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The changes ln the 1'eal and imaginary parts of the dlelectr1c corlstant of a so11d induced by
an electric field vrhich decreases exponentially vrith distance from the surface are calculated
from perturbation theory for photon energies near interband transitions. This exponential
model for the field is of interest because it approximates mell the actual field over a fairly
wide range of surface conditions and because it contains only bvo adjustable parameters, the
surface fleM and the 1ate of decay of the exponential, The coD'tllbutioQ from each of these
parameters can be separated and identified in the results. Previous calculations of Glectro-
reflectance in a nonuniform field have employed the one-electron Franz-Keldysh theory for a
uniform field, assuming the field to very slowly enough with distance from the surface so that
a WEB approximation couM be used to extract spatially averaged values of the change in dielec-
tric constant. Our calculation is not limited by the WEB approximation, and is applicable
GVGQ at very large field Qonun1forrnitles. However, %hen the f16ld penetration depth ls less
than about three times the photon penetration depth, effective masses must be known in order
to complete our calculation, but it is still valid. The theory, used to interpret a modulated-
ellipsometry experiment on Ge in the 2. 1-GV region, shows that illumination of the sample
surface by a second light beam can decrease the field penetration depth by at least a factor of
20, and increase the surface field by at least a factor of 10, because of increased free-carrier
screening.

I. INTRODUCTION

The effect of spatial inhomogeneity in the dielec-
tric-constRnt perturbations 561 Rnd 5&@ on 'electx'0-
reflectance spectra has been the subject of a num-
ber of recent investigations. 1 In these papers the
approach has been to calculate 5&& and 5&3 using
the one-electron Franz-KeMysh theory for a uni-
form electric field, 6& ~ assuming that the field varies
slowly enough with depth so that the unifoxm-field
theory is applicable, and then to construct spatially
dependent functions fo1 561 and 66~, fx'om which
either the expected electroreflectance signal or
spatially averaged dielectric-constant perturba-
tions can be calculated and compared with experi-
ment.

However, criteria for how slowly the field must,
VRx'y with depth ln ox'dex' for this approach to be
valid have not been established. Aspnes and

. Frova, in a calculation based on the %KB approx-
lmatlon, have considered only t e varlatlon of ~~,
Rnd 5&~ over the depth penetrated by the light in-
cident on the sample, and have solved Maxwell's
equations for an inhomogeneous medium to derive
spatially averaged perturbations which can be used
to calculate electxoreflectance spectra.

In this paper, a different approach is taken. The
primary emphasis in the calculation is on the non-
uniformity of the electx'ic fieM rather than that of
5&& Rnd 5&2. %hen the distance A~ over which 5&&

and 662 vary significantly becomes shortex than the
light wavelength, another approximation may be

made instead, the sn1all-wave-number approxima-
tion as discussed by Jacobsson, ' Drude, and Ray-
leigh. 10 In this case the variation of 5&1 and 5&~

over 0 & g & A~ is replaced by an average value over
the same distance, This is the case treated by our
calculation. The nonuniformity of the electric
field is retained in the quantum-mechanical calcu-
lation of 5&1 and 5&2, but the complicated nonuni-
formity in 5&1 and 5&2 is replaced by a surface film
with perturbed dielectric constants ovex laying a
bulk sample whose dielectric constants are unpex'-
turbed. Therefore, for measurements in the visible
spectrum, with the wavelength A of the order of
thousands of A, our model should be applicable for
samples with carrier densities large enough to re-
duce A.~ to the order of 10' A or less.

It should be emphasized that since the dependence
of 5&1 and 5&2 on the electric field is nonlinear, X~

will genexally not be the same as the penetration
depth of the electric field. However, as will be
seen later, A~ does not enter the theoretical cal-
culation of 5&1 and 5&~ directly, but affects only the
determination of 5ez and 6&~ from experimental
data, . This effect of A~ on the experimental values
of 5&~ and 5&2 has been pointed out earlier.

