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Dielectric relaxation time greater than diffusion-length lifetime Yp defines the relaxation
semiconductor, typical examples of which include high-resistivity wide-energy-gap crystals as
well as amorphous materials. Exploratory analysis which extends earlier linear theory is
given for carrier transport in the nonlinear large-signal case. A principal result is "recombi-
native space-charge injection: A stable space-charge region of majority-carrier depletion
with zero net local recombination can be realized through injection of minority carriers. The
analysis and independent considerations show that trapping and recombination are enhanced,
centers being unscreened and Coulomb-attractive ones having extremely large "space-filling"
cross sections. Measurements made for crucial check of the theory with crystals of high-
resistivity n-type GaAs confirm a predicted range of sublinear forward current. With fitting
of data, 7.

0 is found to be subnanosecond and determined by recombination in very deep acceptor
centers. Many amorphous semiconductors may be expected to have a Fermi level pinned at
the position for minimum (p-type) conductivity simply through the recombination statistics, and

so have a negative Hall coefficient. The electronic switching and charge storage in certain
heterojunctions and the threshold switching in amorphous materials are considered from the
viewpoint of the relaxation case, a unifying principle.

I. INTRODUCTION AND DISCUSSION

In analysis of carrier transport in semiconduc-
tors, the assumption of local space-charge neutral-
ity often provides theoretical results consistent with
experiment, and many widely used expressions im-
plicitly invoke this assumption. In an analysis of
transport with space charge, ' solutions of the dif-
ferential equations were shown to be of two principal
and fundamentally different types largely according
to whether dielectric relaxation time T~ is smaller
than diffusion length lifetim-e 4

ro or exceeds it. '
The familiar type is that for 70» 7„; local space-
charge neutrality can then be a good approximation.
For ~~» 7'0, the solutions are drastically different
and not in accord with the usual qualitative con-
cepts. Regions of near-zero net local recombina-
tion may occur instead, with enhanced space charge
whose decay depends on dielectric relaxation. A

new regime of semiconductor behavior m3y be
ascribed to 7&» ~0. This case may be called that
of the relaxation semiconductor, or the relaxation
case, and the familiar one, the lifetime case
Typical examples of a relaxation semiconductor are
high-resistivity wide-energy-gap crystalline ma-
terials and the amorphous alloys. This paper gives
some results of a theoretical investigation of the
nonlinear large-signal relaxation case. It also de-
scribes measurements, on minority-carrier in-
jection in crystals of high-resistivity GaAs, that
were made for a crucial check of the theory and
which confirmed predicted behavior. Recent fur-
ther study of the P-n junction characteristics has
verified theory in detail.

Small-signal relaxation-case solutions' were

'derived for the one-dimensional drift without trap-
ping from a pulse of electron-hole pairs injected
within an infinite semiconductor. These show that
distributions result which together exhibit reverse
dnft, or drift in the majority-carrier direction.
The distributions for electrons and for holes ulti-
mately take the form of continuous doublet distribu-
tions of carrier excess and carrier depletion that
correspond to a Gaussian distribution of locally re-
duced field. The doublet separation is equal to the
distance electrons and holes drift apart in lifetime

The d istributions are su ch that the re is excess
of one carrier where there is depletion of the oth-
er. The majority-carrier excess and depletion
are the greater, and at each point there is a near-
zero net recombination or generation, rather than
near-zero space charge. The distributions spread
through diffusion and through a field-induced pseu-
dodiffusion and decay not with a time constant equal
to the lifetime Tp but with the larger time constant

Since zero net local recombination implies ex-
cess electron and hole concentrations of opposite
sign, there is charge sePaxation, and space charge
is enhanced rather than neutralized.

Theory for the large-signal relaxation case is
given in Sec. II. Zero net local recombination rate
@ is established as the characteristic approxima-
tion for 7~» 70 from the fundamental equations.
Then, particular heuristic techniques are used to
obtain approximate steady-state solutions and gain
understanding of essential aspects of the nonlinear
transport. Solutions for equal mobilities and no
trapping provide correct qualitative conclusions.
Their derivation is such that extension to the more
general case, which entails significant modifica-
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tions, is then readily accomplished.
A principal result in this large-signal theory is

xecombinative space -charge inj ec tion: Through
carrier injection, the characteristic approximation
of zero @ can actually be realized in a stable steady-
state space-charge region. Minority-carrier injec-
tion can accordingly give substantial depletion of
majority carriers. The space charge may be large-
ly that of fixed charges: ionized donors or accep-
tors that have become uncompensated and any traps
that have become occupied. This depletion effect is
directly connected with @=0. With Boltzmann sta-
tistics, the product nP of the electron and hole con-
centrations then equals its thermal-equilibrium val-
ue, the square of the intrinsic concentration, noPO

=n;. In terms of excess concentrations M and ~,
it follows that nobp+POM+ bnbp is zero. Then,
an injected steady-state electron concentration 4n
gives &P= —Porn/(no+ &n). In a P-type semicon-
ductor with Po»no, for example, &P = —P&, or sub-
stantially complete depletion of majority carriers,
thus results for 4n after recombination that need
merely be large compared with the equilibrium con-
centration no. This major effect, essentially non-
linear and large signal, ' can occur whether or not
there is trapping; but 4n»no may require an initial
injected electron concentration not just larger than

Po, but larger than Po plus an appreciable concentra-
tion of traps that become occupied. Note also that
even large-signal ~P after recombination can give
only comparatively small reduction in n, whose
initial value is no«PO. Thus, for the time-depen-
dent case of the injected neutral pulse, these con-
siderations confirm that reverse drift' is also a
general property of relaxation semiconductors that
applies with trapping as well: The pulse that drifts
in the majority-carrier direction is much the less
attenuated and provides a direct indication of con-
ductivity type.

With Tg» To, minority carriers injected from a
forward-biased junction or injector recombine be-
yond the low-conductivity region of the junction
before their charge can be neutralized through di-
electric relaxation. They extend this region, rath-
er than produce the electron-hole excess' of the
lifetime case. Suddenly applied and sufficiently
large forward bias may be expected to give cur-
rent that decreases from its initial value and as-
ymptotically approaches a smaller steady-state
current. This decrease is the opposite of what
takes place in the lifetime case. An anomalous
dependence of differential capacitance on bias may
also be expected. The steady current is usually
limited largely by space charge of fixed charges and
its dependence on bias is then sublinear.

The depletion occurs as a bulk effect in homoge-
neous semiconductors. ' Its space charge includes
a contribution from the injected minority carriers

which may be minor. This space charge is to be
distinguished from that established through reverse
bias of a rectifying contact, minority-carrier in-
jection in the presence of which has been investi-
gated. ' ' It differs of course from mobile-car-
rier space charge. With this the current is super-
linear, as it is in many different cases of injection
which have been analyzed in detail. " 3 The pres-
ent theory is a two-carrier theory with a charac-
teristic space charge: Nonequilibrium concentra-
tions generally almost nowhere in the volume give
electrical neutrality. Except in the case of ideally
uniform optical generation, this is the behavior with
transport after transit time (or elapsed time for a
t»nsient) of the order of lifetime.

The theory shows that under sufficient forward
bias a dePletion drift region occurs in which dif-
fusion is negligible and depletion is pronounced,
with carrier concentrations of the order of the in-
trinsic concentration. In a sufficiently long diode,
the depletion drift region ends in a recombination
front, in which conductivity about equals that of the
(p-type) semiconductor of minimum equilibrium
conductivity, and electrons and holes recombine
with drift currents about equal. This front sep-
arates the depletion region from a region of com-
pensating maj ority- carrier space charge that re-
duces the field to its unmodulated value. The
length of the region is then proportional to current,

. and the potential drop, to the square of this length
or of the current, and hence there is a range of for-
ward current proportional to about the square root
of voltage and independent of diode length. This sub-
linear dependence is characteristic of the relaxation
case. In contrast, in the lifetime case there may be
exponential increase of current with forward bias of
a junction, ' or voltage-squared dependences from
space charge of mobile carriers or from trap-
ping. " The sublinear range beyond an initial
Ohmic range was observed, as described in Sec.
III, with n-type crystals of relaxation-case GaAs.

If there is no trapping, the length x of the de-
pletion drift region is essentially the distance ma-
jority carriers drift in time T„under a field equal
to the maximum local field that corresponds to
minimum conductivity. As field and current in-
crease, x may approach 7„ times a velocity of the
order of thermal velocity. This x for no trap-
ping can be quite large, being about 300 cm for the
T.„of the GaAs described in Sec. IIIA. With trap-
ping, however, the space charge in the region may
be mainly that of traps that become occupied.
Drift mobility and x„are then reduced by a trap-
ping factor N, about equal to the ratio of the con-
centration n, of these traps to the concentration of
majority carriers. The value of N, calculated
from the present data is of order 10', and the rea-
sonably short 5&10 -cm diode of Sec. III suffices
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for depletion regions not significantly limited by
diode Length. Values of X, larger than 10' may
often be expected.

The relaxation-case forward characteristic has
an extended Ohmic range, a 4'Ask voltage V~ for
the sublinear threshold of about 13 V being ob-
served. ' This value agrees with theoretical es-
timate in Sec. IIE3 of V, for a junction with ex-
trinsic material equal to about eight times the
band-gap potential. In the Ohmic range, forward
current is largely diffusive at the edge of the de-
pletion region in which traps are filled by minority
carriers, and this region is essentially the equilib-
rium region not appreciably extended.

An analysis given shows that the Length of the
recombination front is about equal to the separation
from which electrons and holes will drift together
during a lifetime 7'0. It is a fraction & of x of
order N, ro/r~, and u«L holds because of r~» To

if X, is not too large. A sublinear range implies
small & directly. Usually N, »1 also holds.
Then, 70 determined by recombination in the traps
is found to imply a recombination coefficient for
minority carriers large compared with the Lange-
vin expression ' for diffusion-limited capture by
Coulomb-attractive centers. This result applies
regardless of whether lifetime is determined pri-
marily by electron capture or by hole capture. In

crystalline materials, the extremely large capture
cross section whose radius is half the average
trap spacing usually satisfies the inequality. The
concept thus emerges of a "space-filling" cross
section, under the assumption of trap spacing large
compared with a mean free path. This cross sec-
tion may also for other reasons usually be ex-
pected to apply at low fields in relaxation semi-
conductors dominated by traps that outnumber ma-
jority carriers. For the GaAs crystals, it is
found to be about 0. 3 p, much larger than the

0
cross sections of a square Angstrom unit or so
typical of traps in the lifetime case. Relaxation-
case cross sections for capture of majority car-
riers by neutral centers that are comparatively
very large may usually be expected also. It ap-
pears that the relaxation case tends to be in part
self-realizing because trapping and recombination
are characteristically altered in a way that makes
To quite small. The recombination centers in the
GaAs are found to be very deep acceptors, at
about the intrinsic energy level or above this lev-
el. The intrinsic level gives 7o= 2&10 ' sec. But
any level above the Fermi level gives To =1.2 &&10 "
sec, and the centers, whose ionized concentration
is about 5 x 10 /cm, may then be nearly all neu-
tral.

