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This paper presents a theoretical study of the relative intensities and energy splittings of
the excitation lines of a single-hole acceptor in a group-IV semiconductor. Group theoretical
methods are used to obtain the selection rules for electric dipole transitions and to give the
relative intensities of the stress-induced components of a given absorption line. This study
became necessary in the course of our piezospectroscopic investigltion of the excitation spec-
trum of singly ionized zinc in germanium because previous such studies lacked sufficient
generality. The diagramatic representation of the results of our calculations are specifically
suited to the above acceptor impurity. The theory reveals that the ratios of the intensities of
the components of a I'8- I'8 transition depend upon two real parameters instead of one, as
was previously believed. One of these parameters may be determined unambiguously from a
measurement with uniaxial compression along a (111)direction. The magnitude of the other
may be found from measurements with compression parallel to (100) and (110). At the same
time symmetry assignments can be made to the stress-induced acceptor sublevels by compari-
son of the observed and theoretical relative intensities.

I. INTRODUCTION

Considerable effort has been devoted to the study
of defects in. crystals, and in the process of under-
standing such entities, the properties of both the
defect and the host solid are elucidated. Some such
defects which have been probed very thoroughly are
chemical impurities introduced into semiconduc-
tors. Of these, group-III and group-V elements in
silicon and germanium are classic examples. The
model developed' " to explain the effects of such
impurities depicts these substitutional impurities
as giant hydrogenlike atoms, their parameters
being determined to a large extent by the aniso-
tropic environment presented by the crystal. The
spectroscopy of these and other impurities" has
proved to be a powerful means for studying the na-
ture of their energy states. The first observation
of an excitation spectrum of an impurity in a semi-
conductor was that of Burstein et al. " Since then
the effects of external perturbations such as magnetic
field and uniaxi31 force have been us ed' ' to verify the
quantum numbers, provided by theory, labelling the
quantum states of the impurities. The present in-
vestigation represents such a spectroscopic study
of singly ionized zinc in germanium. Preliminary
work has been reported elsewhere. '

In the course of the present study, it was neces-
sary to generalize the previous theories of the rela-
tive intensities of the stress-induced components
of. an excitation line belonging to a single-hole ac-
ceptor. This generalization is discussed in
detail in Sec. II. In it we establish that all the ob-
served components have relative intensities that
are determined at most by two independent real
parameters. These parameters are related to the

real and imaginary parts of two matrix elements of
the electric-dipole moment. This holds for the
most complex transition observed while for the
simpler transitions no adjustable parameters are
necessary. As will be seen, however, for a com-
pression in directions other than (100) or (111),
the relative intensities depend in addition on other
parameters which are directly measurable. The
detailed comparison of the experimental and the-
oretical studies has permitted us to establish the
symmetry assignments of the ground state and
several of the excited states. The deformation-
potential constants of these states, ' ' ' i.e. , the
splitting of the states per unit strain, have been
determined. This paper contains the development
of the theoretical machinery which we have em-
ployed in the analysis of our experiments. A sec-
ond paper is being prepared in which the experi-
mental results are described and analyzed.

II. THEORY

We consider the excitation spectrum of an ac-
ceptor in an elemental semiconductor such as sili-
con or germanium. The analysis of the excitation
spectrum starts with the assumption that the states
of a positive hole bound to a substitutional acceptor
atom can be classified according to the irreducible
representations of the point group T„. Thus, we

suppose that the distortion caused by the presence
of the foreign atom does not alter the symmetry of
the site. Our considerations will limit themselves
at first to a single hole bound to a negatively
charged acceptor ion. This model is applicable to
the excitation spectrum of neutral group-III accep-
tors such as boron. However, we will devote par-
ticular interest to the excitation spectrum of singly
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TABLE II. Character table for the double-valued
irreducible representations of Tz.

8C3 3C2, 3C2 6S4

—1 0
—1 0

1 0

I'6 2 —2

r7 2 —2

—g2
v'2

0

X, F, Z, $, g, f are real and normalized to unity.
The two sets {(/I„] and {p„jare orthonormal, and

any t/) is orthogonal to any p. The functions g)
are eigenfunctions of the total angular -momentum
operator J with eigenvalue ~4 and of J, with eigen-
value p, (where p. = —z, -z, z, z3)if X, Y, andZ
are p functions. In general, however, this is not
the case but the notation appropriate to J= 2 states
is kept for convenience. The notation for the y
functions has been selected with a considerable
degree of arbitra, riness purely with the object of
simplifying the notation in the following develop-
ments; this will be pointed out in the pertinent
places. The purpose of the study that follows is to
analyze the relative intensities of the stress-in-
duced components of the absorption lines.

A. Splitting of States under Stress

Within the linear approximation, the change in the
potential energy of the hole, due to the stress is

V=Z V, ~e(~
f~j

1
t/)3gq ——g (X+i Y)n, [(X+iY)P —2Zn],

(I)
where

(4)'&&=2 ex, 'ax,
l/, & z

— [(X- i Y)n + 2ZP],
1

-1 2 6
z

0-siz=q- (X fY)P, -
is the strain tensor, u(r) is the displacement, due
to the stress, of the point originally at r. In gen-
eral, V, J is an operator depending on both the posi-
tion and the spin of the hole; we neglect the spin
coordinate.

We now write V as follows:

q, g, = — [((—fn)n+2CP],
1

3/2
2

&igz= g~ (& —& II)P, '

ionized group-II aeceptors. Consider for example
Zn in Ge. The neutral Zn acceptor can be regarded
as Zn with two bound holes. If the material con-
tains Sb as well as Zn the compensation can be such
that not only will there be neutral zinc in the ma-
terial but singly ionized Zn as well. The Zn ac-
ceptor can be regarded as a Zn ion with a single
hole bound to it.

