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Recent Raman-scattering results place the conduction-band minima of 6H SiC on the M-L,

symmetry line, leaving undetermined the parameter k~ that is required to fix their positions
exactly. This parameter could be established by electron-nuclear-double-resonance (ENDOR)
measurements, as a similar parameter is for Si, but the present ENDOR results for 6HSiC
are insufficient. The Raman result determines the planar part of the donor Kohn-Luttinger
interference pattern, and it is found that the highly symmetric pattern concentrates the donor-
electron density on lattice sites of planes like the donor plane. Because of the Bloch portion
of the wave function, this leads to binding-energy differences for the three inequivalent nitro-
gen donors, for each donor has a distinct set of neighboring Like planes. Whether or not a Like

plane is favorably placed for a binding-energy enhancement depends on the axial interference
factor, which is a function of k~. Thus, an interpretation of the donor binding energies is used
to determine k~. The suggested k~ is one for which 6H SiC has six conduction-band minima.

I. INTRODUCTION

Valley-orbit Raman transitions, 1s (A, ) - 1s (Ez),
have recently been observed by Colwell and Klein'
for N donors in 6II SiC, which is a many-valley
semiconductor with the same space group as wurt-
zite, P63mc. The Raman results require that the
conduction-band minima lie on the M-I. symmetry
lines, leaving undetermined the axial components
of their positions + k,. There is evidence that the
minima do not lie at M, which is a critical point

by symmetry. These conclusions are in good
agreement with a proposal by Herman et aE. '
Their band calculation for 2H SiC showed a set of
secondary minima along M-I-, and they suggested
that these become primary minima in 6II and some
other SiC polytypes.

The situation is similar to that in Si, where the
minima lie along the ~ axis, and a parameter
ko/k is needed to fully define the positions. In

Si, Feher and others' have used electron-nu-
clear double resonance (ENDOR) to sample the
complex donor-electron density pattern that re-
sults from the Kohn-Luttinger interference effect.
The results are interpreted to determine the po-
sitions of the minima within close limits. The
same procedure could be applied to 6H SiC to de-
termine 4'„but the reported ENDOR results are
insufficient for this purpose. The best present
means of investigating the electron-density varia-
tion in 6& SiC is an interpretation of the electron
binding energies at the three inequivalent nitrogen
donors. '

The fact that N-donor ionization energies vary
from 0. 17 to 0. 23 eV is at first sight rather sur-
prising, for the tetrahedral bond lengths at the
three sites differ by only one part per thousand, '

and the hyperfine splittings in the electron para-
magnetic resonance" vary by only 1%. Thus, the
sites appear to be nearly identical, and the differ-
ences in energies cannot be attributed to differ-
ences in central-cell corrections. It is significant
that the orbital radius of the N-donor electron is

0
about 5 A, whereas the unit-cell axial dimension is
15. 1 A. " Thus, electrons bound at different sites
sample somewhat different portions of the lattice.
Since the electron effective mass is determined
by the electron-lattice interaction, one could say
that there is a different effective mass for each of
the three N donors. However, it is more useful
to examine the lattice differences in donor neigh-
borhoods for configurations that augment the bind-
ing energy by increasing the effectiveness of the
Bloch portion of the wave function.

A result of the hexagonal symmetry is that the
Kohn-Luttinger interference factor can be written
as a product of axial and planar factors. The knowl-
edge that the conduction-band minima lie on the
M-I- axis is sufficient to determine the planar inter-
ference factor, and it shows that the electron den-
sity is enhanced at lattice sites in planes like that
in which the donor lies. The degree of enhance-
ment depends on the known disposition of like planes
about a donor, and on the unknown axial interfer-
ence factor, which is a function of k, . Thus, it is
possible to plot the enhancement effect against k,
for each donor. A comparison with the known bind-
ing energies then enables us to suggest a location
for the conduction-band minima.