A double-injection negative resistance was ob-
served ' beyond the sublinear range. This effect,
which characteristically involves increase of life-

times with injection level to values at least com-
parable with the transit time, has been studied in
detail. ' Approximate local neutrality may then
apply, since @=0 does not. The present theory
is primarily for "long" transit times in the relax-
ation case. Double- inj ection or short-transit-
time oscillation, negative resistance, switching,
and related photoconductive effects have been de-
scribed for diodes of compensated high-resistivity
Si, Ge, and GaAs doped with deep-level impuri-
ties. ' . As transit times were decreased and

approached lifetimes, currents proportional to
about the cube of voltage were generally observed,
beyond which the oscillations took place. The
theory for this behavior has been given. A sub-
linear current range preceding oscillations was,
however, also observed.

The sublinear range has also been reported for
P-type crystals of trigonal Se. In this work,
characteristics of the type observed were also
obtained by computer. For the computation, mod-
els were selected for cases of high-resistivity
impurity-compensated semiconductors, and equal-
ity of capture and release rates in acceptor-type
centers was in effect assumed separately for elec-
trons and for holes. The models thus imply the
relaxation case and apply strictly provided there
is no recombination front. The boundary condi-
tions assumed in each case appear consistent with
this requirement: Transition to the unmodulated
semiconductor was apparently ruled out by the as-
sumed fairly large fixed minority-carrier concen-
centrations at the contacts in conjunction with the
specified length. Also, since both In and nonin-
jecting ¹icontacts gave about the same Ohmic
ranges, the Se may well have been nearly min-
imum-conductivity material, and the sublinear
range a result of trapping of electrons without ap-
preciable depletion of holes.

The relaxation case may be expected whenever
a sufficiently short lifetime 7'p occurs in conjunc-
tion with sufficiently high resistivity. Reducing
temperature sufficiently will reversibly convert
many lifetime-case materials to the relaxation
case. For a dielectric constant of 12, the dielec-
tric relaxation time in seconds is about 10 ' times
the resistivity in 0 cm. Thus, with To equal to
10 sec, a resistivity somewhat higher than 10
0 cm would be required. At room temperature,
such conditions may be met with Si, and are usual-
ly readily met with GaAs, GaP, and other semi-
conductors whose energy gaps are appreciably
wider than about 1 eV. Although difficult to de-
termine with any precision in GaAs and GaP, 70 is
generally less than 10 sec in these materials.
Since most studies have not utilized GaAs or GaP
in the high-resistivity range, the lifetime case
rather than the relaxation case is the one that has
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most usually been observed with crystals of these
or any semiconductors. The amorphous materi-
ials, ' however, are quite generally relaxation
semiconductors; through short-range order, an
energy-band model applies, though with certain
significant modifications. Typical of many are
high, near-intrinsic resistivities that are general-
ly not very impurity sensitive, and very short car-
rier lifetimes with pronounced trapping that strong-
ly limits drift mobilities. In materials that can
also have a crystalline form, resistivities are
usually orders of magnitude higher than for the
crystals, and conductivity band gaps are wider.
Amorphous covalent alloys may, for reasons giv-
en in Sec. IIE 3 that emerge from the trapping
theory, be expected to be minimum-conductivity
or maximum-resistivity (P-type) materials for
given conductivity band gap, and so have negative
Hall coeff icients. Disordered semiconductors
are qualitatively somewhat similar to the amor-
phous ones, and means for producing relaxation
semiconductors might include subjecting crystals
to beams of neutrons, electrons, or other radia-
tion.

Not treated here in detail are the photoeffects,
which may be expected to differ in various respects
from those of the lifetime case. Uniform photo-
conductivity in trap-dominated relaxation semicon-
ductors is, until nearly all the charged minority-
carrier traps are filled, generally due to majority
carriers. If photoexcitation in the relaxation case
involves transport with separation of electrons and
holes, then a space-charge photovoltage results.
With a P-n junction, it may be possible to realize
the comparatively large open-circuit photovoltage
corresponding to a given junction current. Such
junction photovoltage would be related to forward
current not increasing rapidly with bias and the
rather long high-resistance junction region. The
widely observed larger-than-band-gap "anomalous"
photovoltages between the ends of illuminated, non-
uniformly thin, evaporated and generally amor-
phous semiconductor films should certainly be
considered in the context of relaxation-case trans-
port: They may well be essentially space-charge
photovoltages in the present sense, aside from the
experimental and theoretical complexities.

That the definition of the relaxation semiconduc-
tor serves as a unifying principle for various
switching and charge-storage effects is another
theoretical aspect whose detailed treatment is be-
yond the present scope. In particular, applica-
tion of concepts of relaxation-case transport leads
to the conclusion that the switching to low resis-
tance at a threshold field in certain amorphous
semiconductors is due primarily to recombinative
space-charge injection of minority electrons.
With an illustrative model that applies to some

covalent alloys, the exponential increase of current
with field below the threshold is associated with in-
crease in concentration and effective drift mobil-
ity of holes activated into extended states of es-
sentially constant microscopic velocity. During
the characteristic delay time at the threshold,
largely thermal activation of remaining holes may
occur through rise in temperature. After all holes
are activated, very rapid switching occurs through
the injection of electrons to which velocity satura-
tion also applies, and a recombination front is es-
tablished at the anode. ' ' Relaxation semicon-
ductors lend themselves to electronic storage of a
simple and fundamental type: Because of charge
separation, carriers of one polarity may readily
be injected while the compensating charge is
switched to an insulated electrode on the surface.
The injected carriers can then form a charge junc-
tion: They can remain for a long time near the
electrode in a distribution which is essentially the
same as that in an abrupt P-n junction at equilib-
rium. ' ' A related case is the following: Cer-
tain heterojunctions under sufficient reverse bias
exhibit an electronic and reversible switching to
a low-resistance state that persists under no bias
for weeks, while sufficient forward bias can re-
store the initial high resistance. ' This reverse-
bias switching is attributed to recombinative
space-charge injection of holes, with the low-re-
sistance memory a charge-junction storage effect:
The discontinuity initially in the valence-band edge
at the interface is shifted by the injected space
charge to the conduction-band edge and holds com-
pensating charge of electrons. The conduction is
then entirely by holes, in the thin epitaxial n-type
layer as well as in the P-type substrate. 44'4'

The recombinative space-charge injection con-
sidered common to the switching in the amorphous
as well as heterojunction cases is a typical relax-
ation-case transport behavior that can occur under
a wide variety of conditions. With sufficient bias,
this injection tends to take place so that ultimately
a region dominated by minority carriers largely or
wholly occupies the injected semiconductor: With
increasing current during the transient, the minor-
ity-carrier region exhibits growth which is in a
sense self-enhanced by the near-minimum conduc-
tivity which obtains, even with very-large-signal
injection, at the leading edge, where most of the
recombination takes place.

II. THEORY

A. Preliminary Formulation for Constant Mobilities

If total current density is known, the transport
without trapping involves three dependent variables,
which may be two concentration variables and the
field E. In this case, three differential equations
are to be satisfied.
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Poisson's equation in its general form includes
changes ~P and ~n in concentrations of fixed
charges:

4'
divE= (P+P —n —n)= —-(AP+&P —&n —nn) .

Here P and n are concentrations of fixed positive
and negative charges, such as ionized donors and

acceptors. Note that the net fixed-charge concen-
tration (P -n) is zero only for the intrinsic semi-
conductor, while trapping is present if P or n is
not constant and departs from its thermal-equilib-
rium value.

Continuity equations are

—= e dlvI —8+ +g9t n

in which @ and ~g are net nonequilibrium inter-
band recombination and volume generation rates,
and I~ and I„are the hole and electron current den-
sities

Ip= e p APE —eDp gradP,

I„=e p„nE+ eD„gradn .

The total current density I is the sum of I~, I„,
and the displacement current density, and is also
given by the curl of the magnetic field:

—=c„[n(st n-)-n, n]-c [p "-p,(st-n)],

in which X is concentration of the traps, n& and P,
the electron and hole concentrations if the Fer-
mi level were at the energy level of the traps, and
C„and C~ the recombination coefficients for elec-
trons and for holes. In the steady state, the re-
combination rate is

(8= C;(np -n&)+ C„[n(X-n) —n&n]

= C, (np -n()+ C~[pn —p, (St-n)] .
, (6)

with r~o
—= (C~&)

' and r„o -=(C„&) '. For traps of
more than one kind, (R still has (nP —n, ) as factor;
it is easily seen that the coefficient of this factor
then includes a sum of similar terms for each
kind.

The relaxation-case approximation for zero 4g
of S= 0 therefore implies

(8)

Here, C; applies to direct electron-hole recom-
bination, and the two forms for 8 indicate that the
steady-state excess of electron capture rate over
emission rate equals the same quantity for holes,
in accord with Eq. (5). If various kinds of traps
are present, this equality will hold for each kind.
Eliminating the trapped electron concentration
from Eqs. (6) gives

61 = {C,+ [r 0(n+n&)+ r„~(P+P,)] ')(nP -n;),

QEI= I + I„+——= —curlH .
4m Bt 4m

Now, divH is zero and curlH without applied mag-
netic field must be small, since, with cgs units, c
in Eq. (4) is the speed of light. Negligible magnetic
field is thus generally associated with the trans-
port itself. It follows that the field E generally
has substantially zero curl; it always has zero
curl in the steady state. It is, therefore, the
negative gradient of a potential V and represents
a single dependent variable. Also, it follows with

Eqs. (1) and (2) from Eq. (4) that divI is zero.
For transport in one Cartesian dimension then,

I can depend only on time. In general, with I
known, the expression for it serves one differen-
tial equation. Poisson's equation is another. An

independent third equation that takes recombina-
tion into account results if the continuity equations
are added. These equations clearly suffice if
thereis notrapping; then 4P and 4n are zero.