A surface electric field profile of the form 8
=Joe " is chosen for the theoretical calculation
since it approximates well the actual field profile
ovel R fRlx"ly wide range of sux'fRce conditions~ con-
tains only two adjustable parameters, So and e,
and yields theoretical spectra which allow contribu-
tions from changes in 80 and n to be separately



ELEC TRORE FLEC TANCE IN A NONUNIFORM F IE QD ~ ~ ~

2me A ~)
2 2@~2

v, v', n, fl',
P„.„(ki,k „)e ~ P*„.„(ki,k„)

x~„.„,(k„y„)g„„(k„y„)~„„(k„@„)g„.&(k„y„)

identified.
Several workers have attributed observed photo-

reflectance in semiconductors to the electroreflec-
tance mechanism arising from changes in the sur-
face electric field profile owing to the photoexcited
electron-hole pairs. ' ' It is of interest to mea-
sure these changes experimentally. Aspnes' has
obtained the surface electric fields in his photore-
flectance experiments on Ge by high-speed capaci-
tance measurements. Changes with photoexcitation
in both the surface electric field and the free-car-
rier screening depth can be obtained optically from
our ellipsometric experiment.

II. THEORY

The approach taken here is to find the eigenfunc-
tions and eigenvalues for a solid subject to a spa-
tially dependent potential f(x) from perturbation
theory, and to use these in the standard expression
for the total transition probability

x 5(W„, „. (k,) —W. „(k,) -h~), (1)

where k, is the momentum vector perpendicular to
the direction of spatial variation, i.e. , perpendicu-
lar to the applied electric field, k„ is the momentum
vector in the direction of the electric field, here
assumed not conserved, e ~ P„„(k„k„)are analogous
to the quantities used by Aspnes, Handler, and
Blossey, and the sum n ranges over all filled bands
and n over all empty bands. The eigenfunctions in
the presence of the x-dependent potential are ex-
panded as

y, „(k, r ) = & ~„„(k)P„(k, r ),
where the g„are the Bloch functions. The 8'„„(k,)
are the eigenvalues in the presence of the field.

A perturbing electric field of the form 8 = Sp
&& e "*has been used, and the perturbations on g„,
because of the termination of the lattice at the sur-
face, have been neglected. The A„„and 8'„„for
this case are calculated from perturbation theory
in the Appendix with f(x) = B(l —e '"), where B=

-el /o(.
Substitution of the A„„and W„„into (1) yields

g()) )) ) i t
" E„(k,q„') E„(k~)+B-e e

PSX v Gg,
k

where

&6( Be e -" «+Be e "' "+E„z(k,) —kw), (3)

2

E„,, ("i)=E,("i) -Z, ("i), E„(k,) =E„(f,)+ K„(effective-mass approx. ),2Px
&(k„, q„) = &(k„,k„)dA, „,

Jq„

k~

h(k„, q„) = [5„~X„g(k) X„„(k)jdk„-, X„„.(k)= "" . ) ' X„g(k)=()))„.(k, r) ~x~ g„(k, r)),
Q)(

and 8 and 8' are defined in the Appendix.
To calculate the sum over v and v, let

1 ' i " E„(k„q„') z„(k,)+Be-'e
N n E (k q)-z (f)+Be e *)j.~ 9'x

~5( Be'e ""'-"+Be'e "' ~ +E„„,(k,) -N~) . (5)

The indices v, v range over the integers 0 to N, where N is very large, and f decreases with increasing
v or v . Therefore, the sum in (5) can be replaced by an integral,

P~ f(v, v') =
f'N "~ wN

f(v, v') dvdv' . (6)
VV dp

Substituting E(l. (6) into E(l. (3) and integrating over v yields

~N
1G f(v, v')=-

vv' N
~Be'e ""' 'r +E,(k,)-

277 0
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where we have used

To carry out the second sum over v, let 2vv /K„=/. Then Eq. (7) becomes,

~ f(v, v') = "- — — [Be e ' +E„„,(ki) —I'(()] iexp — ln ",~ ", "=,~, ~, , dq„df,2mnL„„ Q~~,

(8)
where L„=Ad, die the lattice constant in x direction, and K„=2)T/d. The quantity L, can be interpreted as
the effective "length of the sample" in the x direction. For a reflection experiment, this is just the penetra-
tion depth of the photons. Substituting Eq. (8) into Eq. (3), we have the imagina. ry part of the dielectric
function (BZ is the Brillouin zone)

tz((d, h)= ~ z z dl —

B dk dk„
nni m co L„Q BZ BZ "BZ

dk„'ii P„„,iz i
[Be e ' E„q(k,) -k&u]i '