We discuss the Raman results in Sec. II and the
application of the calculated 2II band structure to
polytype 6H in Sec. III. The A. , and E2 interference
patterns due to the planar portion of the Kohn-
Luttinger effect are then shown in Sec. IV, and
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Colwell and Klein studied the low-temperature
Raman scattering of nitrogen-doped 6H SiC. ' They
found three lines of E2 symmetry which they at-
tributed to excitation within the valley-orbit split
1s group, one line for each of the three inequiva-
lent N donors. The ground states must be A &, for
all three N donors show hyperfine splitting in EPR. '
Thus the Raman transitions are 1s(A,)-1s(E,). No

excitation with E& symmetry was found. The N do.-
nors are at sites of Cs„symmetry, but the observa-
tion of E2 transitions and not E, indicates that the
macroscopic symmetry of the crystal, C6„, is more
appropriate for this problem.

Figure 1 shows the Brillouin zone for the wurtzite
structure, The Brillouin zone for 6H SiC is identi-
cal, except that the axial dimension is reduced by a
factor of 3. The positions of the conduction-band
minima in the zone determine what 1s representa-
tions are available for Raman excitation. All pos-
sible positions will be examined, but we need con-
sider only node-free conduction-band states, for
only they can form an A, -donor ground state.

The crystal symmetry induces a star of minima
for each position considered. Under the opera-
tions of C6„ the characters of a reducible represen-
tation are determined for each star, and the ir-
reducible representations of a 1s state can then be
found by inspection. The results are shown in Ta-
ble I for all positions within the plane k, = 0.

All symmetry operations of C6„ leave k, un~
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FIG. 1. Brillouin zone for the wurtzite lattice, with
the standard notation for points and lines of symmetry.
Three kinds of symmetry lines parallel to the axis are
indicated by the corresponding point-group symbols.

their enhancement at lattice sites on planes like
the donor plane is considered. The two-dimension-
al sublattice of the interference maxima in 6H is
compared with the three-dimensional interference
sublattice of cubic SiC. The 6H lattice structure
about each of the three donor sites is discussed in
Sec. V, and experimental information is used in
Sec. VI to suggest a value of k,.

II. RAMAN-SCATTERING RESULTS

changed; hence the results for the plane k, = 0 are
sufficient to determine the irreducible representa-
tions of the donor 1s states for any position in the
Brillouin zone. For minima with k, &0 or +m/c
there are two planes of minima with +k, = const.
There is then a doubling of (a) the number of mini-
ma, (b) the characters in the reducible representa-
tion of the star, and (c) the number of each type of
irreducible representation. However, it will be
shown later that these doublings do not introduce
any additional possibilities for Raman scattering;
hence the observation of a single transition does not
exclude a general value of k, .

For comparison with the experimental results, we
look for the presence of E& and the absence of E&.
Table I indicates that only the position M satisfies
this requirement. Since k, is not determined, we
place the 6H conduction-band minima on the line
M-L, as suggested by Colwell and Klein. There are
three minima if they are at M or L, but six for a
general position U on the line M-L. One objective
of this paper is to use other experimental infor-
mation to make an approximate determination of k,.

III. POLYTYPE COMPARISONS

The conduction-band minima in SC SiC (zinc
blende) are known to be at X. Phonon-assisted
transitions in the luminescence of bound excitons
therefore enable us to measure the 3C phonon en-
ergies at X. ' In 6H SiC exciton luminescence, '
the principal phonon energies are found to be simi-
lar to those of 3C, suggesting that the conduction-
band minima of 6H are in positions that are com-
parable with the X positions of 3C.

Comparable positions in the zinc-blende and
wurtzite zones have been discussed by several au-
thors. '" To compare 3C and 6H SiC in the same
way, zones of equal volume must be used, and that
is most easily accomplished by extending the 6H SiC
zone to 6&/c in the axial direction. In the present
case we need compare only mirror planes, por-
tions of which are shown in Fig. 2, for X in 3C and
the line M-L in 6H both lie in these equivalent
planes. Figure 2 shows that the cubic X position
falls at one of the M positions of 6H [M(4m/c)].
There are planes of energy discontinuity within the
large zone of 6H, and traces of these planes are
indicated by the solid I'-M lines. However, these
discontinuities are expected to be very small, for
they are due to minor differences in the nearly
equivalent planes that are stacked perpendicular to
the c axis. The corresponding discontinuities in
the phonon-dispersion curves are less than 1 meV. '
The dotted lines A-L do not represent discontinui-
ties, for the crystal symmetry requires degener-
acies at L. '~