For trapping, it will suffice to consider in de-
tail the formulation for acceptor-type traps in
which recombination occurs at a single energy
level. With Boltzmann statistics, trapped elec-
tron concentration n satisfies

p~ —= V+ (kT/e) ln(p/n, ), y„=V- (kT/e) ln(n/n, ),

I~= —e p~P grady~, I„=—ep, „n grady„. (10)

Equation (8) is equivalent to p~ and y„having a
common value, here called the relaxation poten-
tfQl QR

PR= Pp= P. .

The single potential pR determines concentrations
of mobile as well as trapped carriers just as the
Fermi potential does at equilibrium, and with its
gradient, current density as well. Where pR ap-
plies, it is often useful for qualitative considera-
tions or as a descriptive adjunct to the analysis.

Further formulation will use the recombination
rate

for nondegenerate semiconductors, regardless of
whether or not or to what extent there is trapping.
Where this approximation holds, the differential
equation involving el may be replaced by Eq. (8).
The current densities may be written in terms of
the electrochemical potentials,
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8,= (np —n',.)/(no+ po) ro

= (no np+po ~n+ &n ~p)/(no+ po) ro, (12)

in which 70 is the diffusion-length lifetime. This
form for 8 neglects the concentration dependence
of the denominator associated with recombination
through centers at specified energy levels, the
exact factor multiplying (nP -n, ) being replaced by
its equilibrium value. This approximation is here
a suitable one: The neglected change in carrier
lifetime with injection may, when significant, be
taken into account separately. The lifetime 70 is
defined by

and Eqs. (2)-(4) give, for equal mobilities,

kT &EI =2ep mE ——gradq + ——
e 4m

and

(16)

&m . kr—= —p, div qE ——gradm
~

—(R+ hg,Bt e )
(17)

in which p. is the common mobility and the diffu-
sivities have been replaced by kT&/e. The recom-
bination rate of Eqs. (12) in the variables of Eqs.
(14) is

&= (m —q —no)/2mo 7o

T~(no+nq)+ r„o(po+pg)
(no+ po)

= [(mo+ ' nm)nm {qo+ 'aq)nql /motto. (18)

~~. 7 ~&(no/rt. + po/'~~)
(no+ po)

(13)

B. Formulation for Equal Mobilities and No Trapping

It is convenient to employ the concentration var-
iables m and q or &m and &q defined by

where r~ and 7',~ are the electron and hole capture
times. This lifetime may, in principle, be real-
ized as the decay time constant for mobile carriers
following a pulse of uniform small-signal' optical
generation. ' For X small, wo may, in general, be
realized in this way with a short pulse. Indeed,
as the first of Eqs. (13) shows, ro is formally the
same as the common lifetime for electrons and
holes in the limit of small%. The definition of 70

by Eqs. (13) for arbitraryst, for which lifetimes
are generally quite different, embodies broader
physical significance. Consider, for example,
deep traps in the minority-carries txapjirg range.
This range is defined by a capture rate no/r, „or
Po/v, ~ for majority carriers that is the smaller. o

If nearly all of the injected minority electrons are
quickly trapped and the pulse duration is long com-
pared with this transient, then the subsequent de-
cay is limited by the equilibrium capture rate
Po/Tgp of holes. This rate must be in balance with
an equilibrium recombination rate of electrons,
For this example, the second of Eqs. (13) gives
po/Tgp=no/&o. Similarly, ro is simply rt„ if holes
are quickly trapped. Thus, 7'o is essentially the
equilibrium minority-carrier lifetime that corre-
sponds to the rate that limits or controls recom-
bination.

F =eELD/kT . (20)

Then, with hQ =nq/mo, Poisson's equation, Eq.
(15), assumes the simple form

4@=DIV F . (21)

With L'—= f/To time in units of the dielectric relaxa-
tion time,

v„=- ~/8weiLmo= ~/4ooo, (22)

where oo is the equilibrium conductivity, Eq. (16)
becomes

QFF = FM —GRAD b @+—.a BV'

Here M is m/mo and

Equations (16) and (17) show that for equal mobil-
ities, I includes the currents of oppositely moving
carriers, namely, the conductivity drift current
and the space-charge-inbalance diffusion current,
while the net recombination in the steady state is
given by the divergence of a current consisting, so
to speak, of carriers that move together.

To facilitate quantitative conclusions, the three
differential equations will be written in dimension-
less form. The Debye length

LD=—(kTe/Boe mo) ~

will be used as the length unit for dimensionless
distance, with respect to which GRAD and DIV
will be used to denote the gradient and divergence
operators. The concentration unit mo will be used,
and dimensionless field

m —= o(p+n), hm =m —mo= o(4p+ dn),
(14)

F,—:eILo/kToo (24)

q =-o(p -n), 16q =—q —qo ——o( n p —n.n),

nq= (e/8oe) divE,

in which subscript zero denotes the equilibrium
value. For no trapping, Poisson's equation is

(15)

is the dimensionless total current density, equal to
the dimensionless asymptotic field for total cur-
rent density f in the unmodulated semiconductor
with equilibrium conductivity oo. With (8 given by
Eq. (18), Eq. (17) becomes
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= —DIV(Q F —GRADAM)
BU

[-,'(M' Q'-- N', ) -n, G],
To

in which b,M is hm/mp, Q is q/mp, ~, is „,/m
and hG is given by

b G = 6grp/mp .

(25)

(26)

Note that Eqs. ( 14) and the definitions of M and Q
give

P—=P/mp= M+ Q, N=n/mp ——M —Q,
and (M —Q ) is equal to KP.

(2V)

in which

= (1+ ,'r iu)~—M (q, +—,'r Q)~—q

=hG, (28)

(29)

is the equilibrium value of Q, the upper and lower
signs on the right-hand side applying for p and pg

type, respectively. The relationship of Eq. (28)
defines the relaxation hyperbol g, the locus of (8
= hg in the concentration plane. For ~@=0, this
hyperbola implies the relaxation potential yR and
conversely. Each point on it then corresponds to
a value of y~ as mell as to a certain thermal-equi-
librium conductivity of the semiconductor of given
8 j ~

The factor rp/7p may be accounted for by consid-
ering the simple case of suddenly applied uniform
interband generation or constant ~G and no trans-
port. Then Eq. (25) shows that rp/rp in effect
changes the dimensionless time variable from U to
7 jv p, or time in units of lifetime. That is, posi-
tive dM appears so that the expression in brackets
goes to zero with time constant about v p as ex-
pected. No space charge appears in this case; AQ
stays equal to zero.

Figure 1 shoms a relaxation hyperbola plotted in
the 4M-4Q plane. This is one for p-type material
that is not very strongly extrinsic, and for hG= 0,
or no volume generation. The 1V and I' axes are
asymptotes of the hyperbola. At the vertex, here

C. Relaxation Hyperbola

The choice made of I.p and vp as length and time
units is the natural one when these units exceed the
diffusion length and lifetime. ' It results in the
factor r,/~ opn the right-hand side of Eq. (25).
The expression in brackets this factor multiplies
is the dimensionless excess of recombination rate
over generation rate. For 7„»70, the approxima-
tion of setting this expression equal to zero, which
is not to be taken to imply that the entire term in

Eq. (25) is zero or necessarily small, gives

—,'(NP —4) = —,'(M' —q' —M)

Q =Qo+ hQ

- I.O

aQ =- (sp-sn) z(po+ no)
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FIG. l. Relaxation hyperbola. Recombinative transi-
tions of injected minority carriers and the line approxi-
mation employed are shown. A p-type semiconductor
with hole-electron concentration ratio po/go of 100 is
assumed.

called the conversion point, electron and hole con-
centrations are equal. For zero 4G, the conver-
sion-point concentration equals the intrinsic con-
centration n, , and the hyperbola passes through the
~M-~Q origin, which corresponds to thermal equi-
librium. The conversion point separates the hyper-
bola into two branches: On branch I, minority car-
riers predominate, and on branch II, which includes
the origin, majority carriers predominate. A solu-
tion in one dimension for the relaxation case usually
amounts to a mapping against distance or time of a
segment of the relaxation hyperbola, and in the
nonequilibrium steady state, this segment is, as
will be seen, largely confined to one of thebranches.
A solution may also involve points off the hyperbola,
as when a recombination front is present.

Where the hyperbola applies, it is a locus of
stability: Any departure from it disappears through
rapid recombination or generation. The horizontal
arrow in Fig. 1 represents a transition to a point
of majority-carrier depletion on the hyperbola
through recombination without trapping of injected
minority carriers. Sudden unipolar injection of
electrons in specified initial concentration over a
specified volume in the p-type semiconductor is
assumed. Initially, the injected electrons give
(negative) space charge and enhanced conductivity
corresponding to some point on the line 4@= —d M.
With v~» vo, conductivity given by b,M will de-
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crease rapidly through recombination while mobile-
carrier space charge given by 4Q remains virtually
unchanged. If the injected electron concentration
is larger than the equilibrium hole concentration,
then the transition occurs to a point on branch I;
otherwise there is transition to a point on branch
II. If initial electron concentration exceeds 2Qp
times mp, or about twice the equilibrium hole con-
centration, then there is transition to a point on
branch I corresponding to enhanced conductivity,
or 4M &-0; otherwise there is conductivity depletion.
The arrow directed upward in the figure shows
schematically the effect of minority-carrier trap-
ying on the transition. As shown in Sec. D E 1
and Appendix B, there is a decrease in this case in
the magnitude of 4Q, since the trapping causes a
smaller final contribution to space charge from
mobile minority carriers. An injected initial con-
centration that may be considerably larger is then
required for transition to branch I. With trapping,
the actual path for the transient generally departs
markedly from the straight arrow. If electrons
are rapidly trapped, the path is along the dashed
line to near the origin and then curves downward,
becoming nearly parallel to the I' axis as holes
ultimately recombine.

Large-signal conductivity depletion proceeds
with increasing time constant and generally takes
much longer than 7.

0 Fro.m Eq. (7), the final time
constant vp may be estimated as the decay time for
equal virtual small-signal' concentration incre-
ments 6n and 5P above the final concentration up
and pp. This is the diffusion-length lifetime for
the semiconductor with equilibrium concentrations
changed to gp and pp. Under the approximation of

«(»), r' f«o/H&0+~0)/(so+~0)l= ro/Mo» ro,
the inequality applying for Mo«1, or pronounced
depletion. But local dielectric relaxation time 7'„

is also increased, and in exactly the same ratio
for equal mobilities. For Mg& 1 1p and Tj are
similarly decreased. s The equilibrium ratio 7„/ro
thus holds approximately over the significant por-
tion' of the hyperbola, the effect of unequal mobil-
ities being minor. " That the hyperbola actually ap-
plies is due to this circumstance, and its stability
is implicit through S—hg= 0, which at the same
time is the condition that defines it. Recombina-
tive space-charge injection is accordingly a stable
effect, the possibility of whose occurrence de-
pends simply on equilibrium properties.