At this point it is appropriate to consider only one interband transition between band z and p, and change
variables of integration as in Ref. 6. Equation (9) can then be rewritten as

fegB ~ E„(k+teSB) -E„(k,)+Be
a „E„.(k+feS()) —E'„.(k,)+Be "'

where we have used the weak-fie&~ approximation
which leads to

e =1, &(k„, k„)=0, + ~ ~ ~, , (11)

P„„.(k+be 8 ) = P„g (k —beh, ) =P„„.(k) .
To obtain an expression in terms of the surface field
ho which has a form that can be reduced to the case
of zero field, we expand the energy term in Eq.
(10) in terms of the surface field

where f(k+feSB) stands for

E„(k+te8()) —E„'(k,)+Be "—k(d .

A similar expression can be derived for

In[E„(k+ feS ) E„.(k,) +Be-
Substituting Eq. (11) in Eq. (10), we have
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.2

tive ly similar to that found in Ref . 5 for very large
inhomogeneitie s .

The experiment described below will be seen to
fall within the range of field nonunif ormities de-
scribable using our theory, namely, field penetra-
tions small compared with A. but large enough to
satisfy L„/L~ & 3.

III. EXPERIMENTAL

I

Il,2
I

I

I

I

FIG. 2 ~ Line-shape function F(N .

although the location of peaks and zero crossings
on the axis depends on S0, the fact that the s cale
of the argument A is only dependent on 80 allows
the horizontal scales of X and j' to be adjusted to
fit experiment (determining $0 to within a, constant)
after L„/LD has been independently determined ac-
cording to (i), above. Thus, this model makes
possible separate identif ication of changes in sur-
face -field magnitude and field nonuniformity, which
is not done explicitly in Ref . 5

For values of L„/L~ & 3, the energy term in the
denominator of the logarithm in (14) becomes im-
portant . Specification of this intraband term re
guires knowledge (or assumption) of the carrier
effective mass . Avoiding this problem places an
upper limit of - 3 on the ratio L„/LD, which can be
fitted to experiment using this theory. Independent
determination of the effective mass by some means
would extend the range of L„/L~ over which theory
could be compared with experiment .

In the calculation of Ref . 5, the real and imag-
inary parts of the dielectric function are seen to
inte rchange in the limit of very large inho mo gen

city�

.
In our calculation, the exact shape of X and 7 for
large L„/Lp depends on the value chosen for the
effective mass . However, in the limit of very large
L„/LD, the principal features of the curves are
suppression of the peaks at A = 0 for both X and F,
relative growth of the first negative peak in X and
the positive peak at A & 0 in F with respect to al 1

other peaks, and rapid quenching of sa,tellite peaks .
This theory therefore yie lds a mixing of real and
imaginary parts of the dielectric function qualita-

TABLE I. Relationship of X(A) and F(A) to «& and
4&2 for the various transition types.

Transition type

M ()

M&—tran svers e
M, -paral 1el
Mz —tr an svers e
M2 —parallel
M3

Eg is the energy g ap.

f n f «~y(A)
f n f «'x(A)
f n f «2~(- A)

f n f
' x(—A)

f n f «'y(A)
f n f

«~z(- A)

f n I

' "x(A)
[ n f «r(A)
f n f

«'x(- A)

f n f
«~v(- A)

f n i «'x(A)
f n f «'x(- A)

Since X~ wi 11 aff ect the experimentally determined
and 5 &2 spe ctra, an experiment to test the the-

ory must provide for its determination . Modulated
el lipsometry provides measurements of 5 e& and
5e ~. Also, as pointed out in Ref . 15, in the act of
taking modu lated -e1lipsometry data, one also ob-
tains an oblique -incidence ele ctroref le ctance spec-

trum�.

Thus, sufficient measurements are avail-
able t o calculate X~ from the experimental data,
leaving only h, and L,/LD as parameters to be ad-
justed in the curve -fitting process outlined in Sec.
II ~

The transition at 2 .1 eV in Ge is known to give
a strong ele ctr ref le ctance structure, and has been
chosen for an experimental illustration of the the-
ory. Photoexcitation of another transition at the
funda mental gap in Ge will increase the free -car-
rier density, changing 80 and L„/LD. These changes
should appear as different values of $0 and L„/LD
necessary for fitting the theory to the measured
results .