We now turn to energy-band calculations for 2H

SiC by Herman et a/. They show the lowest minima
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Position of
minima

r
X
M

r-z
M —K

General

Number of
minima

1
2

3
6
6
6
12

lg states

A.
g

AgBp

A(E2
A gB2E f,E)
A)B)E(E2
A gBpE(Ep
All

TABLE I. The irreducible representations of donor lg
states for all possible symmetry positions of the conduc-
tion-band minima in the kg =0 plane of the 6H SiC Brillouin-
zone.

S,= W2 cosk, z . (3)

In addition, each +k& can be paired to form a stand-
ing wave, although +k& differ by a reciprocal-lat-
tice vector and therefore represent a single mini-
mum. The result for the planar interference fac-
tor of the A.

& state is

S~(A, ) = (1/VS )Z&v2 cosk~„p, j = 1, 2, 3 (4)

in which k& and p are two-dimensional vectors in
the plane, and the sum is over the three minima in
the star of M.

A. Planar Interference Pattern for A
&

at K, in agreement with the exciton-luminescence
results for 2II. Secondary minima appear on the
line M-I . Their lowest M-I conduction bands have
been unfolded in Fig. 3(a) to span the axial dimen-
sion M-I-M appropriate for the large zone, with

M, at k, = 0, as required for an A, -donor ground
state. The position corresponding to X in SC is
indicated.

The 2H band has been modified to make a sche-
matic 6H band in Fig. 3(b) by introducing small
energy gaps at the M positions that fall within
the large zone. The minimum has also been dis-
placed to what we shall later suggest is the ap-
proximate position in 6H, based on the Kohn-
Luttinger interference effect. In making these
modifications we are motivated by the suggestion
of Herman et al. that the 2H secondary minima
become the primary minima of 6H and some other
polytypes. The Raman-scattering results of Col-
well and Klein provide strong support for this
proposal.

IV. KOHN-I. UTTINGER INTERFERENCE EFFECT

The axial-stacking order of double planes (Si
and C) in 6H SiC can be written ABCACB '9 Be.-
cause S~ is independent of z, the phase relations at
lattice sites must be the same in all planes that dif-
fer only by an axial displacement. Then, if the do-
nor is in an A plane, all other A planes are like (I.)
planes. The I3 and C planes are unlike (U) planes,
being equivalent to each other with respect to S~ be-
cause of the hexagonal symmetry. Thus, the re-
lationship of S~ to lattice sites takes only two forms,
L and U, and these can both be seen in Fig. 4, which
shows the interference pattern generated by S~(A&).

The projections of lattice sites on the plane of the
donor are shown in Fig. 4 as filled circles for I.
planes and as open circles for U planes. Only one
of the two equivalent sets of U positions is shown.
Each solid line is a line of (360n)' phase for one of
the three terms of Eg. (4), where n is an integer
(including zero). Each dashed line is a line of
(180m)' phase, where m is an odd integer. S~ is
evaluated at each lattice site and different circle
sizes are used in Fig. 4 to distinguish different
values. The four values of S~ are listed at the

For a many-valley semiconductor, the Kohn-
Luttinger donor wave function is written as a sum
over all minima,

g =Z& o'~F~(r) u~~(r) e'" ' (1)

6 t-I

A-

6H and 3C

X in 3C

M in 6H

For the jth portion, & is a numerical coefficient,
+~ is an envelope function, and the remainder is a
Bloch function. The 1s(A&) ground state is formed
by taking equal &~. We neglect the dependence of
F and u on j in order to study the strong electron-
density variation due to S, the square of the inter-
ference factor

4-l

A - ----- - - - - ----L--

Z -I—

-A-

~3C

)
/

/
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(2)

For 6H SiC, the vector k~ can be written as a sum
of axial and planar parts, k~ and k~~, and the Ra-
man-scattering results show that k~= k„. This de-
composition permits us to write S as a product of
axial and planar interference factors, S= S,S~, and
the pairing of +k, terms yields