A semiconductor in the lifetime case at low field
will, in fact, not go into the relaxation case at a
higher field through increase in v~ from saturation
of carrier velocity. It has been shown' in context
with derivation of continuity equations that v „is the
reciprocal of the sum of electron and hole dielec-
tric relaxation frequencies; if there is intervalley
scattering, frequencies for each valley are added.

&Q = —Qo + [Qo+ (2 + 6M) nM —2n G] (3o)

The two branches of the hyperbola join for the r3di-
cand in Eq. (30) equal to zero, so that the conver-
sion point is given by

M = 1+b M = (1 —Qo+ 2nG) = (Ni+ 26G) (31)

Q=Qp+4Q=0.

Equation (32) implies n=p. For KG=0, Eq. (31)
gives M= N„da, nwith Eqs. (2V), it is verified that
electron and hole concentrations equal n, . With
4G & 0, the concentrations exceed n, at the conver-
sion point, which is then at a larger value of M.
The hyperbola then no longer passes through the
point of thermal equilibrium. It is further evident
from Eq. (31) that if EG exceeds —,'Q~~ at any point,
then negative 4M or depletion of conductivity cannot
occur at that point.

Note that Qo defined by Eq. (29) is negative for
n type. The choice of p type for Fig. 1 and as may
be convenient in the analysis implies no substantive
restriction. Where a result depends explicitly on
the sign of Qp, it may readily be modified for e
type.

Each frequency, as may be expected, is proportion-
al to the change of velocity with field, or differen-
tial mobility. Hence velocity saturation may cause
a large increase in v„. But theory not included
here shows that the significant ratio is actually 1.~
over the product of diffusivity and Yp, which re-
duces to 7~/ro for constant mobilities. '~

Transient decay after recombinative injection
generally takes place ultimately through a recom-
bination front and at a rate controlled by dielectric
relaxation. Initial injection over an appreciable
volume small compared with the entire volume is
assumed. After transition to the hyperbola, each
point on it corresponding to a point in the injected
volume will eventually move to the ~M-4Q origin
or thermal-equilibrium point. For small-signal
injection, the time required is of order v~. With
large-signal depletion, a longer time is required.
Dielectric relaxation is then slow within the volume.
At the boundary of the volume, there is a recom-
bination front„and the recombination causes the
spread and approach to equilibrium of an adjoining
region of small-signal depletion in the volume.

The lifetime of carriers of given sign injected
into a depletion region is often larger than v„.
Under the approximation of Eq. (18), the small-
signal hole lifetime is readily found to be 70/(s/2n 0).
= ro/ ,N, where -n is the local electron concentration
on the hyperbola. Similarly, the electron lifetime
is Tp/(p/2elo) = To/ P.

Solving for hQ from Eq. (28) gives
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I: &M = —gp —A, g&Q, &Q ——Qp,
(33)

II: AM= gg4Q, &Q ——Qp

where zp and x& are defined by

Xo
=—2(1 —Nq), A.g

= (1 —N, )/Qp . (34)

For steady-state transport in the x coordinate
direction, it is of advantage to use the field,

dS' x
dX' LD

as dependent variable, where

IV= eV/kT (36)

is dimensionless electrostatic potential. Then Eq.
(23) becomes

d F
p
—FM= —F, .

The derivative, the magnitude GRAD(DIV F), en-
ters when ~Q is eliminated by use of Poisson's
equation, Eq. (21). Substituting for M = 1+ 4M
from Eqs. (33) in Eq. (37) and further eliminat-
ing ~Q gives the differential equations for the two

branches,

dF dFI: —
p +ATE +(Xo —I)F= —E, ,

B. Solutions for Equal Nobilities and No Trapping

1. Formulation using Line APPxoximati on

It is suitable to approximate the two branches of
the relaxation hyperbola by two straight lines as
shown in Fig. 1. These are the lines from the
conversion point to the two intercepts on the bQ
axis of which one is the 4M-4Q origin. These lines
for the respective branches are

dashed line at ordinate unity. The analysis, an
illustrative exercise in the use of the line approx-
imation, is here omitted; a similar exact analysis
using the Boltzmann expressions,

P=N] e, N= N] e (40)

is as easy. Space-charge concentration in traps
may be written as function of W, and its contribu-
tion to F also obtained in simple closed form. The
details are beyond the present scope.

For a more strongly extrinsic semiconductor,
with N, very small, there is sharper variation of
M with distance. About the conversion point or X
origin there is a region in X of very small, intrinsic
conductivity. A parabolic dependence of W on X is
then readily found to obtain in this region, which
has nearly uniform space charge. A largely sim-
ilar result holds if trapping is appreciable, though
it is found that concentrations with deep traps may
vary comparatively slowly with distance.

If the junction region and semiconductor are il-
luminated so that ~ G is uniform in the volume, then
the solution is the same as that for a semiconductor
of increased N& at equilibrium. It suffices to re-
place N; by (N;+2&G), which is M at the conver-
sion point. If this M is sufficiently small so that
the line approximation may be used, then N, may be
so replaced in the definitions of ~p and A.& of Eqs.
(34). As has been indicated, this M exceeds unity
for bG —,'qQ, which is agro —,'(po —no) /(pa+no), and

there is then local reduction of total carrier concen-
tration in the junction region without depletion be-
low the equilibrium value. Largely this same re-
sult holds even if lifetime depends on 4g through

dF dF
II: &

—A.iF -F= -F, .
(38)

2. p-n Junction at Equilibrium

For zero current, W introduced as an independent
variable in Eqs. (38) by use of dX= —dW/E gives
equations linear in F, which is then readily found

analytically in terms of K A further quadrature,
easily performed numerically, using s I ~ I ~ I s

(39)

gives the dependence of W on X. This dependence
so obtained, as well as those of F and M, are
shown in Fig. 2 for' pp=100np which is the rather
weakly extrinsic case of Fig. 1. The X and W

origins are taken at the conversion point. Solutions
for the two branches join there. Figure 2 shows
an extended region of appreciable majority-carrier
depletion, where the curve for Af lies below the

DISTANCE IN DEBYE LENGTHS, X

FIG. 2. Relaxation-case semiconductor in equilibrium
with a minority-carrier injector; the dependence on dis-
tance of dimensionless potential 8', field E, and total car-
rier concentration M. This semiconductor is the p-type
one of Fig. 1 for the case of no trapping. Mobilities are
assumed equal, so that M represents conductivity. Note
the region of conductivity depletion where M &1 holds.
The curves apply also for the lifetime case, for which

np =n~ holds at equilibrium.
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FIG. 4. Depletion drift region; dependence on distance
of dimensionless total carrier concentration M and field
in units of asymptotic fiel.d. Equal mobilities and a p-type
semiconductor with Ng =0, 0& and thus Pp/zp"=4 &&10 are4

assumed.

time for minimum conductivity 0, which is here
intrinsic, so that v /v, is N; Indeed. , consider-
ing E, fixed and semiconductors that differ only in
conductivity, x, is only some 40% larger for N,
=0. 01 than for N& =0. 2. To the approximation of
Eq. (47), x, is independent of N, or conductivity,
being given by

x, =
I IE. I ..=

I (E„I., (43)

Here E =I/v is the field attained at the end of the
depletion region. This largest field is v /7„
=- v, /v times E,. For no trapping, the length of
the depletion region is thus the distance carriers
drift in time 7„under the field E . It is propor-
tional to the maximum (here intrinsic) resistivity
times the asymptotic field.

Self-consistency of this analysis will now be
demonstrated by deriving a condition that is met
when a depletion drift region occurs. It will be
shown later in this section that for this case of
equal mobilities the region is confined to branch I
of the relaxation hyperbola; its approximate bound-
ary is the minimum-conductivity point, which for
equal mobilities is the conversion point.

The magnitude of &Q & 0 decreases as branch I
is traversed towards the conversion point with in-
creasing X. From Eq. (23) or Eq. (37), the dif-
fusion term d&Q/dX positive implies I F, I

& IF I M.
The drift approximation requires that &Q change
sufficiently slowly with X so that l

I'
I M may be set

equal to IF, I. The average (ddt/dX) of the dif-
fusion term over the range of the drift solution is
easily calculated, and this must be small com-
pared with IF,I. Prom Eq. (47), the dimension-
less distance X, for N; « I is g I E, I ~ /I. ~, and in
X„ the change in &Q is from —2Q, to —Qo or equal
to Q() = 1. Hence when the drift solution applies the
1nequallty 1n

holds, which gives the condition

V, =—pE, ,7»kT/e . (50)

(51)W = —fFdX, dX = —ic,dF/(M + ico —1) .
The second equation is tantamount to Eq. (43) and
holds for branch I. With Eq. (42), Eqs. (51) give

'j F +(X —I)F
(52)

and if 5' equals zero for M=1, the integral is

W =- P.,F'./(~, —1)'] [-,' ~,'(Z'- 1) —2X,(Z —1) + lnZ]

(53)
in terms of M, with Z so given by Eq. (45). This
result shows that voltage is proportional to the
square of the current provided the entire depletion
drift region is contained within the length of the
semiconductor. By multiplying both sides of Eq.
(53) by N;/F„ the voltage is expressed in units of
V„because W/F, = V/ij, E,~~ and ~„=N;7 For.
N; «1, for which Xo = 2 and X, = Qo = 1 hold, the
voltage so expressed is

V/ V, = N, [ 2(Z —1) + lnZ],
with Z given by

Z =- —(M +1)

(54)

The defined potential t/"„here called the injection
potential, equals t E, lx, and is large compared
with the Boltzmann potential. A qualitative physi-
cal interpretation is that V„an effective potential
based simply on IE, I, is smaller than the actual
potential, and so takes account of field being
smaller than t E, ( in part of the region towards
the injector where conductivity (due to injected
minority carriers) is of order v, and larger. Very
moderate asymptotic fields suffice, for this case
of no trapping, if maximum resistivity and hence

are not too small: For example, with p. =10
cm'/V sec as an order-of-magnitude value for
(electron or hole) mobility, the condition is readily
met in GaAs or in Si by l E, t respectively of the
order of 1 V/cm or about 30 times larger than this.