We are dealing with a system containing a par-
ticle of spin & and characterized by a Hamiltonian
which we designate by Ho. The states' of Ho are
classified according to the double-valued represen-
tations of the group T„=Ex T„, where E is the op-
eration which describes a rotation by 27T. There
are three representations of this sort, two of them
two dimensional and one four dimensional. The
character table and basis functions for the single-
valued representations are given in Table I.'
Here X, F, Z behave as x, y, z, the components
of a polar vector with respect to the cubic axes,
and &, q, & behave as yz(y' —zz), zx(z'-xz), and

xy (xz —yz).
The double-valued representations of T„are

given in Table II. The basis functions of I"6 are n
and P, the spin- —, sta.tes multiplied by a function

po belonging to I'„while the basis functions of I,
are o. and P multiplied by a function yo belonging
to I"~. We shall use two sets of functions that gen-
erate the representation I"8. They are the sets g„
and p, (p, =, —,', ——,', --,') defined below

1
(4 +&'0)n ~ p ~)z=-~ [((+fg)P 2gn]. -

6
V= V„„e„„+V„e»+ V„e„+(V„+V„)e„

The reason why the sets (I) and (2) are needed will
be explained later. We assume that the functions

TABLE I. Character table and basis functions for the
point group T&.

or
+(V,„+V„,)e,„+(V„,+ V,„)e„, , (5)

V=-,' (V„„+V„+V„)(z„„+e»+z„)
+ —, (2 V„—V„„—V„)(2e„—e —e„)

+ —,
' (V„„—V„)(e„„—e„)

Td

I')
I'2

r4

E 8C3 3C2 6$4

1 1
1 —1

60& Basis functions

X + Y2+Z
X(+ Yq+Zf
2Z -X —Y2 2 2

&3 (r2 —Y2)

X, Y, Z

+ (v,.+ V.,)e,.+ (v.„+v„.)z„

+(V„,+V,„)e„, . (6)

In writing Eqs. (5) and (6), we have made use of
the fact that c,&

is a symmetric tensor. Needless
to say, only the symmetric part of V&& contributes
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to V. It is sufficient to regard V, ~ as a symmetric
tensor; however, this conceals part of the sym-
metry properties of tensors of this form which we
will make use of below. The advantage of Eq. (6)
as compared to Eq. (5) is that —, (V„„+V„+V„) be-
longs to I'„2V„—V„„—V„and V„„—V„ to I'„and

decomposition can be inferred from the reduction
of the representation generated by the 6 compo-
nents e&&, namely the symmetrized direct product '
of I'5 by itself

[ r, xr, ]=r, +r, +r, .

The antisymmetric direct producta' is

f, =2Z'Z —X'X- Y'Y'= 3Z'Z-f o,
fz --l3 (X'X —Y'Y); (12)

(1) except that we have X', Y', Z', instead of X,
F, Z. The functions X', Y', Z' behave in the
same way as X, I, Z but are not necessarily equal
to them. The nine products X,'XJ(i, j =1, 2, 3)
form the basis for the nine-dimensional representa-
tion I', xI', of T„which we have decomposed into
a symmetric part [Eq. (I)] and an antisymmetric
part fEq. (8)]. The basis vectors of I', xl", after
its reduction has been carried out are

fo ——X'X+ Y'Y i Z'Z

{r,xr,]=r, . (6)

Under the influence of the field V induced by the
strain, the levels of the acceptor can experience
shifts and splittings. For a I'6 or a I"~ state only
a shift occurs with no splitting as required by
Kramers's theorem. In considering the splitting
of the I'8 states under stress, we require the ma-
trix elements of V for states of the form

f = —'(Y'Z Z'Y')

f, = —,
' (z'x+x'z),

f z = z (X Y+ Y X);

f, = —,'(Y'Z —Z'Y),

f„=—'(Z'X —X'Z),

(13)

(14)

ga„b+p„,
where jaj + jbj =1 to ensure normalization. The
matrix elements that we need are

+a~b(@~.
/

Vf y„) +ab*(p„.
/

V/ p,),
(1O)

which are thus decomposed into a sum of four which
we now discuss one after another, Take first the
calculation of (g„. ~ V~/„). This necessitates the
evaluation of g~~, g, . These 16 quantities are dis-
played in Table III. The table is more general than
is required for the calculation of the matrix ele-
ments of the potential. The reason for this added
generality is that later on we shall need products
of the same kind for calculating matrix elements
for transitions between different levels. The added
generality consists in the tabulation of g,tg„where
t/i„'. is formed in the same manner as the functions

f ( ——z (X'Y —Y'X),
where the symbols in parentheses designate the
irreducible representations to which the above
basis vectors belong. Furthermore f, and f2 belong
to the first and second rows, respectively, of I",
in the representation generated by the basis given
in the last column of Table I. They, being ortho-
normal, generate a unitary irreducible representa-
tion of T, . In a similar way, the functions f», fr,
and fz belong to the first, second, and third rows,
respectively, of the representation I"5 generated
by X, I', and Z. The functions f„f„, and f& bear
the same relation to I'4. We notice that if X'=X,
Y'= Y, and Z' =Z, all three functions in Eq. (14)
vanish. A similar result holds for the products
y,'»y „. They are expressed in terms of the functions

go, g„g~, g~, g~, gz, g(, g„, g( defined by equa-
tions identical to those used to define fo, f„f„f„,
fr fz~ fg~ f„, f~ except that X, Y, Z, X', Y', Z'
are replaced by $, g, f, $', p', P', respectively.
In a similar manner to the case for the construc-

TABLE III. Products of the type ('» tj)

pi»

&;3j 2

&'-3(2

43]2

afo 4fi+ifq-
1 1

~~ (fx ifr) +~~ (fr+if~)

+ —'
6 f2 ~3 fz

1 1—
~q (fx+ifr) -~q (fg -if~)

—.'(f, + if„)

+ —'
ef2 ~3 fz

3 Yg ~f~)

Z

f0+ 6' 3f&

1 . 1
~~ Y»-'"fr)+~ (ji+&fn»

