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Dynamical Theory of Diffusion.
II. Comparison with Rate Theory and the Impurity Isotope Effect*
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The formalism of the dynamical theory of diffusion is shown to be strictly analogous to that
of the reaction-rate theory in the sense that expressions for the jump rate and related quan-
tities can be written in the same form as the corresponding expressions of rate theory. How-
ever, the physical meaning of corresponding quantities is different. For example, the role
of the saddle-point configuration in rate theory is taken by a dynamical state in the dynamical
theory. The reaction coordinate is shown to measure the extent to which lattice reaction forces
barring the jump have been overcome by thermal fluctuations. Geometric considerations in-
dicate that for vacancy diffusion, the factor ~ should have a lower limit on the order of 0. 5
in the fcc lattice and an upper limit of the same order for the bcc lattice. In general, ~
measures the mass dependence of the rms velocity of the system along the jump direction in
configuration space. The mass dependence of the isotope effect for impurity. diffusion is de-
veloped, and adouble-isotope-effect experiment involving the simultaneous diffusion of three
solute isotopes is proposed to determine impurity correlation factors.

I. INTRODUCTION (1.8)

&=(&uo/2v)e ' "',
where

&,=&R~m'~R)/&R ~D '~R)

(1.4)

In a previous paper, hereafter called I, a gen-
eral formalism for a consistent dynamical descrip-
tion of the classical diffusion jump process was
developed. It is the purpose of the present paper
to recast these results in a form that makes their
physical meaning more obvious and allows a direct
comparison with the predictions of the reaction-
rate theory.

In I, we considered a, general reaction coordinate
x(t) of the form

x(t)=y(t) R,
where

y(t) =~)u„i„e '""
described the thermal motion of the lattice and

8 =~&A„e„

is a vector in the configuration space of the system,
called the reaction vector, whose direction deter-
mines the attack frequency (i.e. , the average rate
at which the system attempts a jump) and whose
magnitude sets the energy scale. Fluctuations of
x(t) were considered and it was assumed that when-
ever the projection of y (t) onto R exceeded R, a
jump would take place. The ensemble-average
jump rate I' was found to be of the usual Arrhenius
form

&do= ~R( /Z~ (1.7)

(l.8)

Equations (1.V) and (l.8) show that the problem has
effectively been reduced to one of an oscillator of
frequency coo vibrating in direction R in an N-di-
mensional harmonic well cut off at the energy E .

The energy E above is temperature dependent
through the elastic constants and so naturally gives
rise to an entropylike term in the expression for
the jump rate. However, E was shown in I to be
mass independent, so that the diffusion isotope ef-
fect arises only from the mass dependence of Mp,

and does not depend on the migration entropy.
These results are to be compared to those of the

absolute reaction-rate formulation of Vineyard.
The rate-theory expression for the jump rate has
the same form as Eq. (1.4), but the physical in-
terpretation of the quantities involved is somewhat
different. If one imagines (N —1)-dimensional hy-
perplanes So and S passing through the equilibrium
and saddle-point configurations, respectively, both
hyperylanes being normal to the eigenvector of the
unstable "mode" at the saddle point, then the attack
frequency is given by

N N-1

&"0=II~& II n&

Here m and 0 are the mass matrix and dynamic
matrix, respectively. If all the atoms of the crystal
have the same mass, these expressions simplify to
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where the N —1 0 s are the eigenfrequencies for
the system constrained to vibrate in the hyperplane
Sp. The activation free energy consists of, besides
the height of the potential barrier, an activation
entropy term —T&S, with ~S given by

N-1 N-1
68/k g fl g g~

with 0; being the eigenfrequencies for the system
constrained to vibrate in the hyperplane S. The
quantity 4S represents the entropy cha.nge involved
in reversibly moving the system from Sp to S.

There are two points to note. First, Eqs. (1.7)
and (1.9) appear to portray quite different types of
lattice frequency average as appropriate for finding
the attack frequency. The second point is that the
diffusion isotope effect in rate theory depends on the
mass dependence of both the attack frequency and
the migration entropy term, while in the dynamical
theory it depends only on the attack frequency.