0 -i-

/
/

M-

/

I IG. 2. Parts of the large-zone mirror planes for
3C and 6H SiC. The planes coincide over much of the
drawing, but differ at the right, where the dashed line is
the 3C boundary. The position 2C in 3C is shown by the
square, and it corresponds to an M position 6H.
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3

k, (n/c)

FIG. 3. Energy bands along M-L in 2H SiC. {a) The
2H band of Ref. 3, unfolded to span the large zone. {b)
Schematic 6H band, made by introducing appropriate gaps
into the 2H band, and by displacing the minimum slightly.

right. The donor is at one of the large filled cir-
cles, for each cosine term in Eg. (4) is equal to
unity at the origin.

Average values of S~ over all atoms in the plane
are 2 for I planes and & for U planes. The high
concentration of electron density on L lattice sites,
and the low concentration on U sites, has impor-
tant consequences for the binding energies of elec-
trons at the three inequivalent N-donor sites.

B. Interference Sublattices

The high symmetry of band minima at M results
in a two-dimensional sublattice of maximum elec-
tron density at 4 of the lattice sites on I planes, as
shown by the large filled circles in Fig. 4. If 0,
were 4v/c, corresponding to the X minima of 3C,
then the wavelength in the axial direction would be
c/2, which is three times the interplanar distance
c&= 2. 52 A. For the ABC axial stacking of planes
in 3C this combines with the planar sublattice to
form a three-dimensional sublattice of interference
maxima. In 3C the Xq symmetry of the band min-
ima first confines the s-like portion of the wave
function to the fcc C sublattice. If the donor sub-
stitutes for C, its Kohn-Luttinger interference fac-
tor then results in electron-density maxima on one
of the four sc components of the C sublattice.
This electron-density structure may have observable

AI
S2

I)

2/3

3/2

6. 16 A

FIG. 4. A& interference pattern [Eq. {4)]. Solid lines
are lines of {860g) phase, with g an integer. Dashed
linis are lines of {180m) phase, with m an odd integer.
Solid {open) circles are projections of lattice sites in
L {U) planes. Two different values of Sp, in both L and
U planes, are shown by different circle sizes, and the
values are shown at the right.

consequences for a donor-acceptor pair spectrum
of type I, for the acceptor then occupies a site at
an interference maximum of the donor if the shell
number m is even. The resulting strong electron-
hole overlap should reduce the recombination time,
and at high excitation intensity the even-rn lines
should be relatively stronger than the odd-rn lines.
The enhanced even/odd ratio would not be observed
at low excitation, for the line strength is then de-
termined by the capture time.

C. Planar Interference Pattern for E2

For the ls (E~) state there is a different interfer-
ence factor, which we can take as

Sp(Eg) = cosky p —coskp p, (5)

where k& and ka are the wave vectors of any two of
the three M positions. The interference pattern
again has its origin at the donor site, but its value
is zero there because of the cancellation of the two
terms in Eg. (5). The phase relations of SA(E2) at
sites in I and U planes are shown in Fig. 5, where
the solid and dashed lines of constant phase have
the same meaning as in Fig. 4. S~ values are again
shown at the right. Different choices of k~ and k~

give interference patterns that differ by rotations of
+120'. This can change the value of S~~ at a particu-
lar atom, but the sum of S~ remains unchanged over
each shell of atoms. In this context, a shell means
a set of atoms in the plane that are equidistant from
the donor.

The average values of SA(Ez) over all atoms in
the plane is 2 for I planes and ~ for U planes, the
same as for S~(A,). Thus, I planes are favored
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FIG. 5. E2 interference pattern [Eq. {5)]. I ines and

circles have the same meanings as in I"ig. 4. Values of

8& are shown at the right.

