3)=(-q3s3), the only al-
lowed value for the reciprocal lattice vector 0
=q, +q~+q3 is defined to be the vector of magnitude

2q~ directed along q~+q3. The allowed three-pho-
non processes for this model and their regions of
phase space are discussed in Ref. 13. One has

(a) t~+l3—l3, both normal and umklapp, is al-
lowed. The U process requires ~3& &u,

"= [(r+1)/
2r]c, q~, or q, &0. 785q~ here.

(b) t, +ta=l3, both N and U, is allowed. The U

process requires ~3& &u3"= [2/(r+1)]c, q~, or q,
& 0. 725qo here.

(c) I, +la= l3 and t, +t3——t, N processes are also

(dg) = C)g

The sound-velocity ratio is chosen to be that appro-
priate for polycrystals of a classical cubic solid
with elastic constants satisfying C»= C44= —,'Cyg,

namely,

c, /c, =r=1. 76 .
The first Brillouin zone is replaced by a Debye
sphere, radius q&, of the same volume. Thus in
applying the model to alkali halides we omit opti-
cal phonons.

Debye temperatures 8, for the two branches are
defined by
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allowed for all three wave vectors collinear. Since
these processes become forbidden when dispersion
is added to the phonon spectrum, we have simply ig-
nored them.

The t+t=l process was found to dominate the

low-temperature thermal resistance. This is ex-
pected for two reasons: First and foremost, it can
attenuate a transverse thermal phonon at less ex-
pense of energy, since &d3" is smaller for this
process; and second, it has large phase space in
the vicinity of q~ ".

&~IH"I~&, &~IH I~&.

Each matrix element is the sum of contributions
from the two three-phonon processes above. The

simplicity of the model used permits analytic solu-
tion of the energy and quasimomentum conservation
laws to identify the allowed regions of phase space
for each process. Each matrix element then re-
duces to evaluation of two two-dimensional inte-.
grals, which has been carried out numerically at
several values of T/8, . Selected results are shown

in Table I. The variational parameter a is never

TABLE I. Variational parameter a and conductivity ratio
as functions of temperature. E» is the conductivity in the
Ziman limit (a —= 0).

Z /OH

1

20
1

18
1

16
1

15
1

13
1

12
1

10

1
6

10

0.827

0.829

0.831

0.834

0.836

0.838

0.839

0.847

0.845

0.844

0.786

0.650

0.566

0.538

0.528

l.46

1.47

1.48

l.48

1.49

l.50

1.50

1.53

1.54

l.55

1.46

l.28

1.20

l.17

1.17

Numerical Computations

If for the moment we neglect impurity and bound-

ary scattering, then evaluation of X' and X.~ requires

computation of the four matrix elements

&"Iff'I. &, &"Iff'I~&

smaII. Its low-temperature value of about 0. 83
means that high-frequency longitudinal phonons with

q & 0. V25q~ drift at only 17% of the drift velocity of
the rest of the distribution. This very substantial
change accounts for the conductivity X' being about
50% higher than the Ziman limit and never approach-
ing it at any temperature. Thus about 3 of the
thermal conductivity of this model comes explicitly
from normal processes. The computed numbers
in Table I depend only on the chosen value of c, /c„
they are independent of what values one chooses
for the Gruneisen constant and the Debye tempera-
ture.

V. APPLfCATION TO LiF AND NaF

Since the main interest in this work is on the
treatment of intrinsic scattering processes, we
shall simply treat all impurities as if they scattered
phonons like point-mass defects. This should not
be too unreasonable an approximation for foreign
alkali atoms, which appear to be the main defects
in the experiments considered.

Point-Defect Scattering

Point-defect scattering of phonons is exactly
characterized by a relaxation time"; the contribu-
tion to the collision operator is thus diagonal:

e,'-, , „=~(q —q') 5„,4u/~,", ,

where'

1/~l, = (n, f'/4wv')(u4r, ,

with Qo the volume of the primitive unit cell and

v '=-,'(c, '+2c, ') .
1", which characterizes the concentration and

scattering strength of the defects, '6 is treated as
an adjustable parameter.

Boundary Scattering

To simulate phonon scattering from the boundaries
of a finite crystal, we add a constant diagonal term
H to the collision operator:

e,'. .,., = 4&(c,/f, )n(q —q')5„. .
Simons, '7 Ziman, '8 and Carruthers'6 have discussed
the adequacy of this approximation. The parameter
I. is the Casimir length' of the crystal. For the
LiF and NaF experiments this length can be esti-
mated independently, but instead we treat I. as an
adjustable parameter to compensate for the fact
that the sound velocities of the model do not accu-
rstely represent the phonon frequency spectrum at
long wavelengths, where boundary scattering is im-
portant —see the discussion following Eg. (21).