0-3(2

1 Z

6f2
—

~~ fz

1 1
~ (f~+ifz) —

~ (f&
—if„)

3f0 +f1 &ff
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tion of Eqs. (11)-(14), use has been made of the
facts that [I" xr ]= I' + I' + I' and {r xr }= I' .
The results are given in Table IV. We now need
tables for the cross terms g„.p~ and p„'tt)t, . Con-
sider the products ((t„'~p„which are linear combina-
tions of members of the set X $, X g, X f, Y g,
Y'g, Y'g, Z'$, Z'g, Z'f that generates the rep-
resentation

I'4 x I', = I",+ I",+ I", + I', (Is)

12 =X'(+ Y'g+Z'f (i6)

h, = Y'g —X' (,
h, =v'3Z' g;

h =-,'(Y'g —Z'q),

h Y = —,
' (Z'$ —X'g),

hz = z~ (X Y) —Y $) i

(18)

and

h( ——z (Y'f + Z '6),
h„= -'(Z'$ X'f),
ht= —,'(X'q+ Y'$) .

The functions h~, h~, hz behave as X, Y, Z while

h„h„, h~ behave as $, g, f. It is interesting to
note that h, and h, behave as xyz(2z' —x' -y') and

/3xyz(xz —y'), respectively. The above products
are given in Table V.

In a similar way, we construct the functions h

corresponding to the products p'„1g, . They are
identical to Eqs. (16)-(19)except that X', Y', Z'
are replaced by X, Y, Z and (, g, P, by (', q', f'.
The corresponding table for p~tg~ looks like the
Hermitian conjugate of Table V except that the func-
tions A are replaced by the functions h. In the de-
termination of the splitting of a I'8 state the two
sets of functions h and h are identical.

The matrix elements of V on the left-hand side

The reduction of this representation is accomplished
with the following functions:

of Eq. (10) can now be evaluated using an orthog-
onality theorem of the theory of group represen-
tations. From Eq. (6) and by inspection of Tables
III-V, we obtain the following matrix expression
of V.

[ Y]= a'I (e„„+e,„+e„)

yb'(e „(J„—4I) +e~~(J~ —4—I) + e~g(J~ —4+I))

+ (2d'/~3 )({J,8,}e„+{J,J„'}e,„+{J„J,}e„,),
(20)

where I is the unit 4x4 matrix, and J„, J„and J,
are the matrix operators corresponding to the com-
ponents of the angular-momentum operator J with

We have used the form given by I uttinger.
Details of the derivation of Eq. (20), and other
pertinent information including the definition of the
symbols used, are given in the Appendix. The
symbols used for the deformation-potential con-
stants refer, in the literature, explicitly to the
ground state of an acceptor but the form of the ex-
pression is iden/ical for all I"8 states. In referring
to an excited I"8 state an appropriate symbol is
chosen. " The conventional notation for the strain
components is e, &

= e&& if i =j and e,&
= 2E„. if i Wj .

In the experiments described in the present work,
a uniaxial compression is applied along any one of
the simple crystallographic directions (111), (100),
and (110). Thus, we will be interested in deter-
mining the splitting of a I'8 state for compression
along each of these directions.

1. Applied Force along the [ill] Axis

Under a uniaxial compression F along a (ill)
axis the site symmetry of the substitutional im-
purity becomes that of the point group C3„. The
double-valued representations of C,„are given in
Table VI. A level characterized by r8(T~) reduces
to r4+r, +I'6 of C,„. Except in such cases where
no confusion can arise we will specify the point
group to which a given irreducible representation
belongs by including the Schoenf lies symbol for this
group in parentheses following the designation of

TA,BLK IV. Products of the type y ~~.

Wsi 2 3gc+ 6 gi 3 ge
i I I

(gx+igY)+~~ tg& ig,)- 0-i/2

Tg'2
~& gz

0-3)2

3 (rg+ &gg~

P i/2
I- I

(gx zgY) ~S @+Egg)

i~g + g6 2 ~3 z

1 I
3gc Tgi & g tt;

i
3 gc 6 gi + ~gC

i
Tg2 ~g gz

I
~~ Vx+~g~~+~~ kg-~gn~

IP-3)2
i—rg2+ 3 gz

I I~ (gx tgY) ~ (Qg tA)
i

3 gC+ 6 gi+3 gq
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TABLE V. Products of the type g„'. y~.

2223

& 3)2

03'(2

1 i
2~3 '

W3

—;(hx-ih, )

1 i~hp- ~ hp+ hz

1 1—~(hx+i hy) -~3(h(-iQ)

-1 -i
2j3 "~ ~S

1 1-~ (h~-ih~) +~ &h(+ih„)

1 1
2 hp —

2~~
h2-ihz

1
2hp — h2+ i hz

2g 3

1 1~(hx-ih, ) -~ (h, -ih„)
1 i

by+~3 hg

1 1
~(h~ ih, )+~(h, +ih„)

—Bhp- g h2- hz

--:(h~+ ih~)

1 i
2v'3

the representation. Since the repr esentations
I'2(C2„) and I'2(C2„) are complex conjugates of one
another, the levels to which they belong are degen-
erate under time-reversal symmetry. ' The sym-
metry of the resultant level will be designated by

~5+6 ~

The components of strain in this case are e„„
e —e —(3 T)(s» + 2s,2) and e„,= e„=e,„=( 3 T)s44,

where T is the stress and is negative for compres-
sion, and the s,&'s are the elastic compliance coef-
ficients. '2'" Equation (20) now becomes

i 1+i
@

1
~1/2 g 1/2+ gg -1/2+

Qp -2/2

-1/2 fp 3/2+ fg 1/2 +
Q6 -1/2

(22)

i 1+i 1
-3/2 v6 1/2 gg -1/2+gp -3/2

The functions A, »2 are degenerate, belong to F„6
and correspond to the energy eigenvalue
a'(s»+2s»)T+(d'/2v'3)s«T, while A, , /2 belong to
I'4(C,„) and to the eigenvalue a'(s„+2s,2)T
—(d'/213)s«T. The energy separation of these
sublevels is, thus,

b 111 = (d //3) 44Ts (23)

The subindices ——,', ——,', &, —', in A„should not be
construed to have any more significance than that
explicitly stated.