In pairing +0, and +k& we used the cosine terms
because they give a nonvanishing electron density
at the nucleus, as required by the observation of
hyperfine splitting in EPR. It is of interest to con-
sider the sine terms also. In the case of the +k&
pair, the sine term refers to a higher conduction
band that has M3 symmetry at 4, = 0. In the case
of the +k, pair, however, the sine term also has 4&
symmetry, and the S, formed from it can be mul-
tiplied by S~ terms of &q or E2 symmetry to give
another set of le(A, ) and ls(E2) valley-orbit states,
as required for a six-valley semiconductor. How-
ever, in summing over j, the rule cited by Wright
and Mooradian shows that Raman transitions to
these states have vanishing intensity. Thus, the
observation of only a single &~ Raman line for each
donor is to be expected, and does not serve to dis-
tinguish between the possibilities of three valleys
(at M or L) or six valleys (at a general position on

the line M I.). -

E. Origin of Enhanced Binding

We now consider how binding energies are af-
fected by the presence of I or U planes in the neigh-
borhood of the donor. The s-like part of the donor
wave function is concentrated at lattice sites ~, by
the function u, (r), which has the lattice translation-

by both Aj and Ea interference patterns, and the
origin of differences in A, E2 splitt-ings is not evi-
dent. The donor central-cell correction of the A&

wave function can only account for the part of the
A&-E2 interval that is independent of the donor site.
However, it will be shown later that the envelope-
function restriction of the wave function to atoms
near the donor leads to A. q-E2 differences on I
planes. An L atom with only axial displacement
from the donor is especially significant for these
differences.

D. Other A& and E2 States

The SiC polytypes differ only in the stacking or-
der of planes along the c axis ((111) in 3C). The
ABCACB stacking of 6II is easily visualized by
looking at the atoms in a (1120) mirror plane, as
shown in Fig. 6, where the total height is the lat-
tice constant c = 15. 1 A. The three inequivalent
carbon sites, at which nitrogen may be substituted,
are numbered. The two sets of three are equiva-
lent under the 63 operation. In this picture atoms
vertically above or below a donor site are represen-
tatives of L planes, and the various distances to L
planes can be noted by repeating the unit cell where
necessary. To avoid fractions these distances,
listed in Table II, are measured in units of c/24,
or c,/4, where c, = 2. 52 A is the axial distance be-
tween Si planes (or C planes). Planes beyond 10. 08
A are not listed. The scale at the left of Fig. 6

24 ~ C~
20—

16
I IC

12 — ()Si

FIG. 6. Portion of {1120)
mirror plane of 6h SiC, show-
ing the ABCACB stacking.
The lattice constants are a
=3.08A, f..=15.1A. One
unit-cell height is shown,
divided into 24 parts on the
scale at the left. The don-
or N substitutes on the three
inequivalent numbered C
sites. Distances from each
donor to nearby I. planes
are measured vertically,
and are listed in Table II,

iQ
A B C A

al symmetry and has large values at lattice sites.
The enhancement factor u„(x,) =q is about 180 for
Si. 5 The values g(Si) and q(C) at Si and C sites in
60 SiC are unknown, ' but we can assume that there
is a sizable enhancement, and that it increases the
electron binding energy. As we showed, the elec-
tron density is concentrated at lattice sites in L
planes by S~, permitting the factors g to operate
more eff ectively.

In Sec. V it will be shown that each of the three
Ndonors has a distinct set of neighboring L planes
associated with it. Si and C planes will be con-
sidered separately to avoid any assumption about
the relative values of ti(Si) and q(C). After weight-
ing the planes for their distances from the donor,
the enhancement factors for Si and C planes, for
each donor, can be plotted as a function of k, . The
known exciton binding energies are then compared
with the enhancement-factor plots to find a satis-
factory value of k, for 6& SiC.

V. MTROGEN DONORS
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TABLE II. Distances from each of the three N-donor
sites to neighboring planes like the donor plane, in units
of c/24. N substitutes for C, and the numbering of the N

donors is the same as that of C sites in Fig. 6.

Site

N)
N~

Ns

Carbon
1. planes

12, 12
8, 16
8, 16

Silicon
L planes

3, 9, 15
3, 11,13
3, 5

also shows the position of each plane, with short
scale marks for C, and long for Si.