The arrangement of the apparatus is shown
schematically in Fig. 3. Except for the additional
test -cell window to admit the photoexciting be am
and the photo exciting be am source, the exp eri ment
is similar to e1lipsom etric te chniques for me asure-
ment of 6 eI, 5 &„and A.~ reported elsewhere in the
literature . ~ ' Schmidt and Knause nbe rge r 7

have employed a similar experimental ar rangement,
but have not extracted a va lue for A ~ from their
results, or used photoexcitation to change the sur-
face -field profile . Acquisition and analysis of the
data fo1low s the procedure of Refs . 4, 11, 15, and
16 ~

The samples are thin wafers of 30-0 cm z -type
Ge . The modulating field is applied by means of
a voltage between the sample and at a Pt counter-
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FIG. 3. Schematic diagram of the ex-
periment: S, light source and monochro-
mator; P, polarizer; Q, compensator; G,
sample; F, infrared transmitting filter; I,
tungsten light source; A, analyzer; M, mod-

a ulating voltage source, ac plus dc bias; D,
phototube; L. I. A. , lock-in-amplifier.

reference
L.I.A.

electrode, both of which are immersed in a 1N
KC1 electrolyte. Conditions for modulation in one
direction from the flat-band condition, and for
avoidance of surface contamination are determined
using the procedure of Ref. 11, and employed
throughout the subsequent experiments. Under these
conditions, the experimental signals are due to
changes in && and &2 in the space 0 & x & X~ as the
modulating electric field is turned on, and the re-
sults can be compared with the theory.

The photoexciting beam is just the output of a
tungsten projection lamp, filtered to eliminate
wavelengths shorter than 7500 A, and focused to
a spot about 2 cm in area on the sample surface.
The 7500-A short-wavelength cutoff prevents exci-
tation of the 2. 1-2.3-eV transitions by this beam,
but allows generation of electron-hole pairs across

the fundamental gap in the Ge. The lamp current,
and hence the beam intensity, are preset. Data
are taken point by point, at 50-A wavelength inter-
vals over the photon energy range of interest.

IV. RESULTS AND DISCUSSION

Spectra of 5&2 vs S~, with and without illumina-
tion by the second light beam, are shown in Fig. 4.
Also shown are the results of fitting theory to ex-
periment using the ratio of peak heights to deter-
mine L„/L~, and the location of zero crossings to
determine the relative change in $0 under illumina-
tion. Similar spectra for 5&, are shown in Fig. 5,
together with the corresponding theoretical curves.

Although causality relates 6z, and 6z» the re-
lationship occurs through an integral over all pho-
ton energies. Hence, the nearness of the spin-

-t0

y4Co P ~
ep

FIG. 4. Spectra of 5e2 vs 5+: solid
line —experiment, no illumination; dotted
line —theory, L„=4000 A., $0=1 arbitrary
unit; dashed line —experiment, with illu-
mination; circles —theory, L„=200 A.,
go = 11 arbitrary units.

24
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$a) (eV)

I'IG. 5. Spectra of 6m& vs Ace: solid line —experiment,
0

no illumination; dotted line —theory, L„=4000 A, gp=1
arbitraxy unit; dashed line —experiment, with illumina-
tion; circles —theory, L&= 200 A $p = 11 arbitrary units.

orbit-split component of this transition at 2. 3 eV
suggests that an independent experimental deter-
mination of 5&, , as is possible with the modulated
ellipsometric technique, might serve as a check
on integration error because of the overlap of these
two spectra. The fact that the best fit is obtained
for both 5&2 and 5a, independently, with the same
values of $0 and L„/L~, indicates that overlap
from the 2. 3-eV spectra is not significant in this
case.

In order to compute the penetration depth of the
electric field from our results for L„/L~, a value
for L„must be assigned. This is not an additional
adjustable parameter, but one which can be cal-
culated from the available experimental data. For
their study of electroreflectance near the funda-
mental gap, Aspnes and Frova' have used a penetra-
tion depth of

L„=X/(»~ (n2-~i) ~),
where nz and n& are the refractive indices of the
sample and ambient medium, respectively. For
that ease, which corresponds to LD and ~~» A., the
photon penetration depth is clearly limited by the
momentum uncertainty principle applied to the
change in photon momentum at the front sample
surface, and (17) is a good estimate of L„.