[V]=[a'(s»+ 2s,2) —(5d'/843)s«)TI+ (d'/2/3)s«TJ2,

(21)
where 8'„ is the component of J along [ill]. The
orthonormal wave functions that diagonalize Eq.
(21) are

1+I 1
~8/2 g2 3/2+ g6 1/2+ v6 -1/2 t

VII. The components of the strain are e„„=e»
= s,2T, e„=s»T and e„,= e„=e,„=0. Equation (20)
becomes

[V]= a'(s»+2s„)TI+b'T(s» —s»)(J, —5I/O)

(24)
The I'6 level splits into two sublevels with wave

functions 4'„/2 which belong to 1",(D„)with eigen-
value a'(s»+2s12)T+b'(s11 —s12)T and e„/2 which
belongs to I', (D2, ) with eigenvalue a'(s»+2s»)T
—b'(s» —s»)T. The difference in energy of these
sublevels is

~1oo = 2b'(s1, —s „)T (25)

The orthonormal wave functions that diagonalize
[V] are

TABLE VI. The double-valued representations of C3„.

It should be noted that if the selection of the func-
tions p [see Eqs. (2)] had been made in analogy
to that of 11/~, then the association of the indices
x —,

' with I'o(D2„) and of a —,
' with I'7(32„) would have

been misleading. Had we selected y„ in the same
way as the g~, 1/1, 2/, would have generated the
same representation as the 1', ,/„and similarly for
/~1/2 and $

3. Applied Force along the [110]Axis

For F II (110), the site symmetry of the impurity
becomes C2„, and I'2 reduces to 21',(C2„). The
strain components are e„„=e» = (-,' T)(s»+s,2),
e„=s,2T, e„=e,„=0, and e„,=(-,'T)s44. Equation
(20) now becomes

[V]= a'(s 11 +2s,2)TI —2 b (s11 —s»)T(J, —5I/O)

+ (d '/2/3)s«T fJ„J,] . (26)

2. Applied Force along the [001]Axis

The new point group for F iI (100) is Do„and 1",
reduces to I"o(D2„)+IV(D2„). The double-valued ir-
reducible representations of Da„are given in Table

r4
I'5

l6

2C3 2C3

—1
1
1

Ov 30'v
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D@ E

I 6 2
I'p 2

E 2S4

—2 v2
—2 —v'2

2$g

—g2
g2

C2, C2 2CP 2 2C2 20ga 2(jg

0 0
0 0

TABLE VII. The double-valued representations of L)2 . light. An eigenstate of the perturbed system after
a stress has been applied is expressed as a linear
combination of the original degenerate eigenfunc-
tions of that level. Thus for the initial state

X = Q„S,„4',

4/2 = (1+r') "'('p1/2+& r p-2/2)

1/2 = (1+r ) (2 2/2+r -1/2)

1/2 = (1+-r') "'(rq'1/2 -2'P-2/2),

e-2/a = (1+r') "'(-ar ~2/2+~-1/2),

where

r = [~100+ (+100+3~111) ]/'~~~111

(2'7)

(2S)

and a corresponding primed expression for the final
state. For example, with stress in either a (111&
or (100) direction, S= S for a transition which, in
the absence of stress is described as a I', - I'8

transition. For a. (110& direction we have just seen
[see Eqs. (27)] that the matrix S depends upon the
parameter y and thus SWS'. We introduce the
concept of a transition matrix defined by

&x.
'

l~l x.&
= (s"~s).. . (30)

9»/~ are degenerate with an eigenvalue of

(s11 + 2s12)T + (+102 + 3 ~111) sgn ~111 and ek1/2
belong to the eigenvalue a'(s„+2s,a)T

& (~100 +3 +111) gn+I11 H re sg +111 1s +

6„,is positive and —1 if it is negative. Hence the
two I"2(C2„) sublevels are separated by

lS ~2 1/P,~„,= —,(~„,+ 3a„,)
B. Relative Intensities of Optical Transitions

(29)

In order to extract the maximum information
from the experiments described in this work it is
necessary to compare the observed relative inten-
sities of the stress-induced components of the ex-
citation spectrum with those obtained from theory.
Without an external perturbation, electric-dipole
transitions are permitted between I", and I'6, I"„
and I'8 since the direct products I",~ I",*xI'8 all con-
tain I'„where l=6, 7, or 8. However, it should be
noted that while I', appears only once for / =6 or
7, it appears twice for / = 8. This means that for
transitions from a I', state to either a I 6 or I,
state, the matrix elements of the components of
the dipole-moment operator can all be expressed
in terms of only one of the complex matrix ele-
ments. Thus, since a given transition probability
is proportional to the square of the magnitude of
the appropriate matrix element, the relative inten-
sities of all the stress-induced components of such
a transition are completely determined by sym-
metry considerations alone. Qn the other hand,
for a transition between two I'8 states, the matrix
elements are expressed in terms of two independent
complex matrix elements. Qnly the relative phase
of these two parameters is significant and there-
fore the relative intensities of the stress-induced
components depend upon two real constants.

The intensity of a given absorption line is pro-
portional to [()t/[ Q„l lt1&~2, where g1 and )t/ are the
wave functions of the initial and final states, re-
spectively, and Q, is the component of the dipole
moment along the direction of polarization of the

where the vector Q without the circumflex accent
stands for the vector matrix [(4,'. i@I @, &]. Hence,
we first address ourselves to the determination of
the components of the matrix Q.