Over a large part of the depletion drift region
for equal mobilities, the field exceeds the asymp-
totic field by a factor not much less than ¹',the
factor that applies at the conversion point. Volt-
age rise to this point (from the point at which M =1
holds) should therefore be nearly V,/N;. An ana, -
lytic solution shows that this value is too large by
just a factor of 2.

This solution for electrostatic potential in the
depletion drift region follows from



TBANSPORT IN RE LAXATION SEMICONDUCTORS 2165

from Eq. (45). The expression on the right-hand
side of Eq. (54) simplifies to (2N;) for M=N„and
this gives the potential drop V, from the conversion
point in units of V,.

The condition, Eq. (50}, that is met when there
is a depletion drift region specifies sufficiently
large E, or current density. The equivalent condi-
tion in terms of actual potential drop is thus

V, =VJ2N, »(2N, ) 'I V/e . (55)

Application of this equation requires, in principle,
that voltage across the region be known or esti-
mated.

How the depletion drift region ends depends on
what boundary conditions are specified. It shouM
first be noted that for equal mobilities the region
does not extend beyond the conversion point. Be-
yond the conversion or minimum-conductivity point
on branch II, M or conductivity increases, and Eq.
(42} then requires that IF I decreases. But since
&Q is negative, I

I'
I must increase according to

Poisson's equation, Eq. (2l). This contradiction
shows that, with steady forward current, branch II
beyond the minimum-conductivity point is inacces-
sible from branch I. The depletion drift region is,
in principle, realizable up to this point, since it
may be terminated at the corresponding location by
a "matching" electrode, one that does not perturb
the space charge. ' The region may also be thought
of as being joined at that location to a length of in-
trinsic or minimum-conductivity material termina-
ted by an Ohmic contact. This boundary condition is
consistent with the drift approximation in that the
field at the junction is continuous there. The dis-
continuity in space charge under the approximation
would be removed by diffusion, since (with equal
mobilities) &Q occurs only in the diffusion term of
the current equation. Space charge would thereby
be perturbed over a small distance of the order of
only one diffusion length. In the case of the long
or unterminated semi. conductor under forward bias,
Poisson's equation requires a region of positive
space charge between the depletion drift region and
the asymptotic drift region, as is shown in Fig. 3.
This space charge is due to mobile holes, and re-
duces field to its asymptotic value E,. It must,
therefore, in total amount equal the total negative
space charge in the entire depletion drift region
from the point in that region at which conductivity
and local field are equal to their asymptotic values.
Over-all neutrality applies, and it is in part as if the
mobile holes were simply displaced away from the
injector contact. Both field and concentration gradi-
ent contribute to a steady flow of holes back towards
the depletion drift region.

According to familiar lifetime-case concepts, such
adjoining steady regions of opposite space charge
would of course not occur. Their occurrence in the

for N&«3. , no trapping, andequal mobilities. This
result gives the approximate length of the recom-
bination front, and comparison with Eq. (47) shows
that it occupies in this case a fraction about ~0/27~
«1 of the depletion drift region. This region
should, therefore, be realizable in the long semi-
conductor as well, terminating there in a relatively
narrow front in which electron and hole currents
are approximately equal to the equal minimum-
conductivity drift currents. In the front, diffusion
may actually predominate since &Q changes rapid-
ly with distance and the term ding/dX may be
large. But drift predominates if current density
is sufficiently large so that pE, ro»2N, kT/e holds.
This condition resembles that of Eq. (50) for the
depletion drift region, but calls for a current
larger by the factor (2v', /ro)"~. It is based on IF, I

large compared with ding/dX approximated as L ~
divided by the length of the front, over which the
change in 4Q is of order unity.

E. Extension for Trapping and Unequal Nobilities

1. Trapping and Recombinative Transition

The pronounced steady depletion of majority
carriers through recombination will occur when
concentration of mobile injected minority carriers
appreciably exceeds the equilibrium value. An

analysis given in Appendix B shows that trap filling
to a concentration in excess of the capture concen-
tration

&"-=& ("0/&)(& —no/&) (58)

is required. Now, X* is small if the traps are
nearly all empty or nearly all filled at equilibrium,
and has a largest value ~%for traps half-filled.
It follows that if the traps are normally either
mostly filled or mostly empty, then the depletion
can be realized without much effect on trap occupa-
tion. Some effects of trapping on transition to the
hyperbola are also analyzed in Appendix B. It is
shown that a transition to branch II like the one of
Fig. 1 entails a reduction in the magnitude of ~Q
approximately by the trapping factor

N,*=—i+ st*/(po+np) . (59)

Also, for transition to branch I, the initial elec-
tron concentration must meet the approximate
condition,

Sna '(&0-no) N ~

relaxation case is connected with the recombination
front between them. In Appendix A, the approximate
consistency of 8 =0 with the recombination equation
is shown to fail short of the minimum-conductivity
point. The location x~ at which the recombination
front starts is found to be given by

(57)
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must be used. On branch I, completely filled
traps or &n= (3t-np) may be assumed, since
n &n; »no holds there for extrinsic P-type materi-
al. This assumptipn hplds alsp past the cpnver-
sion point along part of branch II, further along
which r n approaches zero. Then Eq. (61) results
in simple modification of Eqs. (33) and (34): For
branch I, &0 is replaced by the expression of Eq.
(34) plus p&q &A'. With unequal mobilities also taken
into account, the expressions for both ~0 and &&

are easily modified for each of the branches, and
immediate generalization follows in this way of the
entire formalism of Sec. IID3 for the simple case.

For unequal mobilities, the dimensionless cur-
rent equation, Eq. (23), is replaced by

()F
F, yp ——F Z + &o GRAD&M —GRAD&Q+ —,(62)

in which

Z =M —&bQ (63)

is the dimensionless conductivity and ~0= 1 —~& Qo
its equilibrium value, with

(64)

where p„and p, ~ are the mobilities. Note that ~,
does not exceed unity. For steady drift only in the
x direction, Eq. (62) reduces to

(65)

and, with Eq. (61), Z for branch I is given by

I dI
g = 1 —Q —XoQp —p(X~ y Xo) d, N —(X~+ Xp) —.dX''

(66)
Comparison of Eqs. (42) and (43) with Eqs. (65)
and (66) shows that results of Sec. IID3 pertaining
to the depletion drift region may be extended simply
by replacing &o by &o+ X,Qo+ 2(&, + &,) &N, &, by
&q+ &&, I', by E, Zo, and M by Z, and similarly for
branch II, if part of this branch is also involved.

Some principal results so extended will be given
for the extrinsic approximation N; «1. Distance,
in a depletion drift region from x& near the injector
at the left where Z equals Zo to a point where Z «1
holds, is given by

x —x, = +(I ~ —.6N) ' (1 ~ &,) pE, r,/Z,

which is essentially that &nq must exceed Po+ ~ *.

2. Extension for DePletion Drift Region

With the technique of the line approximation,
solutions of Sec. IID3 are readily extended. Equa-
tions (33) and (34) for the lines still hold as written
in terms of &Q, but the more general Poisson's
equation,

hQ= pnN+ —,hA —= An/p(Pp+np)

= (1 —~b)" N» = 4(tt ttt)" n~/(& + &p)(i'0+no)

(69)

However, Z may be eliminated by use of r„/Z
= r /Z„where 7„ is the corresponding dielectric
relaxation time; note that 1 vXo in Eq. (67) is the
approximate value of Zp ~ The trapping factor is

Nq =1+ ~ hN=
1 + (X np)/(po+ np), p type

1+no/(no+ Po) n type

(70)
since X-no or no is the concentration n& of traps
that become filled by minority carriers. Equa-
tion (67) is thus found to give, for either conduc-
tivity type,

x = P /E,
/
r./N, = q f

E
f r&N, , (71)

where E is the field at the minimum-conductivity
point. Note the reduction of x by the trapping fac-
tor, that tt about equals the (microscopic) majority-
carrier mobility, and that Tl./N, is the effective
drift mobility.

The potential difference across x is found to
be given by

~V„~= —, ~E (x =-,'ttE' r+N, =-, (op/cr ) V, ,

(72)

V, = ttE,'r /N, = ~E, ~x- (73)

is the injection potential of Eq. (50) redefined more
generally with tt/N, . The condition that is met
when the depletion drift region occurs is, as be-
fore, V, large compared with the Boltzmann poten-
tial. This is derived by specifying relatively small
average (d(&, M —Q)/dX) of the diffusion term from
the point Z = &o on branch I to the minimum conduc-
tivity point. With Eq. (72), the condition may be
written in terms of the actual potential as

i
V

i
» ,'(oo/o )0T/e, —

with the upper and lower signs applying for P and
n type, respectively, and

p =(tt~&o+ p no)/(Po+no)= o'o/2e mo (68)

As will be shown, the recombination front is at the
location of the minimum-conductivity point, defined
by p. ~P = p, „n on the hole branch of the hyperbola.
Equation (67) applies up to the front; for n type,
minimum conductivity occurs on branch I, while
for P type, solutions for the two branches that are
entirely similar under the extrinsic approximation
join at the conversion point. The distance x to
the front, or length of the depletion drift region, is
therefore x —xq from Eq. (67) when Z is given its
minimum- conductivity value,
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and holds in this form independently of trapping.
Thus, with trapping, essentially the same potential
drop is realized over a distance shorter by the
factor N, and with current that is increased by the
square root of N, .

Extended theory for the recombination front is
given in Appendix A2. It is shown that the front
has fractional length n given by

n+:—C~pg/C„&&no . (79)

From Eq. (13) for ro and Eqs. (VO) and (7V), n «1
is then found to give

conductor, and consider first equilibrium hole cap-
ture rate the larger, which is equivalent to the
equality level being between the Fermi level and
the conduction band or

+= 4[(pn+pp)/p]Nt ro/ra ~ (76) C„n, » me (p „+p~) p,/e, (80)

where or a lower limit for the electron release frequency,
and also

C~»Ci = me(g-„+ p~)/e, (81)

1
Nf =-1 —

3
P type

np1+ 1/2"o-po+ (0n —&p)"~/(pn 0 n)

n type (V6)

is a trapping factor. Here bQ =—Q —Qo is the nQ
at the minimum-conductivity point. If the material
is not too near-intrinsic and the mobility ratio not
unusually large,

o' = ~ (I+ 9 min/p mg )N ~ ro/ ru

may be a good approximation, where p, „and p. z
are the minority- and maj ority-carrier mobilities,
since I &Q l

= 1 and N,'=N, then hold and p, is very
nearly p „. Equation (V5) of course gives vo/2v,
for the case of equal mobilities and no trapping of
Sec. IID3. With Eq. (71), the actual length of the
front is

o'x = '(v. +v~)(N~/Nt) E
I
"o= '(p "pn)IE I

"0.
(78)

This is essentially the distance of separation from
which electrons and holes will drift together in
time Tp under the largest local field E and does
not depend explicitly on trap concentration.