The Si L planes at 3c,/4 do not contribute to do-
nor differences, for they are common to all three.
However, all the other I planes must be considered,
each weighted for its distance from the donor and

for S„ the square of the axial interference factor.
The latter being unknown, we obtain the sum over
L planes as a function of the parameter k, . The ex-
perimental data on the three N donors are shown in
Table III. The problem is to use the I -plane-en-
hancement effect to assign each energy to a particu-
lar site, and to select a value of k, that fits the
data.

Until now we have considered each I plane as a
whole. However, the number of atoms that inter-
act significantly with the donor electron is limited
by the small orbital radius. Using a dielectric
constant of 9. 8, and the free-electron mass for
the unknown effective mass, we obtain a Bohr ra-
dius of 5. 2 A. This radius can be substituted in
the envelope function (assumed to be isotropic) to
calculate a factor p that is proportional to the elec-
tron density,

Sa -2r g5. a
p — pe

The calculation is made for several shells of atoms
in the C plane at 8c,/4, an important I plane for the
donors Nz and N3. The values of p are shown in
Table IV for both A& and Ea states. The unique
atom L

&
has only an axial displacement from the

donor (8c~/4= 5. 04 A). The other shells are num-

bered in order of their distance, and a total of 19
atoms is considered. For the N& donor the plane
at 5. 04 A is a U plane, and the comparable values
of p are shown for the nearest 18 atoms.

There are significant differences between elec-
tron-density factors for a limited portion of a plane
and their averages over the whole plane. The con-
dition p(L)» p(U) is not changed much (the average
L/U ratio for the whole plane is 4 for both A, and

E2), but the nearest atom L, is very effective in

making pIL(A&)] &p[L(E~)], whereas the S~ averages
over the plane are equal for A& and E2.

The ls(A~)-ls(E, ) differences shown in Table III
are made up of two parts, the central-cell correc-
tion and the Kohn- Luttinger enhancement. The

TABLE III. Experimental data on binding energies at
the three N donors. The ionization energies are partly
estimated.

Measurement

Exc iton binding energies
A&-E2 intervals
Ionization energies

Energies (meV)

16, 31,32. 5
13.0, 60. 3, 62. 6
170, 200, 230

Reference 14. Reference 1. Reference 9.

former is approximately the same for all donors,
as indicated by the hyperfine splitting; hence the
latter must be quite different. Because no differ-
ences are seen when averages over planes are con-
sidered, the Aq-E2 intervals must be quite sensitive
to the size of the orbit, about which our knowledge
is very limited. We shall therefore not use the
A&-E2 data in evaluating k, for the conduction-band
minima.

We also shall not use the donor ionization ener-
gies. They are based on experimental measure-
ments, but portions had to be estimated. Also,
like A, -E~ differences, they refer to an electron
rather strongly bound to a donor. On the other
hand, the exciton binding energies are accurately
known, and the weak binding means that the elec-
trons are more likely to respond like conduction-
band electrons. We need only assume that each
bound-electron wave function is a sum over the
conduction-band minima in order to form a Kohn-
Luttinger interference pattern. It does not even
matter whether the function has && or Ez symmetry,
for both enhance the density at lattice sites on I.
planes, and that is all the information that we shall
use.

VI. LOCATION OF CONDUCTION-BAND MINIMA

We now examine the effect of the axial interfer-
ence factor S,. The carbon L planes are considered
first, and the value of S, is calculated as a function
of k, for @=8, 12, and 16 in the units of Table II.
The results are shown in Fig. 7 for the interval
3w/c to 5m/c, which spans the neighborhood corre-
sponding to the 3C minimum at 4w/c. The enhance-
ment effect of a particular I plane is seen to be
strongly dependent on k, .

The bound-exciton orbital size is not known, but
the exciton binding energies do not involve A &-E2
differences, so it is not necessary to use an en-
velope function to weight each shell of atoms sep-
arately. Instead, an approximate weighting factor
is used for each plane, i. e. , a reduction by a fac-
tor of 2 for each additional distance of 2. 52 A from
the donor. The relative weights for the planes at
c,/4 distances of 8, 12, and 18 are therefore 1, 0. 5,
and 0. 25.