For a I"8- l ~ transition, the appropriate matrix
elements are

1/2 I @I+.& =&~.1/2 I@ I
ai .+ b~.&

= n&~. 1/2 I@I i .& .
(31)

Here + y/2 = G pp and @ &/p
= P po where p, belongs

to I', (T2). The term in b vanishes since I', xl"4
does not contain I', . The products 41«21' are
given in Table VIII. Using the orthogonality the-
orem mentioned before, we construct the compo-
nents of the vector matrix in Eq. (31); these are
given in Table IX.

For a I 8 I 7 transition, the matrix el ements
are

TABLE VIII. Products of the type 4,&/& It)~.

&-3/2

1 2 1~ (X i Y)y0 —jg~ Zy0 ~ (X —jY)y0

1
2

2=Q+2Y) q0V6
Kg Z+0 ~ (X —2Y)90

&C,'1/al@l +.& =-&+,'1/algal. &. +b~. &
= b&+,'1/2 I@I~.&

(32)

the functions 4,', /~ contain yo which belongs to
I"2(T,). It is the term in a which now vanishes since
I'z&&I 5 does not contain I', . Tables X and XI contain
the information appropriate to this case.

We see here the reason for the choice of the basis
functions of Eqs. (9). If b were zero, the transi-
tion I', - I', would be forbidden whereas if a were
zero, then the I 8- I 6 transition would be forbidden.
This is incompatible with the most general result
permitted by symmetry.

For transitions between two I 8 states we need
to evaluate the matrix
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TABLE IX. Matrix elements of the dipole moment for
I'6 transitions.

1
2

TABLE XI. Matrix elements of the dipole moment for
7 transitions.

1
2

2 g3Dp(x + iy) —2iDpP Dp (x iy)
0 iDp(x+iy) 2DP iV3Dp(x- iy)

DD ——(a/D/6) fA'VDO Q„dr and x, y, z are unit vectors
parallel to the cubic axes.

—,
' -Dp(x-iy)

—2D p z 'tV3 D p (x —iy)

~DO ——(b/D/6) J $ (Do ()„dr.

/3Dp (x+iy) 2iDp'2

- iDp (x+iy)

Q = (a tti „D + b qi „' Q I a/ „+b ~„) (33)

which in turn requires the use of the matrix ele-
ments listed in Tables XII and XIII. These latter
tables have been compiled from Tables III and V
employing the previously quoted orthogonality the-
orem. The matrices (y~ ~ )Q)qi„) and ((o„' ~ )Q)I(i„)
can be obtained from those of Tables XII and XIII,
respectively, by taking the Hermitian conjugates
in each case and substituting qa = (1/v'3) f gxID)„d r
for q, and q,

' = —-', f TtxfD)„d r for q,'.
We can now write Eti. (33) as follows:

final state, and S'= S for a I', final state. We will
consider the two cases in which the electric vector
of the radiation E is either parallel or perpendicular
to F. These two situations will be designated by

E), and E„respectively. Since we will require the
components of Q along the directions of F and two

perpendicular directions, we consider a Cartesian
coordinate systemx', y', z', where z'll F and%'
and y' are any two orthogonal unit vectors perpen-
dicular to z'. We have selected x' = (x+y —2z)//6,
y'= (y -x)/V'2, and z'= (x py +z)/43:

2 4i
Q = ——(D+D')U ——D'V,l3 v'3 (34)

case (i) Fs-rs:

where U and V are vectors whose components are
the matrices U„=(J,J, [, etc. , and V„
=((8„-J,)J„[,etc. , while D=a aqD, +b*bq~
+ 2a*bq,' and D' = b*aqz —a*bq,'. Similar expressions
have not been given for I'8- I'6 and I 8- I', transi-
tions since they do not provide any further simpli-
fication. We are now in a position to calculate the
relative intensities of the stress-induced compo-
nents of all possible transitions from a I'8 state for
any direction of F.

1. Applied Force along [ill]
The transition matrix Q appropriate to the basis

vectors of Etl. (22) which diagonalize [V] when
F II [ill] will be designated by Q [ill]; a similar
notation will be used for the other directions. The
transformations S and S' of Et(. (30), for F II [ill],
are

iv'3 0 -iv'3
1+i —z 1+i

1 1+i 1

0 K3 0

and 8'=I, the 2x2 identity matrix, for a 1"6 or I'7

Q„i[111]= Ds

Q,.[111]= Dc/2

case (ii) Fa-F, :

Q,.[ill]=Do

~(D D Di 1+i D
s/2 I3, 0 1 —i 2i 0

case (iii) Fa-Fa:

A

TABLE XII. Matrix elements of Q for transitions I'8 1 8

between states of the form g~. ~

TABLE X. Products of the type Cyf/2

'I('3/2

1
2

- qg(x - iy)

—qg(x+ if)

1
2

qq(x - iy)

iggg

q, (x + iy)



2226 RODRIGUE Z, FISHER, AND BARRA

0
1 (1- i)(D+D')

x g2 2D
0

(1 +i)(D+ D')
0

2(1+i)D'
2D'

—2D'
—2(1 —i)D'

0
(I -i)(D+D')

0
—2D'

(I + i)(D+ D')
0

0
1 (1+i)(D' —D)

Q [ill]=-I6 2;(D, 2D)
0

—(1 —i)(D+ 3D')
-4sD'

2(1 —i)D'
—2iD

—2iD
—2(1 +i )D'

4iD'
—(1+i)(D+3D')

0
2i (D+ 2D')

(1 —i)(D'- D)
0

Q,.[111]=

—(D+D')
0
0

2(1- i)D'

0 0
D+D' 0

0 D+D'
0 0

—2(1+i)D'
0
0

—(D+D')

It is a peculiarity of the (111) direction that the
relative intensities depend upon a single real pa-
rameter u (see Table XIV), which is defined as
follows.