For our case, since ~~ « ~, the fact that the
modulated region of the solid is a thin film of thick-
ness A~ must be taken into account, since reflected
photons can come from any depth at which the op-
tical properties remain different from those of the
bulk.

A third possibility arises for the case of very
strongly absorbing materials where essentially all
of the photons are absorbed in a distance less than

In such materials the depth of the solid which
is sampled by the reflected photons is just the in-
verse of the optical absorption coefficient.

In each of the three possibilities above, the mod-
ulated ellipsometry experiment provides sufficient
data to obtain an experimental estimate of L„. The
wavelength is always known, and our experiment
yields both A~ and the absorption coefficient.

For the Ge samples studied, A~ and the absorption
distance are both approximately 400 A, so it is not
possible to identify the mechanism which limits the
depth to which the light samples the optical proper-
ties of the solid. As long as L„can be determined,
however, this problem is not important.

If we assign L„= 400 A, we obtain LD values of
400QA without illumination and 200 A with illumina-
tion, a decrease of a factor of 20. If used as Debye „

lengths, these values give reasonable carrier den-
sities in each case. The surface field 80 increases
by a factor of 11, but not by an amount correspond-
ing to the decrease in field penetration depth. This
simply means that as the surface field increases,
other parts of the experimental cell are taking up
more of the total potential drop between the elec-
trodes. This is to be expected since we have in-
creased the conductivity of the Ge electrode by il-
luminating it.

The parameter A~ does not appear to be sensitive
to illumination over the range of light intensities
available in this experiment. As pointed out earlier,
A~ cannot be expected to follow LD in linear fashion.
Also, since the plane x= ~~ is illuminated very weak-
ly because of absorption, it is not likely that changes
in ~~ could be detected in this experiment very
easily.

In summary, the experiment shows that, for our
samples, the values of 6e, , 6&~, g~, and LD are such
that the %KB approximation of Ref. 5 would not be
valid, and that the theory presented describes well
the changes in surface field and field penetration
depth as well as the changes in the line shapes of
5c, and 5E& that occur upon illumination of. the sam-
ple with a second light beam.

V. CONCLUSION

We have shown that, in assessing the validity of
approximations involving electroreflectance in a
nonuniform field, four lengths characteristic of the
problem are important. The relationship of X and

A~ determines if the small-wave-number approxi-
mation is appropriate. The relative values of A~

and the inverse absorption coefficient determine
whether reflection from the front surface only, re-
flection from the modulated "surface film" 0& x & A~,

or absorption dominate in determining the depth
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in the sample from which the reflected light can
return. Finally, the ratio L„/Ln can greatly alter
the line shapes of 6a, and 5&&.

We have derived line shapes of 5&& and 5&~for an
exponential model of the electric field, under the
assumption that the field penetration depth and the
depth to which the optical properties are modulated
are smaller than the light wavelength. This ap-
proximation complements that of Aspnes and
Frova, which is valid when these depths are much
larger than the light wavelength. As expected, and
evident from Figs. 1 and 2, our theory approaches
theirs as the field penetration depth becomes large
compared with the photon penetration depth.

Using a modulated ellipsometry experiment which
determines the values of A~ and I.„directly, we have
determined the electric field penetration depth,
LD and the line shapes of 6&, and 6c„and the
relative change of bo upon illumination of the sam-
ple with a second light beam. The fit of theory to
experiment is excellent considering that all broad-
ening mechanisms are neglected in the theory, and
the fit yields reasonable values of the field pene-
tration depth.

Modulated ellipsometry is too complicated an
experiment, and the spectral range of ellipsometer
components are too limited, for it to be a tool of
general use in obtaining photoreflectance or elec-
troreflectance spectra. It is, however, useful
as a preparatory experiment, to determine the de-
gree of field inhomogeneity that must be taken into
account in the analysis of these spectra. Koeppen
and Handler have proposed optimum sample doping
as a method for minimizing field inhomogeneity.
An experiment such as this one would provide an
experimental check on the success of such a meth-
od.