In both cases to be treated the addition of enough
boundary and isotope scattering to fit the data makes
negligible change in the variational parameter a,
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(T/O, =~», T/8~ =$) represents a temperature
at which the conductivity is very far into the um-
klapp region, with the resistance from defects still
negligible. If the Ziman limit is valid at all it
should thus be so at 25 'K, yet Table I shows that
it underestimates the conductivity by more than
50%%uo in this temperature range.

Lip

IO

I-

lD

O

T ('K)
IOO

I I I I I I I II

500

FIG. 1. Thermal conductivity of NaF. Circles: Jack-
son and Walker, Ref. 6. Lines: this work, with adjusted
parameters as shown. See text, Sec. V.

which remains that determined in Table I from an-
harmonic scattering. Boundaries and defects scat-
ter high-frequency phonons very weakly in compari-
son with intrinsic spontaneous emission processes.

Figure 1 displays the results of adjusting model
parameters to fit the measurements of Jackson
and %alker on ultrapure NaF. The dashed high-
er curve shows the thermal conductivity of a
fictitious crystal with no isotopic impurities. The
difference at the peak between the dashed and solid
curves is thus all attributed to isotope scattering;
I =3. 54X10 corresponds to a total of 2. 3 ppm of
Ca" and/or K' defects. This is perhaps too high
a concentration. Jackson and Talker indicate that
the chemical impurity content of their crystal was
about 1 ppm, so that some of what here masquerades
as isotope scattering should really be attributed to
dislocations. The excellence of the fit shown in
Fig. 1, however, indicates that such a separation
would have to be arbitrary.

The adjusted value of 1.40 for the Gruneisen con-
stant seems quite reasonable (the smoothed experi-
mental valuem is 1.56). The adjusted 8, of 440'K
(1.V6 times 8,) is slightly less than 8~ = 466 ' K from
the low-temperature heat capacity. One expects
this; the maximum acoustic frequency should be
somewhat less than OD because of dispersion in the
phonon spectrum at high frequencies. Thus two
adjustable parameters appear sufficient to fit the
anharmonic contribution to the conductivity at all
temperatures, whereas a Callaway-model analysis
requires five.

Regardless of the ambiguity in treating the defect
scattering, it is clear from Fig. 1 that 25'K

I 000=

IOO:

I I

I I
I

I
I

I
I

I II
II
I

I I

I
~ ~ I

LI F

—r 2.55x to ~
-- r-o

E

g IO=

O

Cl

O0

O. i
I

I I I I I I I I I I I I I I II ~ I I I I I I III
IO IOO 500T( K)

FIG. 2. .dermal conductivity of LiF. Circles:
Thacher, Ref. 21. Lines: this work, with adjusted pa-
rameters as shown. See text, Sec. V.

Xn Fig. 2 we show the result of fitting model
parameters to the conductivity of LivF measured
by Thacher. ' As before, the dashed curve shows
the conductivity of a hypothetical perfect crystal
of the same size. The chemical purity of Thacher's
crystal is not known. One component is identifiable:
the crystal did contain 100 ppm of Li defects, but
the adjusted I = 2. 55&&10 corresponds to 1600 ppm
Li~. In fact the slight discrepancy between fit and
experiment around the peak indicates that the chem-
ical impurities do not act purely as mass defects.
Inclusion of dislocation scattering would if anything
strengthen this conclusion, since it would accentu-
ate rather than reduce the asymmetry between the
theoretical and experimental curves near the peak.

The adjusted Gruneisen constant y= 2. 086 is
somewhat higher than the experimental value, ~ which
between 0 K and room temperature always lies be-
tween 1.6 and 1.V. The adjusted 8, of 650 'K is
again reasonable; the specific heat e~ is 720'K.
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As with NaF, the thermal resistance is dominated
by intrinsic processes to temperatures as low as
~oec or ~98D.

Thacher's data on LiF have also been analyzed
by Guyer and Sarkissian. ~3

VI. CONCLUSION

Of course there is no dA'eat experimental evi-
dence that tile Zlnlall llm1't 18 not (or 18) achieved,
but this analysis shows that if the model is realis-
tic then the effect of spontaneous-emission umklapp
processes envisioned in Sec. III really is reflected

in the experimental conductivities. A simpler but
less controlled test would be to use the relaxation-
time approximation directly in Eye. (17) and (20);
however, care must be taken to use reasonable
relaxation time forms for high as well as low fre-
quencies.
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