A sum over the appropriately weighted C planes
(Table II) is made for each N donor, and the re-
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TABLE IV. Values of the electronic-density factor p for several planar shells of atoms at distances z from the donor,
the distance in the plane being p and the axial distance a constant z=5. 04A. The factor g " (with x =2~/5. 2) is the en-
velope-function adjustment. Values of S& are from Figs. 4 and 5, and for E2 they are averaged over the shell. Total p's
are for 19 L atoms or 18 U atoms.

Atoms

1L)

6L4

L totals

3 U(

6 U3

Utotals

3. 08

5. 33

6. 16

1.78

3.56

4. 70

5. 04

5. 91

7. 96

5.35

6. 17

6. 89

8. 15

0. 144

0. 103

0. 060

0, 047

0. 127

0. 093

0. 070

0. 044

s,'g, )

1
6

1

6

p(A. ))

0. 86

0.41

0.24

1.69

3.20 [L(A, ,)]

0. 06

0.42

0. 07

0. 04

0.59 [U(a,)]

S,'(E,)

8

3
8

3

p(E2)

1.65

0.96

2 61 [L(E2)]

0.25

0.28

0. 18

0.71[UI,)]

suits are shown in Fig. 8(a). The Nq curve, for
example, is obtained by taking the z = 12 curve of
Fig. 7 twice as indicated by Table II, and then us-
ing the weight factor 0. 5. Thus, Nq is the same
as x=12 in Fig. 7. The N2 and N3 curves are iden-
tical because their carbon L planes are the same.
These curves indicate the approximate relative ex-
citon-binding enhancement vs k, for each of the
three inequivalent donors, calculated for the carbon
L planes only.

The same procedure is then used to calculate the
weighted sum over Si planes for each donor, and
the result is shown in Fig. 8(b). The Ns curve is
dominant over much of the range of k, because of
the nearby silicon I. plane at 5c,/4. The relative
weights of C and Si planes depend on the unknown
values of p(C) and 7i(Si). The uncertainty over
weighting factors for distance, and for 7i(C)/7i(Si)
ratios, and the neglect of anisotropy and other
complexities, prevent us from using the interfer-
ence effect to interpret binding energies in a quan-
titative way. In spite of this, it is possible to
reach certain tentative conclusions.

Table III shows that the exciton binding energies
are 16, 31, and 32. 5 meV. We use only the fact
that the two larger binding energies are nearly equal
and much larger than the third. A look at Figs.
8(a) and 8(b) shows that it is difficult to establish
such a pattern of binding energies for minima near
k, =4m/c. On the other hand, because Nz and N,
have the same carbon L planes, the pattern is a
natural one for minima closer to 3v/c, at or near
the position indicated by 6H?. N~ and N3 excitons
would certainly then have the larger binding ener-
gies if g(C) &q(Si), as might be expected because C
is more electronegative. The small N, -N2 binding
energy difference of 1.5 meV would then be at-

tributed to the effect of the Si planes. We do not
wish to place k, at I.(3m/c), for there would then be
a degeneracy that would reduce the number of dis-
tinct phonon energies observed in the exciton lumi-
nescence, contrary to the experimental results. In

any case L is not a critical point by symmetry, so
there is no reason to favor it, as Fig. 3(b) makes
clear.

Our tentative placement of 4, for 6H SiC is one in
which the binding-energy enhancement is largely due
to the C planes at 8c,/4. This fact can be related to
another common criterion for the binding energies.
In the stacking sequence ABCACB the A planes are
in a local neighborhood CAC or BAB that has the
hexagonal (h) stacking of wurtzite. The other planes
have a, cubic (k) local environment. All SiC polytype
stacking orders can be stated as sequences of h and

Q

1

CLJ N
(/)

FIG. 7. Plot of $~=2 cos k~z for z=8, 12, or 16 in the
units of Table II. Each curve shows the modulation, by
882, of the electron density at a C plane near the donor as
a function of the position k~ of the conduction-band minima, .
No adjustment has been made for distance from the donor.
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planes depends critically on the location of the con-
duction-band minima, as can be seen in Fig. 7, and
there is no information yet on these positions for
21R.
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FIG. 8. Weighted sums of Sg~ for each N donor for (a)
carbon I- planes, and (b) silicon I planes. The sums
are over the planes listed in Table II. These plots are
compared with experimental data to suggest a value near
3x/c for the axial parameter k~ that specifies the positions
of the conduction-band minima.

k, and the small binding energies have sometimes
been assigned to h sites, the larger energies to k.