APPENDIX

We wish to calculate the eigenfunctions and eigen-
values for electrons in a solid in an electric field of
the form 8= Joe ". The potential has the form

where the g are the unperturbed eigenfunctions. Sub-
stituting (A3) into (A2) and taking the inner product
with P„.(k', r) yields

+&„.(k) (0, (k, r) lf(&) l 4.(k, r) ) }=o .
(A4)

Using (Al) to evaluate the matrix elements of f(x),
we obtain

(g '(tt r) lf(x) lg„(k, r))=B5„.5„

9
Bex-p —i& 5s,.X„„,(k) —5„„, 5,„

(A5)
where

The off-diagonal terms of X„.commute with the
operator

9
~«'

gp
~»' ~

-& exp —s& X«. k +5«5». —+X«k
yak

(A6)
where we have def ined

X„„(k)=X„„.(R) if n 4n'

=0 if n=n'.

Substituting (A6) into (A4) and rearranging terms
yields

Also, if we consider k to be continuous, the deriva-
tive the Kronecker 5 is equivalent to the negative
derivative of the function multiplying the Kronecker
6 within the summation operation, over the variable
of integration. Thus,

($„„.(R', r) lf(x) lg„„(k, r))=B5„,„5».

f(x) = B(l —e "),
where B = —e mojo.', inside the solid.

The Schrodinger equation can be written

(Al)
B exp —i & +X„„(k) A„„(k)

x

where 8' is the eigenvalue in the presence of the
field, V(r) is the potential of the solid, including
surface effects, in the absence of the applied field,
and all other quantities have their usual meaning.
We seek an expansion of the form

= e " ' "" "' [E„(k}—W„„(R~)+B]A„„(k}.
(A7)

Equation (AV) can be solved in a form similar to that
used by Argyres. The result, which can now be
substituted into (1), is

A„,„(k)= C„,„(k)

(t)„„(R,r) =Z A„,„(k)g„(k, r), (A3)
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~kg

+ I.5aa A.n (k) —x-(k) 1 dk', (As)

where the eigenvalues W„,„remain to be found.
The C„,„(k,) are just normalization constants. 6

Imposing the condition of periodicity in 4' space
leads to

equation for the eigenvalues:

W„,„(k~)=E„(k)B-Be e

where

0= 2 1 — — tan — ——~ k„K, ,

(A10)

(A11)
xz

In —[E ([ k;c)„—W„,„(k,)+B])dk,'+ s(k„lC,)
„0 and

a =E„(k,) —W„,„(k,)+B,

= —27&p, (A9) x'= a'k'„ /2p, .
where v is a positive integer and & has been de-
fined in (4). Using (4) we can carry out the integra-
tion in (AQ), solution of which yields the following

The quantity S' used in Eq. (3) is obtained from
(A11) by letting k„-k'„.
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Oscillatory magnetoresistance measurements have been made on n- and p-type Pb& ~Sn~Se

with x=0. 08, 0. 17, and 0.20, and carrier densities between 2x10 'and 3&&10 cm, The
Fermi surface is made up of pockets of holes or electrons at the L point on the Brillouin-zone
face. For n- and p-type samples with x = 0. 17 and 0.20 the Fermi surface is nearly spherical.
For x =0.08 and 1.4 && 10~ holes/cm, clear anisotropy is seen corresponding to E =1.71+0. 1.
Cyclotron masses at the Fermi level were obtained. At the same carrier density, hole and

electron maases appear equal, within the 10% accuracy of the measurements, indicating mir-
ror bands. At high magnetic fields (up to 150kG) spin splitting was observed and values for
the g factors deduced. Expressions for the effective masses and g factors are derived from
an existing six-band model and compared with the results.

I. INTRODUCTION

Pb& „Sn„Se is a semiconducting alloy with an

energy gap dependent on composition x. ' It has
the NaC1 crystal structure for x & 0. 43 (for x & 0. 43

the structure is that of Snse, orthorhombic 829).
As in the PbTe-SnTe alloys, the addition of SnSe
to PbSe decreases the energy gap of the material.
At a composition x= 0. 15 (at 4. 2 K) the gap passes
through zero and the conduction and valence bands