Take

The relative intensities for the above three types
of transitions are given in Table XIV, the selec-
tions rules are also shown in Fig. 1. Each inten-
sity results from the superposition of four inco-
herent transitions since each level under stress is
a doublet. Thus, each number appearing in the
table in the columns labeled transition probability
is a sum of four terms, for example, the entry for
the (I'„,- F„,)„ transition is given by the sum of
the squares of the magnitudes of the four corner
elements of the Q,.[111]matrix. It should be noted
that these numbers are not the transition probabil-
ities themselves but are proportional to them.

Notice that for each polarization, and for each
zero-stress line, the sum of the relative intensities
in Table XI& is the same. This quantity is
8jD0j, 8jD0j', and N=4jD+D'j +16jD'j for the
transitions I 8

—I"6, I', —I'„and I'8- I „respec-
tively. This assumes that the two doublets which
are the initial sublevels are equally populated.
This, of course, is not true for a finite splitting of
the sublevels at low temperatures. It is interesting
to note that had we not included the functions p„
in the basis for the I"8 states, D'—= 0, and therefore
the line (I'4- I",), would be strictly forbidden, and

all the other allowed transitions would have equal
intensities. The wave functions we have chosen
are the most general possible consistent with the
symmetry.

A

TABLE XIII. Matrix elements of Q between states
and y„.

f

D+D'
f

+8
f

D'f' = —,'Ncos 8,
and

f
D+D

f

= 2Nsin 8,
(35)

Q„[001]= Do

Q~[001]= Do

Q, [001]= 2DO

case (ii) I",—I', :
P

Q„[001]= Do

which define the angle 8. In Eqs. (35), we have
exploited the fact that the total intensity for one
direction of polarization is normalized to N. From
the second of Eqs. (35) and the definition of N it
follows that sin'8 ~ —,'; thus it is enough to restrict
8 to the range 0 & 8& —,'m. It is- more convenient for
a graphical representation (see Fig. 2) to use the
parameter w = cos28 which is then restricted to the
range 0 ~u ~ 1.

2. Applied Jlorce along [001]

This is the simplest case to determine since the
initial representation also diagonalizes [V]. Hence
S and S' are unit matrices:

case (i) I'8- I'6:

&e„'. i Qf y, &

3
2

1
2

3
2 v 3qf b;+iy) 32qP

—2q1 (x —iy) 0

—iql z v 3q1 I —iy)

1
2

3fq1 Z

—V"3q1 + iy)

3
2

—13q,' {"—iy)

iq1'Z

2qf 8+iy)

""'= '0~a*0 1'(0 E3

Q, [001]=. 2DO'
J

'8~'=-3f&xQ, dr. case (iii) I', -I",:
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TABLE XIV. Transition probabilities and relative intensities for stress-induced components with F II (111).

Zero-stress
transition

I'8 rg

r8 r8

Stress-induc ed
component

r4 r4r, -r4
r4 r4

r&6 r4

r4 r4
r4

rate

roe r4
rs6 r56

@II

0

8 )DI)2
0

2 )D+D' j

0
0

2 )D+ D I)2+ 16)D i)2

2)Dp )2

6)Dp )2

2)Do'I 2

6 )Dp')2

2 )D+D' ) +4)D
2 )D+D' ) +4)D' j

0

Transition probability

2(1-u)
0
0

2 (1+u)

1

1 1

1
Q2 4

Relative intensity
g

q„[001]=

0
—D

0
—K3D'

—(D+ 2D') 0
0 43D'

—v3D' 0
0 D+ 2D'

v'SD'

0
D
0

rules are shown in Fig. 1. The parameter v which
appears in the last two columns of Table XV is de-
fined by

(38)

q„[001]= z

Q, [001]=i

0 —(D+2D')
D 0
0 v3D'

—K3D' 0

0 —/3D '

/3D' 0
0 D

—(D+ 2D') 0

0
—(D+3D')

0
0

0 0 —(D —D')
0 O 0

D+3D' 0 0
0 D-D' 0

An analysis similar to that given to restrict the
range of u shows that it is enough to restrict v to
the common range of the inequalities ——,

' & v & —,
'

and —(1 ——,u) «U «1 ——,u.
In Fig. 3, we give a plot of the relative intensi-

ties of Table XV as a function of v for a specific
value of the parameter u. The value chosen is the
most probable value obtained from experiment
with F Ii (111) for the D line of Zn in germani-

19p20

3. Applied Force along [110]

The intensities for the above three types of
transitions are listed in Table XV, and the selection

In this case 8=-S„depends upon the quantity y
already defined in Eq. (28). The matrix S„relates

I

+L
I

I

I

I

I

I

I

I

I

)

I

l

, 'T
+, I II

I

I

I

j
I

I

I

(a)

F ll (lll&

rs

F II |', l00&

+k
I

I

I

I

) I

IOOI

Dza

+ I

r6 (+ p)

r7 (+ a)

r7 (+- p)

r6 (+-~)

(
r6(+-p)

I

I

' r7(+-",)

FIG. 1. Transitions from a
r8 ground state to r6, 1 7, and

r8 excited states of the double
group T„under (a) a uniaxial
compression parallel to a (111)
direction, (b) a uniaxial com-
pression parallel to a (100)
direction. The dashed arrows
are for Ej) F while the full ar-
rows are for E lF. The labels
in parentheses are somewhat
arbitrary and correspond to
the wave functions defined in
the text. The splitting of the
ground state for the two cases
is also shown.
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0

F II [ I I I]
0.9— EII----
08- EZ

0.7—
I"5,6-?~,6

-- 06- r
V)

(0

~~ 0.5'
4P0

0.4
C)

0)

0.5

0.2

(D

V)
C:
G)

F II [IOO]

E~
09——

0.8——

0.7——

u =0,25

/
/

/
1

/
/

/
/

/
/

/
/ I7- I"6

/
/

/

0.1

0'
0 O.Z 0.4 0.6 0.8 1.0

FIG. 2. Relative intensities for the stress-induced
components of a I's I's transition for uniaxial compres-
sion along (111). The parameter u is defined in the text.