Now, any site that has an I. plane at 8c,/4 is ad-
jacent to an k plane, and is therefore a k site in
60 SiC, which has the stacking sequence hkk. Thus,
the two binding criteria give the same answer. How-

ever, the rationale for the hk criterion is the dif-
ference, as observed along the c axis, between the
staggered and eclipsed configurations of two sets of
three atoms that lie in planes on either side of the
donor plane. This difference could be important for
a wave function of Cs„symmetry, but not for C6„,
which is the symmetry indicated by the Haman-
scattering result.

Furthermore, the hk criterion fails for polytype
21R, which has seven inequivalent donor sites,
for three small exciton binding energies are ob-
served, although the hkkhkkk stacking order has
only two h sites. In this case there are four h

neighbors, leaving the observed number of three
small binding energies if the 8c~/4 planes dominate
the binding. However, the importance of 8c,/4

UII. SUMMARY

Raman-scattering results of Colwell and Klein
place the conduction-band minima of 6II SiC on the
symmetry line M-L, as proposed by Herman et al.
This is sufficient to determine the planar factor S~
in the Kohn- Luttinger interference effect. For both
A.

& and E2 states, S~ forms patterns of high sym-
metry in two dimensions. The A~(6II) pattern is
the two-dimensional remnant of the A&(SC) three-
dimensional interference pattern, in which, for a
donor on a C site, the electron-density maxima lie
on a simple-cubic sublattice of the fcc C sublattice.
To fix the positions of the 6II conduction-band min-
ima it is still necessary to find the axial component
k,. The problem is like that of finding ko/k, „for
the conduction-band minima of Si.

The ENDOR results for Si fix ko/k, „within close
limits. On the other hand, the ENDOR measure-
ments for 6II SiC are insufficient to identify the lat-
tice sites associated with the various resonance
lines. The hyperfine splittings have not yet been
separated into contact and dipole-dipole parts.
Better experimental results would help fix the axial
parameter k, for 6II SiC. In the meantime, a par-
tial evaluation of k, can be made by studying the
binding-energy differences of the three N donors.

The enhancement of the electron binding energy
for a donor at one of the three inequivalent sites is
due to the concentration of electron density at neigh-
boring lattice sites, first by the portion u, (r) of the
Bloch function, then at sites on L planes by the
planar interference factor, and, finally, on the
particular L planes favored by the axial interfer-
ence factor. The differences in binding at the three
donor sites are large in 6H SiC because the elec-
tron orbit is small, permitting each donor electron
to sample a limited and distinct portion of the lat-
tice. The dependence of binding energies on the
axial interference factor was used to evaluate k,
by an interpretation of the experimentally observed
exciton binding energies. The value of k, suggested
is one for which the number of conduction-band min-
ima is six.
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Line emission above the direct interband threshold is observed at 77 K in In~ Ga„P: N for
0. 59 —x —0.71. This emission is identified with a resonance state of the N isoelectronic trap
whose properties are evaluated by standard solid-state scattering theory. For x~0.71 the
nitrogen trap state lies below both the direct and indirect interband thresholds. In this case
the sharp, fast, nitrogen A line can be distinguished clearly from the slower, broad N-N pair
spectra.

I. INTRODUCTION

In a recent Letter' we reported photostimulated
line emission above the direct interband threshold
associated with a resonance state of the N isoelec-
tronic trap in GaAs, „P,. It was suggested that a
firm confirmation of the interpretation of these
earlier data' would be the observation of a similar

phenomenon in In, „Ga„P:N for x- 0. 7. In this
paper we report such an observation. In addition,
the data and theory reported earlier for
GaAs, „P,: N are extended in several directions
for the system In, „Ga„P:N, 0. 5 & x & 1.0. First,
the photoluminescence spectra are compared with
absorption spectra to identify the energy of the band
edge in our samples. Because the N state is above


