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A theoretical study of the localized modes due to H" and D™ (U centers) impurity ions and of
the gap mode due to the K" ion in CsCl has been made. The values of the effective force con-
stant have been determined in different frequency regions. The values are seen to be strikingly

similar in magnitude in all frequency regions.

I. INTRODUCTION

Many theoretical and experimental investigations
have been undertaken in recent years to understand
the physical properties of ionic crystals doped
with impurities. Invariably, in all the theoretical
studies a nearest-neighbor perturbation model for
the impurity has been assumed. Changes in the
force constants between the impurity and its neigh-
bors have been determined to explain the infrared
absorption spectra of the doped solids. In order
to give a physical meaning to perturbations of
short-range type, it is necessary to evolve an idea
of a force constant having short range, i.e., an
effective force constant in the pure crystal. The
reason is that in the rigid-ion picture of the lattice
the assumption of short-range interactions pre-
sents no conceptual difficulty. However in the shell
model or the deformation-dipole model of the
lattice, where along with short-range hard-core
repulsive forces there exist long-range dipolar
forces in the ionic crystals, the situation is differ-
ent.

In an earlier paper1 we defined an effective force
constant in the rigid-ion picture of the lattice. A
theoretical study of infrared lattice absorption in
Csl crystals containing impurities has been made
by the authors.? The values of the effective force
constant for CsI in different frequency regions
have also been determined. 3%

In the present communication we have made a
theoretical study of the U-center localized modes
and the gap mode due to K* observed in CsC1
crystals. The values of the effective force con-
stant in different frequency regions have been ob-
tained.

II. CALCULATIONS AND RESULTS

The impurities having much lighter mass than
the host ions of the solid usually produce highly
localized modes with frequencies higher than the
maximum phonon frequencies of the lattice. If
there exist gaps between the acoustic- and optic-
polarization branches of vibrations of the crystal,
the localized modes may appear in a gap and they
are called gap modes. DG&tsch and Mitra® have
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observed highly localized modes in the far infrared
due to U centers (H™ and D7) in cesium halides.
Recently Becker® had detected a gap mode in the
infrared measurements of CsC1 doped with K",

The frequencies of such infrared-active localized
modes are determined by'’?

ReDp, (2)=0, 1)
where

Dp (2)=(1-€w’gi)[1+3x\(387+2g%-23
-2g5+387+6g% — g5+ 2810 ]

+ 3 [gi - 2xM3(g, + 283)+ X €0® (g,+285)%]  (2)

for a crystal having CsC1 structure. The different
Green’s functions occuring in Eq. (2) have been
defined earlier.® Here x=M, /M, is the ratio of
the masses of the two host ions in an unit cell;
€= AM/M, is the mass-change parameter and
A= v/M, represents the change in the nearest-neigh
bor central force constant ¥. The upper and lower
signs (%) on the g’s and M are for the positive and
the negative impurity, respectively. In Eq. (2)
we have considered changes in the central forces
only. The change in the noncentral force constants
are usually seen to be smaller by an order of
magnitude than the central ones in the ionic crys-
tals.

After introducing the effective force constant,
the resonance denominator simplifies to®

Dy, (2)= (1+6) (1 - ewg}) + 3H(1+ €) (w*/81)

x(1+w%t), (3)

where n=7v/M, and = \/7 is the relative change
in the force constant. Equation (2) can be used to
determine the change in the force constant in the
nearest-neighbor perturbation model. One can
then determine the nearest-neighbor effective force
constant by using Eq. (3).

In order to calculate the lattice response func-
tions appearing in Eq. (2), the necessary data for
eigenfrequencies and eigenvectors of CsC1 obtained
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by Mahler and Engelhard” at 4. 2 °K using the
breathing-shell model has been used. A mesh of
2744 points distributed uniformly in the Brillouin
zone has been chosen in this calculation.

The whole frequency range is divided into 60
equal bins and histograms corresponding to each
Green’s function matrix elements are calculated
at the center of each bin. The histograms are
employed to calculate the Green’s functions below
the maximum frequency of the crystal and above
it. A finite value 0.4 in units of bin width for the
frequency increment in the integration was found
to be appropriate in order to minimize the spurious
fluctuations which occur in the Green’s functions.
The maximum phonon frequency of CsC1 as given
by Mahler’s calculation is 3. 13684 x10' rad/sec.

Using the calculated values of the Green’s func-
tions the force constant change, A, is evaluated
with the help of Eq. (1). This value of X is used
to evaluate the effective force constant$ 7 using
Eq. (3). Apart from this the force constant is
determined using zero-frequency resonance. The
results for three systems, i.e., CsCl:K", CsCl:
H", and CsCl1:D", are presented in Table I along
with the frequencies of the localized modes used
in the calculations. In Table II we present the effec-
tive force constant in the three different frequency
regions, i.e., the low-frequency region, the gap
region, and the high-frequency region. In the low-
frequency region, the effective force constant has
been determined by zero-frequency resonance,
whereas in the gap and the high-frequency regions,
they are determined by localized-mode frequencies.
The values obtained by Benedek and Nardelli® in the
low-frequency region in the framework of Hardy’s
deformation-dipole model have also been shown
in Table II. The results for CsI obtained earlier?
are also included in Table II for the sake of com-
pleteness.

III. DISCUSSION

From Table I, we observe that the relative change
in the effective force constants due to K*, H", and
D" impurity ions in CsC1 are about 55%. The

TABLE I. Column two lists the localized-mode frequen-
cies, column three the changes in the nearest-neighbor
force constant, column four the values of the effective
force constant, and column five the relative changes in
the force constant in CsCl.