the bases 8, to O'„. From Eqs. (2V) we find

0

&,=0+r') "'
zy

i 0
0 y

0
0 —i

—Zy

0
1

For transitions from I"8 to either I'6 or I'„S' is
again the 2x2 identity matrix whereas for a I', - I"8

transition S —= S„where 6 is a quantity defined in
the same way as y but for the final state. For this
direction of applied force, we construct the Carte-
sian coordinate system x' = (x+y)/V2, y '= (y -x)/
K2, z =z, where x'll F:

/
/

/
/ 01——

I"6-I"6 I 7-I'7

/

-0.5 0„4 0.3 0.2 0. 1 0 0.1 0.2 0.3 0.4 +0.5
V

FIG. 3. Relative intensities for the stress-induced
components of a rs rs transition for uniaxial compression
along (100). The parameter v is defined in the text.
This graph is drawn for the case u = 0.23 which is obtained
from the experiments to be described in a later publica-
tion.

TABLE XV. Transition probabilities and relative intensities for F tl I001].

Zero-stress
transition

Stress-induced
components

Transition probability
EII E

Relative intensity
E II

rs-r6

I's I'p

rs-rs

rs I'y

ry ry

0
8ID I

8ID' f

0

0
2ID+3D' I'
2 ID -O' I'

0

l2

2fD 12

2 IDp' I

6ID' I'

6ID' 12

2 ID' I

2 fD+2D' f

6ID' I

0
v1

2+V
0

3
yQ

—,'|'1 —
~43 + v)

2 {1 4Q V)'3
yQ
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case (f) I'8- I'8.'

(1-f)D,
Q. [11o]=

[2(1 a)'yea

0
- I - yA

y —v3 0 I+yv3
0 K3 —y 0

(I + i)DO
Q,.[110]

[ (,)),

0 —y —v"3 0 y v'3 —1
y~3 —1 0 —y —v3 0

2Do —i 0 —iy 0
Q, '[110]

[1 a]spa 0 0 1

case (ii) I 8- I'q.'

(I+f)D,'
Q„~[110]=[2(1 3)]i(3

0 y43 —1 0 y+ ~3
0 yv'3 -1 0

(1 —f)D,'
Q~ [110]=

[2(1 a)yy

0 -y/3 —1
-y+f3 0

0 y- V'3

y/3+ 1 0

2D0 —y 0 1 0
~P~~ 0 -f of

see Table XVI for case (iii).
The re&ative intensities for the above three types

of transitions are given in Tables XVII and XVIII.
The reader should notice that in this case the direc-
tion of light propagation, k, is important since the
crystal becomes orthorhombic. In Table XVIII, the
transitions are specified in an abbreviated manner,
for example, the transition I', (a —,

' )- I', (+ —,
'

) is
designated by the symbol —,

' - —,'. The above inten-
sities are shown graphically in Figs. 4-7. Figures
4 and 5 exhibit the results contained in Table XVI
in which the relative intensities are plotted as
functions of the splitting parameter y, a quantity
which is directly measurable, unlike u and v which
are essentially ratios of matrix elements. In
Table XVII and Figs. 4 and 5, the parameter co is
defined by the relation

e =arctany= ——, arccot -—I ~ 100

~ ~111

An experimental study of a I'8- I'8 transition
under stress gives the magnitudes of the splittings
of the two I"8 states and not their signs. To deter-
mine these a symmetry assignment must be made,
which is part of the purpose of the present work.
According to Eq. (28), there are tvto values of y
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TABLE XVK Transition probabilities and relative intensities with F JJ [110], for r8-I'6, r7 transitions.

Zero-stress
transition

Stress-induced
components

Transition probability~

It II[001j Rll [1TO]
E()

T ll [001]

Relative intensity

k Jl [1TO]

r5(+ —') —r5

r, (+-,')-r,

~All entries in this part of the

(~-/3)'JD, I' (~+13)'ID, I' 4~'JD, J»n'(~- —.'~)

('y+3+ 1) JDp I (&+3 —1) JDp I 4 JDp J cos (

(y — ) I ()I (yu +) I ()I I ()I o (~ ~)
(y+/3)'JDp I (p &3) JDO I 4p JDO I sin (&+37r)

table are to be multiplied by the factor 2(1+y )"~.

sin2(~ + 3'7[)

COS (Q3+ 37[)

cos (~ —3z)

sin (cu —-37[.)

Sin (It)

cos ~2

cos M

sin +

consistent with a given magnitude of the ratio
n, ,'oc/h, '», one being the reciprocal of the other. If
this ratio is positive (negative) y & l(y & I). Simi-
larly for 5, as this is defined by an equation anal-
ogous to EII. (28). If in Table XVIII, y and 0 are
replaced by their reciprocals, the expressions for
the relative intensities are the same as those for
the original values of y and 5 except for a change
in sign of the term in v. Figures 6 and 7 are con-

I.O

structed for the case where n, ,'oa/a, '» is positive,
i. e. , y &1, and similarly for the excited state. In
order to construct figures corresponding to the case
where the signs of the ratios of the deformation-
potential constants are opposite, we simply reflect
the figures about the vertical axes e =0. If in
Table XVII, y is replaced by its reciprocal, all the
expressions for I 8- 16 interchange with those for
~8 I 7 ~ For the special situation where &&Oo = &&»,
the so-called is+tropic case y= v'3.

In the interpretation of the experiments discussed
in this work, the relative sign of ~100 and ~fll
cannot be determined from a I'8-18 transition
alone. It can be determined, however, if the final
state of a transition originating from a I"8 state is

0.8

ED

H

4P—0,4
a
0)
K

0.2

Q.B

4h
C) 0.6
CO

tD

H

0
Qo

0

30 it 60
I

0 I

904 gp

~ fI'Ioo/@II

~ 0.4
D

CL

0.2

FIG. 4. Relative intensities for the stress-induced
components of a r8 r6 transition for Fll [110]as func-
tions of the parameter y defined in the text. The dashed
curve is for Ell F, the full curve is for E J.F, k II[110],
where tt is the propagation vector of the light. The dotted
curve is for E IF with RJJ [001]. The labels 2 and 2 desig-
nate the I'5 sub1. evels into which the I'8 initial state splits
und. er strain (see Table XVI).