3. Some Consequences of Extended Theory

This section deals mainly with theunusually large
trapping cross sections in relaxation semiconduc-
tors, with amorphous semiconductors having min-
imum conductivity, with how the trapping factor
and hence concentration of traps that become filled
may be determined from the current at the sublin-
ear threshold, and with an estimate of the kink
voltage V~.

The theory of the recombination front leads to
the large cross sections. The condition «&1 is
implied directly by a sublinear range. Then, from
Eq. (V7), essentially N, v'p/ r~ «1 must hold, and

since N, » 1 usually does also, Tp/1g must be corre-
spondingly quite small. Then, for the case of Tp

determined by recombination in the traps, a lower
limit for the cross section for capture of minority
carriers is determined. Assume an n-type semi-

or a lower limit for the recombination coefficient
for holes which is CI., here called the Langevin
recombination coefficient. With no/p& —-n~/po, Eq.
(81) follows as a strong condition from Eqs. (79)
and (80) together. For the case of equilibrium
electron capture rate being larger, & «1 simply
gives Eq. (81) directly, and not Eq. (80). It is
easy to verify that the same results hold in a for-
mal sense for traps of the donor type. But for the
GaAs semiconductor described in Sec. IIIA, Eq.
(81) gives C~»C&= 1. VX10 cm /sec, or a cross
section for hole capture (obtained by dividing by
thermal velocity) of order 10 ' cm or larger.
Centers with so large a cross section may well be
assumed Coulomb attractive and therefore of the
acceptor type in an n-type semiconductor.

Equation (81) specifies a minority-carrier re-
combination coefficient large compared with that
for diffusion-limited capture: The familiar Lange-
vin coefficient"'" for such capture is 4' p
and C~ is this multiplied by the factor
&(I+ y, „/p ~,). The physical significance of this
factor will be made evident; it is usually of order
unity. The cross section m(&n, ' )' whose radius
is half the average spacing between the centers is
about the largest possible. For the particular
GaAs it is about 3 &&10 cm and meets the condi-
tion & «1 by more than two orders of magnitude.
Independent reasons will be given why such a
"space-filling" cross section for minority-carrier
capture should obtain quite generally in the trap-
dominated relaxation case. For some of these
reasons, a very large cross section for majority-
carrier capture by neutral centers should also ob-
tain. A C„ that is only about three orders of mag-
nitude smaller than C~ is, indeed, indicated by
analysis of data in Sec. III C based on Eq. (80) and

approximate equality of (increased) hole lifetime
and transit time at the end of the sublinear range.

The Langevin cross section is itself orders of
magnitude larger than the cross sections ordinarily
encountered in the lifetime case. In a simple der-
ivation~6 of the familiar expression for this cross
section, the rate at which volume per carrier is
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swept out under the central Coulomb field is inde-
pendent of radial distance x. Spherical symmetry
is assumed, so that the recombination coefficient
is the area 4m times the velocity pe/&r, or
4' p/e. This independence of v might seem to
suggest that no larger recombination coefficient
can occur. The formalism does not really imply
this, as will now be shown. A property of the
Langevin cross section should first be noted. If
the radius r is chosen so that the velocity e p/ex'
for this radius equals the thermal velocity ve, then
the area 4vr' is 4' y/&v~. Since the cross sec-
tion is the recombination coefficient divided by n~,
this area is the familiar Langevin cross section.
Therefore the microscopic drift velocity extrapo-
lated from constant mobility is ve at the I angevin
radius. At this radius, the central field gives an

appreciable contribution to carrier velocity be-
tween collisions, or within one mean free path,
and a carrier is directed towards the center corre-
spondingly. Such a carrier may be scattered away
and another may be drawn towards the center in its
stead, and since the capture probability must then
be divided between carriers, the formalism with
spherical symmetry applies. Hence the Langevin
cross section entails not only relatively small mean
free path but also the assumption that the center is
well surrounded by the carriers it attracts. In

contrast, if the concentration of these carriers is
of order n, or less, a condition generally met near-
ly everywhere (with the trivial exception of a small
region adjoining the injector), then the cross sec-
tion is the space-filling one, being based on the
transport of one particular carrier to a center. If
a carrier within a free path of the boundary of the
volume dominated by a center is scattered out of
this volume, it does not in effect escape but enters
the volume dominated by a neighboring center, and

such scattering occurs with statistical uniformity.
Effective escape does occur when the centers are
outnumbered by carriers of the same sign, or ma-
jority carriers; they are then screened by these
carriers and their Coulomb fields are, so to speak,
statistically obscured. Cross sections may then
be smaller by as much as several orders of mag-
nitude, as in the lifetime case.

The space-filling cross section obtains strictly
for zero applied field only. It is otherwise de-
creased approximately to the cross section deter-
mined by the radius at which the central Coulomb
field equals the applied field. In a trap-dominated
relaxation semiconductor, the Langevin cross sec-
tion Cl/v, of the present theory may therefore ac-
tually be realized (with a charged center) through
saturation of the minority-carrier drift velocity,
and at the smallest applied field for this saturation.
The factor 4 does not occur in this cross section,
m times the square of the Langevin radius for this

case, because spherical symmetry does not apply.
Furthermore, the sum of the mobilities in place of
minority-carrier mobility reflects in a statistical
way drift of an electron and a hole towards each
other: As derived, C~ applies to v'o, that is, to
the entire recombination process. Also, equal
and opposite flow densities are actually realized
at the recombination front.

When the condition of Eg. (81) is not met there
may be an extended recombination front rather
than a relatively short one terminating a depletion
region with predominant drift. With velocity sat-
uration, the condition may no longer hold. Drift
velocity is then constant in magnitude essentially
everywhere, and the resultant of the applied and
central Coulomb fields establishes its direction
at any point. Carriers in this case will mostly
drift past centers whose average separation is
large compared with two Langevin radii. On the
other hand, the condition is not met whenever n,
is sufficiently large so that the space-filling cross
section is smaller than the Langevin cross sec-
tion, as would occur in the particular GaAs for
n, =10 '/cm'. The average radius for v, is smaller
in this case than the Langevin radius.

Sufficiently large concentrations of recombina-
tion centers such that their average separations
are less than the mean free paths, as in certain
amorphous alloys, may be expected to result in a
(p-type) semiconductor of minimum conductivity,
properly defined by electron and hole flow densj. —

ties everywhere equal and opposite at low fields.
Such a semiconductor is in a sense an extended
recombination front in its simplest form. The
concentration n& of ionized minority-carrier traps
is compensated by a slightly larger concentration
of oppositely ionized majority-carrier traps. Con-
centrations of these ionized centers of acceptor
and donor types may be only small fractions of the
respective total concentrations. In any case, there
is no screening and carriers are strongly trapped
at neutral or ionized centers, with pronounced re-
combination in and generation from these centers.
Carriers emitted and activated into mobile ex-
tended states contribute to the equilibrium conduc-
tivity. The mean free path is of the order of an
electron wavelength or more. An emitted carrier
is trapped a free path away, either producing a
Coulomb-attractive center of the same polarity or
neutralizing one of the opposite polarity; and the
probability is not much smaller than unity that it
recombines. It remains mobile and unrecombined
on the average for only slightly more than a single
mean free path. The rates at which electrons and

holes are so scattered into a given volume element
(physically small but containing many atoms) will
be equal because of very short v'0 and detailed
balance. If the difference in effective masses is
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N, =egE, 7 /kT . (82)

Here the Z, that should be used is the asymptotic
field for a current equal to half the observed

threshold current. The reason is as follows: The
sublinear dependence of current or E, on potential
given by Egs. (72) and (73} holds only for values
sufficiently above the threshold. A more detailed
theory would be required for the sublinear charac-
teristic near the threshold. It is a plausible sur-
mise, supported at least fairly well by data, that
the characteristic does not differ much from the
law (I —I,)/I, =

I
(V- V, )/V, ]"' relating the incre-

ments above the threshold, (I„V,); it must be be-
tween this law and the ratio law, I/I, = (V/V, )" .
If the increment law is plotted logarithmically, then
it is seen that it gives essentially Ohmic behavior
beyond (I„V,), which is the "actual" or extrap-
olated threshold defined by the intersection of the
Ohmic and limiting half-power ratio-law curves;
the apparent threshold or kink Point (I„, V~} is on
the Ohmic line extended at (2I&, 2V, ), or twice the
extrapolated threshold. There is a slight super-

neglected, then this equality in rates implies that
the total times per unit volume in extended states
are also equal, so that holes with the shorter mean
free path have proportionately larger concentra-
tion. The exact, more purely phenomenological
condition is that the concentrations no and Po in

extended states times the corresponding micro-
scopic diffusivities are equal. With Einstein's rela-
tion, this is the equality of the electron and hole
conductivities and drift with equal and opposite flow
densities at low fields. It is easily seen that the
ambipolar Hall coefficient for this P-type case
should be negative; it contains the difference
p, »- p„~ &0 of the Hall mobilities as factor. This
consequence appears to resolve the so-called Hall-
effect-Seebeck-effect anomaly for the amorphous
materials, with which positive thermoelectric pow-
er is observed in conjunction with negative Hall
coeff icient. The generally rather small magnitude
of this coefficient may be largely due to the recom-
bination after single free paths. Note that, as a
concept, the detailed-balance pinning of the Fermi
level through the recombination provides a new ap-
proach. The observed insensitivity of conductivity
to addition of impurities is, indeed, one obvious
consequence, and very large concentrations of
near-midgap centers, for example, need not be
invoked. Detailed treatment of this case and con-
sideration of any of the various other cases of large
trap concentration in crystalline as well as amor-
phous materials are beyond the present scope.

The trapping factor N& and hence the concentra-
tion n, may be determined from the threshold cur-
rent. Equating the injection potential V, of Eq.
(73) to the Boltzmann potential gives

linear bump between (I„V&) and (I„V,), beyond
which there is a sublinear dependence of nearly
constant but slowly increasing apparent ratio-law
exponent whose approximate value over the initial
two decades in voltage above threshold is 0. 43.