8 8

wp TA TN
Impurity ion  (10'® rad/sec) (10% sec™?) (102 sec"?) B
K 1.616* ~1,054 1.998 —-0.53
H" 8.006° -2.116 3.935 -0.55
D 5.683° ~2.274 4.103 —~0.56

*Reference 6. PReference 5.
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TABLE II, Effective force constant in different fre-
quency regions in CsCl and CsI crystals in units of 104
-2
g sec”, ?

Low frequency

Crystal Ref. a Ref. b Ref. ¢ Gap region® High frequency®
* 2,388 4,409 v
CsCl{ 0. 466 . 2.454 . 2.316 (H)
- : 2.415 (Dr)
R 2,141 (In*)
. 2250 9000 (T1) oo
Cs 9,002 : 1.460 (H)
- ) 1.669 (D7)

By wg=0.

bUsing Egs. (1)-(3).

®Values obtained in Hardy’s deformation-dipole model
(Ref. .8).

changes in the effective force constants for the two
isotopes of hydrogen are approximately the same.
The difference in the values of A lie within 8%. It
supports the isotopic character of the two impurity
ions H™ and D°. But the same is not true in the
case of Csl. The difference in the two values of

A incurred by H™ and D™ impurity ions was not seen
to be small but was as large as 20%.

From Table II, we note that the values of the
effective force constants for the CsCl crystal are
strikingly similar in the high- and the low-frequen-
cy regions. The value obtained by Benedek and
Nardelli in the framework of Hardy’s deformation-
dipole-lattice model is also very near to these values.
The value of the'force constant due to the gap mode
(85.8 cm'l) in the gap region is unexpectedly high.
It may occur because of the fact that the gap region
seen in the calculations of Mahler and Engelhard
lies at higher frequencies, i.e., 87-97 cm™, than
the observed minimum (76-88 cm™) in the experi-
mental measurement of infrared absorption in CsCL.®
The calculations of the breathing-shell model per-
formed by Mahler and Engelhard need to be im-
proved; especially for the high-frequency phonons.
In the case of Csl, the values of the effective force
constant in the high-frequency region are smaller
than those of the low-frequency region; the differ-
ence is of the order of 20-30%.

Note added in proof. Recently the authors have
successfully reproduced the experimentally ob-
served infrared absorption in CsCl: K* by consider-
ing the changes in the central and the noncentral
interactions (unpublished). The modified value of
the effective force constant is seen to be 2.194x10*
g sec™®, which is quite near to its value in the low-
and the high-frequency regions.
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From temperature-dependent x-ray integrated intensity measurements on single crystals
of calcium fluoride, we have demonstrated the presence of anharmonic fluorine-atom vibra-
tions. For the cubic term in the single-particle fluorine potential we arrive at a value of g
=—(4.5+1.5)x 10" erg/A%, The experimentally determined temperature factors at 25 °C
are Bgg (=872 u2)cq) =0.525% 0.01 A% and Bp=0.787 + 0.03 A2,

INTRODUCTION

The results of a detailed temperature-dependent
x-ray investigation of calcium fluoride are pre-
sented in this paper. Our objective was to use x-

ray diffraction methods to observe and quantitatively

measure the anharmonic anisotropic thermal vibra-
tions in calcium fluoride.

Using neutron diffraction techniques, Willis? ob-
served different temperature dependences for the
integrated neutron intensities from three calcium
fluoride Bragg reflections [(755), (771), (933)] oc-
curring at the same (sind)/x value, Since CaF, is
cubic, the observation of anisotropic temperature
factors was unexpected and is in violation of har-
monic-theory predictions. Willis, however, was
able to quantitatively explain his observations us-
ing a phenomenological model based on anharmonic
fluorine-ion vibrations.

These original experiments and the interpretation
of the results met with considerable criticism by
Ladell, 2 Hamilton, * and Pryor.* Later neutron
work, however, by Willis and his co-workers at
Harwell on BaF,, % and on UO,, ® firmly established
the existence of systematic anisotropic diffraction
effects from compounds having the fluorite struc-
ture.

Only recently were similar effects observed in
x-ray data (CaF, by Cooper’ and Mg,Si by Cooper
and Panke®). This time lag was primarily due to
the unfavorable anion-to-cation scattering-factor
ratio that exists for x rays, making anharmonicity

effects small and difficult to observe. In the pres-
ent study, anharmonicity effects were made quite
substantial by limiting observations to high-index
reflections at elevated temperatures. Further, we
feel we have eliminated a main objection to the ear-
lier work, viz., extinction, by mechanically de-
forming the samples.

Anharmonic effects in x~-ray diffraction are in
some cases coupled with anisotropic bonding charge
distributions. In a recent coupled x-ray® and neu-
tron' experiment on silicon, both bonding and an-
harmonic contributions to the (222) forbidden re-
flection in silicon were measured. Such covalency
effects were assumed to be negligible in calcium
fluoride because of its ionic character. As a con-
sequence, only the anharmonicity portion of the
antisymmetric electron density distribution was
considered in our data analysis.

THEORY

Calcium fluoride has the fluorite structure; see
Fig. 1. It can be constructed on a face centered
cubic lattice using a three-atom basis, one cation
at the origin and two anions, one each located at
plus and minus § % 3. The calcium atoms are co-
ordinated to eight fluorine atoms located at the
corners of the outlined cube (#3m symmetry). Only
half of these unit fluorine cubes have a calcium at
their body center, the other half are empty. The
fluorine atoms are coordinated to four calcium
atoms located at the corners of a regular tetra-