0
OO 90' ao

—
I 0 I

y

~100/+I II

FIG. 5. Same as Fig. 4 but for r8-rv transitions.
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known to be either a 1",or I', state.
If D and D' were complex numbers having the

same phase, then all the foregoing expressions
depend upon the single parameter u, and then z be-
comes'4 + fu(1-u)]'~~. This was the special case
considered by Onton et al. and appears to be that
treated by Kaplyanskii.
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I

cQ

I
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APPENDIX

We wish to write Eq. (10) in matrix form; to ac-
complish this we make use of the 4&&4 matrices
J„, J„and J„ the components of the angular-mo-
mentum matrices for angular momentum J= —,

' . It
is noticed that J'„, J'„and J, belong to I'c(Tc).

I I I I

V)
(D

V)

CD

I

I

I

+

I

+

+
c

I

+

I

+

+

0
V
C5

Q

'a
~~

+
0
g) I

cQ

Ill4 a.

-0.5 0.4 0.3 0.2 O. l 0 O.I 0.2 0.3 0.4+0.5
V~

FIG. 6. Relative intensities for the stress-induced
components of a I'8- I'8 transition for F II [1&0) and k II

[001]. The parameters used in this graph are: u=0. 23,
y=1.63, and 6=13. The dashed l.ines are for EII F, while
the full lines correspond to EJ F.t

nfcq
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I I I I

k II [I TQ)

x(3J,' —J')+3(e„„—e„)(J'„—J,'), and {J,J,]e„
+{J,j„}e,„+{J„j,]e„,. Hence Eq. (20) is estab-
lished, where we have chosen the coefficients to
conform with the conventional ones.

We can, of course, proceed directly with the
evaluation of the matrix elements from Tables III-
V. For example, [V„]is the sum of four contri-
butions as seen in Eq. (10), thus the coefficient of
a b is (2/3/3)(j bxV„d r)[{j,j,j —2iV„]. In writing
these expressions, we have used'

O Ks O O

i —Ks 0 2 0
O -2 O Ks

0 0 —v3 0

0 v'3 0 0
1 Ks 0 2 0

O 2 0 v'3

O O v'3 O

-0.5 0.4 0.3 0.2 0.I 0 O. l 0.2 0.3 0.4 +0.5
V~

FIG. 7. Same as Fig. 6 except k Ii[110]. In this figure
we show the case for E J.F only, since the relative intensi-
ties for Ell F are identical to those given in Fig. 6.

3 0 0 0
I 0 j. 0 0

0 0 —1 0
0 0 0 —3

After determining the matrix elements for the dif-
ferent contributions to t/" and collecting terms, we
obtain Eq. (20) with

Since [1~x I', ] = I', + I', + I"„we conclude that O' = J„
+J, +J, = ~4I belongs to I „2J, —J„—J, = 3J, —~4I
and K3(j„—J,) belong to I'~, and {J,j, [
= ~ (J~ Jg+ Jg J~), {JgJ„)= 2 (J~ J„+J„jg), a,nd {J„j~]
= —,'(J„O, +O', J„)belong to F,. We can write, then,
[V], which is a, scalar quantity, as a linear com-
bination of (e„„+e»+e„)J, (2e„—e„„—e»)

and

a ' = 9—1d r (V„„+V„+V„)(
~

a
l f~+ l

b
~ go),

b'= ——,'8 j dr(2V„—V„„— V»)(j (a'f, —(bldg,

—(a*b+ ab +)/sk, )

d'= —(2//3) 1' dr V„(~a~'fx+ ~b~'gx

—(a*b+ab~)bx/&3) .
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The Hall-Weaire tight-binding semiconductor Hamiltonian is solved when the geometric struc-
ture has no closed cycles and is homogeneous, using a method developed by Onsager for ionic
energies in ice. The solution yields two bands and two P functions in the density of states in
agreement with the general theorem of Weaire. This solution is proposed to be a reasonable
first approximation for the band structures of amorphous semiconductors. The Hamiltonian
is also solved when the underlying structure is the inhomogeneous Cayley tree for which surface
states predominate. In this case the bands have the property of being nowhere continuous. In-
stead of just two 5 functions outside the bands, there are sequences of bound-state p functions
which bridge the energy gap between bands when the model parameters fall in a finite interval.

I. INTRODUCTION

Recently Weaire' has proved that the Hamiltonian
of tight-binding type

V, P ~4',. )(4',.
~

—V 5 ~4', )(4
~

(1.1)

has a band gap for all positive values of V& and V3

except V2/V, = 2. The basis states 4, in (1.1) rep-
r sent localized directed orbitals of sP type. V&

is the overlap integral on the four-coordinated
atoms (q= 4) and Vz is the overlap integral on the
bonds. The sums are restricted to nearest-neigh-
bor (nn) pairs.

Also, recently3 the problem of obtaining the band
structure for ionic hopping energies in ice has been
reduced to the Hamiltonian

0= V5" ie,. )(e, i, (1 2)
iy
nn

where 2V is the difference in energy between bond-
ing and antibonding ionic orbitals and the under-
lying "lattice" is three-coordinated, q = 2), infinite
dimensional, and the shortest closed cycle has 18
steps. Therefore, a calculation was developed
which assumed homogeneity and which ignored all
closed cycles. This approximation, which we call
the bulk solution for cycleless structures, is
analogous to the Bethe or quasichemical approxi-
mations in statistical mechanics.

The first objective of this paper is to find the
bulk solution for cycleless structures for the Ham-
iltonian in (1.1). We feel that the bulk solution pro-
vides the standard first approximation to both peri-
odic structures, such as the diamond lattice, and