An estimate of the kink voltage V, follows from
approximation of the Ohmic part of the character-
istic. Minimum-conductivity material over the
width x, of a space-charge barrier due to uniform
concentration n, of fixed charges gives

I VI = (oo/o-) I&. I~., ~.= («./»«)"', '(83)

for the Ohmic line, V, being the space-charge vari-
ation of potential in the barrier; E, is the current
divided by oo and area of cross section. Potential
in terms of E, for the limiting half-power sublin-
ear range is given by Egs. (72) and (73), and V„,
twice the voltage at the intersection with the line
of Eq. (83), is (for N, » 1) found to reduce to

Vy= 8Vs 8', ( )

in which the approximation of V, by the band-gap
potential V& applies for sufficiently strongly ex-
trinsic material. With intrinsic material, V~ is
about 4V&. Part of the barrier region near the
junction interface has high conductivity, but Eqs.
(83) and (84) should be reasonably good approxima-
tions, since this part is relatively narrow.

IH. EXPERIMENTAL PROCEDURES AND RESULTS

A. Preparation of Diodes

The GaAs samples used in this study were from
single-crystal, (100)-oriented wafers obtained
from oxygen-doped and compensated crystals grown
by the floating-zone technique. Hall and resistivity
measurements showed that these wafers are n type
with a room-temperature carrier concentration of
3. 0&10/cm', resistivity of 4. 6x10 Q cm, and
mobility of 4. 5&&10' cm /Vsec. They were pol-
ished with a bromine-methanol etch that provides
a damage-f ree surface.

The P-n junctions were formed at a depth of
about 3 p, by diffusion of Zn at 650'C for 8 h. In-
dividual wafers, of diameter approximately 0. 250
in. and 0. 02 in. thick, were sealed in a fused silica
ampoule along with a 5, 50, and 45 at. % Ga, As,
and Zn diffusion source. This diffusion source
was used because it reproducibly gives planar
junctions and prevents changes in resistivity and
carrier concentration that frequently occur during
diffusion with other sources and diffusion condi-
tions. The surface concentration with this source
is about l. 7&&10 /cm, and the Zn concentration
decreases abruptly below concentrations of about
10 /cm . The diffused layer was removed from
one side of each wafer by lapping, and a thin In
and Au layer was evaporated on the lapped side to



2170 W. VAN ROOSBROECK AND H. C. CASEY, JR.

I I I I I'k[ I & I I I Illa'
at a bias of 80 V the sublinear range ends. At
about 120 V a negative-resistance range (not shown

in the figure) was observed to start.

C. Analysis and Discussion
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FIG. 5. Forward current-voltage characteristic of a
single-crystal n-type GaAs diode. The negative-resis-
tance portion of the characteristic is not shown.

Current-voltage characteristics were deter-
mined with the mounted samples in a light-tight
enclosure. The voltage was supplied by either a
Hewlett-Packard 611A or Keithley 241 digital
voltage supply. The current was measured with
a Hewlett-Packard 425A ammeter. A typical
room-temperature chare, cteristic is shown in
Fig. 5. As shown in this figure, current varies
linearly with voltage from a low value (actually
10 "A at 0. 04 V) up to 13 V and then varies sub-
linearly with voltage. The dependence in the sub-
linear range is approximately I=I,(V/V, ) ', and

provide an Qhmic contact. The In-Au ratio was
about 10:1 by weight, and enough In was used to

0

provide about a 2300-A layer, The In was evapo-
rated first and then the Au. The layer was then
alloyed by heating to 550'C. Contact to the P-type
layer was provided by sputtering 1500 A of Ti and

3000 A of Pt. A 0. 8-1.0-p, layer of Au was evapo-
rated on the Pt. Each wafer was then cut into ap-
proximately 30-mil squares, and lightly etched to
remove the saw damage. The squares were bonded
to headers with Au-20%-Sn preforms, and Au

wires were bonded to the Au layer on the P' sur-
face.

8. Electrical Measurements

The Qhmic line in Fig. 5 gives a resistance of
4. 8x10 0, while the bulk resistivity over the total
length of 4. 5x10 cm and for the cross section of
4&&10 cm gives a calculated resistance of 5. 2&&10'

0, nearly an order of magnitude smaller. Most of
the resistance is therefore junction resistance near
the injector contact. An intrinsic concentration n,
of 9x 10'/cm at 295 'K and a mobility ratio of 20

give N, -=2n, /(no+ pa)= 6x10, A., = 0. 9, intrinsic
resistivity pq of 1. 5&10 0 cm, and maximum
resistivity p = (1 —&,) '"p; of 3. 5x10 0 cm.
Thus the observed junction resistance equals the
resistance of minimum-conductivity material at
295 'K over a length L ~/13. 5 = 5. 6 x10 cm; with
e= 12. 5 for GaAs, the Debye length LD from Eg.
(19) is 7. Gx10 cm. This fraction of LD seems
reasonable with trapping, and it provides an esti-
mate of the extent of the junction region.

The observed kink voltage V„of about 13 V is
approximately the theoretical estimate 8V, of Eq.
(84). The observed exponent of 0. 44 for the sub-
linear range is in perhaps fortuitously close agree-
ment with the theoretical exponent 0. 43 for the in-
crement law given in Sec. IIE3. This agreement
supports the estimate of N, by use of Eg. (82) with

E, the asymptotic field for half the kink current I,.
With I„=2, 7 @10 A, this E, is 15. 6 V//cm and

gives N, = 1.7x 10' and thus n, = no= 5. 1 x10 ~/cm3

for the concentration of traps that become filled
by holes. The space-filling cross section is about
2. 7&&10 cm . With the value of N„effective drift
mobility is about 2. 6x10 cm /V sec, and the
length x of the depletion drift region calculated
from Eq. (71) increases in porportion to current
to 6. 9&10 cm at 80 V. This x added to the
estimated length of the junction region gives 1.25
&& 10 cm. The average field at this bias is 1800
V/cm, and the calculated largest field, the product
of E,= 69 V/cm and oo/o = 75, is nearly 3 times
larger. Electron velocity in GaAs saturates,
however, with maximum velocity at about 3000 V/
cm. Beyond the recombination front, the space
charge of electrons is as a result progressively
spread out with increasing bias so as to support
uniform current, while the field there increases.
This field and the recombination-front field both
approach the velocity-saturation field as depletion
rapidly spreads. At 80 V, depletion with in-
creased hole lifetime extends to the end contact.
As indicated also by potential-probe measurements,
an associated rapid increase in hole concentration
therefore probably causes the initial increase in
current above 80 V, and current in this range is
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then space-charge limited. The negative resis-
tance above 120 V is then of the double-injection
type. 7, 18,20 Because transit times 1n this range
are not long compared with the lifetimes, this is
not specifically a relaxation-case effect. Note
that since the average field is 2400 V/cm at 120
V, increased concentration of electrons injected
from the end contact, where the field is largest,
results in part from velocity saturation.

The cross section for electron capture or the
electron emission rate may be estimated by use of
the assumption that lifetime and transit time of
holes are equal at the end of the sublinear range.
Since the traps are filled with holes, lifetime is
limited by the rate C„n K of electron capture by the

(neutral) centers. Towards the end contact, mini-
mum-conductivity electron and hole concentrations
n and P give the recombination rate C„n X and

&P =P —Pp, and, theref. ore, the hole lifetime
—po&/C„n &= [(p —po)/n j7'„0. With Pg, = 225

cm /V sec, the hole transit time at 80 V is about
10 sec. Equating the two times gives v„p= 5. 6
x10 sec. Then 7„~o= (1+n&/no)C„no from the
equilibrium statistics relates C„and n~. In partic-
ular, if n&«np is assumed, then C„ is 3. 5&10 '
cm'/sec, while n, »n, gives C„n, = 1.05x10'/sec
for the electron emission rate and smaller C„.
The largest possible cross section from C„ for
electron capture by a neutral center is therefore
some three orders of magnitude smaller than the
space-filling cross section for Coulomb-attractive
hole capture.

Further conclusions about the recombination
model and estimates of V.

p now follow from «&1.
This condition and Eqs. (79',-(81) are tantamount

to C~» (I+n~/no)Cz, , which gives n*/no= CPO/C„n,
«l. 55x102, or C„n, »4. 7/sec. Thus, with the

C„for n, «no, the condition gives n&»1. 8x10 /
cm', or n~ at least of order n, = 9 x105/cm'. That is,
the acceptor centers must be very deep ones whose
energy level is at the intrinsic level or above this
level. Equation (13) for no»po may be written as
ra= (C~o) (1+n*/no), and r 02x1 Osec follows
if the energy level is assumed to be the intrinsic
level. The centers are mostly ionized, with np
= 0. 97st, if at this level; and, with n*/no= 24, this
7p is determined by capture of majority electrons.
However, n&»np or the energy level above the
Fermi level gives the fixed electron emission rate
and 7o=1. 2x10 ' sec. Then n*/no=0 7=1 hold.s,
which implies that the centers are in the xeconz-
bination range but essentially at a boundary of this
range that corresponds to the "equality level":
The (equal) capture and emission rates for holes
very nearly equal these rates for electrons. Since
n& may exceed np by orders of magnitude in this
case, Ot »no= 5. 1 x10' /cm' or centers nearly all
neutral may obtain. With comparatively many

neutral acceptor centers and with Pp three orders
of magnitude smaller than np, recombination in-
volving the donor centers, which are mostly neu-
tral midgap centers from oxygen, probably does
not affect 7p appreciably.
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APPENDIX A: THEORY FOR RECOMBINATION FRONT

1. No TxaPPing and Equal Mobilities

Equation (25), the recombination equation, writ-
ten for steady drift in one dimension and zero 4t"
1S

(QF) = ——(M —Q -N2) .dx 2 vp
(85)

With no diffusion, M may be expressed in terms of
F by use of Eq. (42). If F is introduced in place of
X' as independent variable '

by use of Eq. (21),
Poisson's equation, then Eq. (85) becomes

dQ
(86)

In this nonlinear differential equation, it is per-
missible to linearize the departure in 4Q from its
value 4Q for (R = 0, since slight net recombination
or generation will produce comparatively large
changes in the divergence of QE. Write for &Q,

&Q = &Q+ (&0/&a) &Qi, (87)

and note that adding Qp gives Q. To the first order
in ro/7; «1, Eq. (86) gives

din Q —&QN~]
Q~

——bQ 1+ = —
p (88)

01"

nQ= nQ [1 —(~,/r, )X',/Q'] . (89)

The second form for hQ& in Eq. (88) readily fol-
lows from the right-hand member of Eq. (86) being
zero for Q= Q, the bar denoting the value for S= 0.

The relaxation hyperbola applies if 4Q very near-
ly equals nQ. From Eq. (89), the condition for
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this is

rp/ ra «Q /N; = M /N; —l. (90)

trinsic material. In the steady state, T,/Tp is in
effect multiplied by E. The extended form of Eq.
(86) is thus

Since M and Q are, respectively, N& and zero at
the conversion point, this condition must fail short
of this point. Equation (89) shows that, as the
conversion point is approached, &Q exhibits depar-
ture from 4Q with rapid decrease in magnitude, as
is consistent with space charge going to zero. The
path in the ~-~Q plane clearly lies to the right
of the relaxation hyperbola, which implies a region
of net recombination in which @&0 holds. This re-
gion is the recombination front.

The fraction of the depletion drift region the front
occupies may be estimated by defining its bound-
a,ry by

—(NN — NN((N ~ )=
— (N —0 —N). ;

The linearization

AQ = BQ+ (Tp/KTa) hQg (98)

M=M+ (X0 rp/Kra) hQq . (99)

is appropriate. Since specifying the value of the
independent variable E for given total current den-
sity now fixes the value of Z (rather than M), Eq.
(98) implies, from Eqs. (63) and (65), the corre-
sponding linearization

M = (1+ u) Nf, 0, 0 & n « I

with M such that

(91) Equations (97)-(99) give

~Qj = 4Q 1 —— — Q Q —&~M 1+

rp/ra = Q /Ni~ (92)

holds, for which nQ as given by Eq. (89) is zero.
Equations (91) and (92) and the equation (in M and

Q) for the hyperbola give

rp/2ra . (93)

The solution of Eqs. (44) and (45) then furnishes
the distance between the boundary xR of the re-
combination front for which Eqs. (91)-(93)hold

and the conversion point. This distance is given

by

—I)0 X, —XR 1 —2N; & (1+ o')(I —N;)
lE, l N,. 1+ ~ 1-N,. + o.

¹

(1 —2N;)0 n
1-N; N) '

or, for N; «1, by

xc- xR ~ yo

p, lE, l 7'„¹2¹7~ (95)

Comparison of this result with Eq. (47) shows that
& is the fraction of the depletion drift region the
recombination front occupies.

2. Extended Recombination —Eront Theory

With trapping, the general Poisson's equation,
Eq. (61), must be used, and unequal mobilities re-
quire generalization of the recombination equation,
Eq. (25). It is easily seen that in this equation
S~/SU is replaced by S(~+ X, hQ)/SU, while
the divergence term is multiplied by the recipro-
cal of

[1+ (IapPO+ ia no)IIa &P(pp+np)1

= 0 (1+ P .(/P~(. ),
in which the approximation applies for suitably ex-

AQ= AQ [1 —PN;/(Q —X(,M) j,
with

P = (rp/Kra)(1 —4N/2&Q) .

(101)

(102)

The condition for the hyperbola is that the second
term in brackets in Eq. (101)be small compared
with unity. This condition will fail as (Q —X,M)
approaches zero. It is easily seen that this quan-

tity is zero for (u(P = Ia, „n = (ia.„p~)" n„or at the

point of minimum conductivity, at which the elec-
tron and hole drift currents are equal. With (ups~
&1, this point occurs on branch I for n-type mater-
ial and on branch II for P type. In the latter case,
the solution for drift only may be extended past
the conversion point; a solution for branch II may
be joined there to the solution for branch I since
there is an initial decrease in conductivity past the
conversion point which is now consistent with the

increasing lE l required by Poisson's equation.
The boundary of the recombination front may be

specified by the P for which the ~Q given by Eq.
(101) is zero:

P= (Q —X(,M) /N; .
Then,

(103)

Z -=(1+ o)Z, 0&a«1

with Z the minimum-conductivity value given by
Eq. (69), defines a variable o for which Eq. (103)
determines a value. Because the length of the de-

(100)
Since by definition M and Q are on the hyperbola,
MdM/dE= QdQ/dE holds; and then, by differentiating
Eq. (65), the factor in brackets in Eq. (100) can
be shown to simplify to [-N;/(Q —&,M) ], so that
4Q is given by
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q - ~om -=yN, , ~
y

~

«1 . (105)

With Z given in terms of M and Q by Eq. (63), by
differentiating Eqs. (63) and (105) with respect to
p, Z may be expanded in powers of y. From
dZ/dy=N; y/Z and the next derivative follows

Z = [1+ p(N, /Z ) y ]Z (106)

and the second term in brackets is &. With y = P
evaluated from Eq. (102) for minimum conductiv-
ity, use also of Eq. (63) and

@~/Nb = ~b~~/N~ = ~b(1 —~b) '"
gives the result for o of Eqs. (75) and (76).

APPENDIX B: RELAXATIONXASE CONCENTRATIONS
WITH UNIFORM TRAPPING

The condition (R= 0 gives from Eqs. (6) and (7)
the equations relating concentration increments,

pletion drift region is proportional to Z for ¹ «1,
this value is the relative extent of the front. In-
troduce, for convenience, the variable ' y=-+P"
so that Eq. (103) is

n-type case, as may easily be verified from the
second equation. Note that +~ is symmetrically
defined with respect to the fractions of all traps
that are empty and filled. Thus, pronounced ma-
jority-carrier depletion requires that the concen-
tration increment of traps filled by minority car-
riers be well in excess of * after recombination.

Consider now unipolar injection of minority elec-
trons in concentration ~n&. The space charge is
given by its initial value —e~nq, so that with Eq.
(107)

—&ng ——&p —&n —&n

(no+ Po)st+ (no+ nf Pp Pg) En1+ ~n
OK%" + (St- 2np) hn —rbn

(109)

follows. By solving a cubic equation, &n and then
&P —&n may be found in terms of &n&. Consider,
however, the case 4n &+ ". This would not be
one of appreciable hole depletion, and transition in
the 4M-4Q plane would be to branch II of the hy-
perbola. For this case, Eq. (109) gives

(np+nq) b n np rbn

sf-no —4n &*-np An/St

(Po+P~) &n Po «
no+ Ln 5t"+ (1 —np/St) r n

(107)

~n
~n 1

1+ (Po+ no)/st*

Pp+ np - —&ng
AP ~yg= = ——~, 4n=

1+&*/(Po+ no)

(110)

Pp 4np=-
np+ an

any two of which are independent. In the first two
equations, %* is the capture concentrations defined
by Eq. (58). For depletion of majority holes in a
P-type semiconductor, consider the first equation,
from which 4n after recombination equals np for

rbn = %*/ (1 + no/&) =St*, (108)

the approximation being within a factor of 2 because
of 0&no/St&1. A similar result holds for the con-
centration increment —~n of trapped holes in the

(111)
As shown in Fig. 1, the transition is accordingly
not along a horizontal line of constant ~Q, but is
directed upward to a point on branch II, with &Q
smaller in magnitude by the trapping factor in Eq.
(111), which is N, defined by Eq. (59). Sufficiently
large ~nq will provide transition to a point on
branch I. While such transition entails 4n» R*,
Eq. (111)can nevertheless provide an estimate of
how large 4nb must be: With (&p —&n) equal to
(np-Pp) at the conversion point, the estimate given
by Eq. (60) is obtained.
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The low-temperature galvanomagnetic properties of p-type PtSb2 are reported for magnetic
fields up to 60 kG, using samples with extrinsic current-carrier densities from 6 x 10 6 to
1.5 x 10 cm . From the low-field properties and the Shubnikov-de Haas oscillations it is
found that the valence-band maxima are six ellipsoids on (100) axes, the principal inertial
effective masses being in the ratio 0.61:1:1.64, the least cyclotron mass (0. 168 + 0.005)m,
and scattering close to isotropic. The band parameters are found to be independent of the
energy of the current carrier, suggesting a direct band gap greater than 0.4 eV; cf. indirect
band gap of about 0. 1 eV. The ratio of effective masses was obtained by analyzing small
beats in the amplitude of the oscillations in the resistivity.

I. INTRODUCTION

In this paper we report the valence-band struc-
ture of platinum antimonide PtSbz, a narrow-band-
gap semiconductor of the pyrite structure. A num-
ber of inquiries into the preparation, transport
properties, optical properties, and band structure
of this material have been published. Here we
give measurements of the magnetoresistance and
Hall coefficient of P-type PtSb2 at low temperatures
1.3-4. 2'K, in magnetic fields up to 60 ko, for
samples with extrinsic carrier concentrations be-
tween 6 &&10' and 1. 5 &&10' cm '.

From prior work we know the valence-band
maxima of PtSbz to be centered on the (100) axes.
The pyrite structure is of cubic class 7„, invariant
under twofold rather than fourfold rotations about
the principal axes. From the point of view of this
paper the most interesting consequence of this sym-
metry is that a band maximum on one of the prin-
cipal axes, at [k00] say, is characterized by three
unequa/ principal effective masses (m„m2, m, ).
Masses at the equivalent stationary points are ob-
tained by a cyclic permutation of the indices; e.g. ,
at [0+0 0] the effective masses are (m„m, , mz).
One result of this symmetry is that when a current
flows in the [100] direction the transverse magneto-
resistances with H If [010] and with H II [001] need
not be the same, and generally are not.

The band gap of PtSbz is small, about 0. 10 eV,
so it would not be surprising to find that the effec-
tive masses are dependent on the Fermi level. A
calculation by one of the authors suggests that the

warping of the bands may be unusually large in this
material. Our investigation was therefore carried
out over the wide range of carrier concentrations
noted above; no sign of a dependence of any of the
effective masses on the energy of the holes was
found.

Section III is rather long and involved. We brief-
ly outline this discussion so as to indicate clearly
which results we believe to be the most important
and what conclusions may be drawn from them.
We first examined that part of the low-field mag-
netoresistance that is quadratic in the field
strength. From the data one can find the ratio
m//T f m2/Tp m3/T3 m, and T, being principal ef-
fective masses and relaxation times. The results
provide a test of the multivalley model and pre-
liminary values of the effective-mass ratios if the
relaxation time is presumed isotropic. The inter-
pretation of these results is made difficult by the
presence of a negative magnetoresistance in most
of the samples. At high fields Shubnikov-de Haas
oscillations are observed in both the magnetoresis-
tance and the Hall coefficient. We obtain the peri-
ods and amplitudes of these oscillations as a func-
tion of carrier concentration, temperature, and
orientation of the magnetic field. Each period is
inversely proportional to a stationary area of the
Fermi surface measured normal to the direction
of the field; for a general field direction the six
valence-band maxima have three distinct stationary
areas. The observed oscillations are due to the
smallest of these areas, since oscillations due to
the greater areas are more strongly damped by