In what follows, we shall show that these and
other differences are only apparent. That is, there
is a complete formal analogy between the results of
the two theories. They are not identical, however,
because the analogous quantities do not have the
same physical meaning. For example, both theories
pick out a special direction in the system configura-
tion space. For rate theory, this direction lies
along the unstable "mode" eigenvector, while for
the dynamical theory it is the direction of the reac-
tion vector R. As we shall see, it is possible to
think of the dynamical picture in terms of hyper-
planes like S and Sp in just the same way as the
reaction-rate theory does. However, the physical
meaning of these planes and, in particular, of the
analogous "saddle-point" configuration has to be
carefully considered. The "saddle point" of the
dynamical theory is, in reality, a dynamical state
(i.e. , displacements and velocities) not far removed
from the equilibrium configuration, but dynamically
connected to the top of the potential well through the
equations of motion.

Section II shows that the attack frequency cup can
be written in exactly the form of Eg. (1.9) with the
constrained frequencies referring to the system
being constrained to a hyperplane normal to the
reaction vector R through the origin. Section III
demonstrates that a hyperplane normal to R at its
tip plays the role of the saddle-point surface in the
dynamical theory. Section IV shows the physical
connection between the reaction coordinate and the
lattice forces resisting the desired fluctuation. An

approximate form for x(t) is derived from geomet-
rical ccnsiderations. Section V shows that the dif-
fusion isotope effect has the same form in the two
theories. By extending the work of I to the case
where the diffusing atom has much different mass
than that of the matrix, we derive a general expres-

sion for the impurity diffusion isotope effect in
terms of the self-diffusion isotope effect involving
the same reaction coordinate. This expression
shows that the isotope effect does not, in general,
merely measure the fraction of energy carried by
the diffusing atom in the jump process, although it
reduces to this for seQ-diffusion. Instead, it is a
measure of the relative extent to which the phonons
can set the various atoms moving along the reaction
vector. A double-isotope-effect experiment is
proposed that would allow one to unequivocally de-
termine impurity correlation factors for certain
systems. Examples of Ca diffusion in NaCl and
LiF and of Fe and Ni diffusion in Be are analyzed
to demonstrate the magnitude of experimental quan-
tities and uncertainties involved in such experi-
ments. The last section is a discussion of results
and conclusions.

R 2

~i+~~ ~n&n= (2. 1)

Sp .' Q g + ~~ s ~ Q q
= 0

2

where

s„=A„/Ag .

(2. 2)

(2.3)

The equation for S will be used in Sec. III. Here
we suppose that the system is constrained to move
in the surface Sp, and write down the constrained
Lagrangian equations of motion. The unconstrained
equations are

(2.4)

where the cu, are the eigenvalues of the uncon-
strained dynamic matrix. Using the differential
form of Eq. (2. 2), and assuming harmonic time
dependence of frequency 0, the constrained equa-
tions of motion read

2 2 2/
Mk Ry —Kl Rl SA = 0 (Rp —Sg Rl) (2. 5)

H. ATTACK FREQUENCY GJ0

In order to show that the attack frequency of the
dynamical theory may be written in the form of Eq.
(1.9), let us consider the configuration space hyper-
planes S and Sp shown schematically in Fig. 1.
The surface S passes through the tip of R and Sp

passes through the origin; both surfaces have R as
a normal vector. Thus, we may write down the
equations for the two hyperplanes in terms of the
components of R along the normal-mode axes A„.
Arbitrarily taking the component u& to be the depen-
dent variable, we can write the equations as
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(2. 12)

FIG. 1. Schematic drawing of the equipotential sur-
faces around an equilibrium configuration. The reaction
vector R and normal surfaces 8 and So are shown.

Qy Sy((d1 —0 )
gg (o~ —02 2 (2.6)

We may now substitute Eq. (2.6) into (2. 2) to find
that

s2
1=(&u, —Q)Z 2

'
2

2

that is,

(2.7)

0=
2

2 2Q —(d~
(2.8)

where sg = 1.
Now there is an equation like (2.8) for each of

the constrained frequencies 0„. That is, the N —1
values of O„are just the zeros of the function

s2
f(x) = + ',— ~

x —„ (2.9)

limxf(x)=m&1S22 as x- ~ . (2. iO)

Putting all of this together allows us to write

S2 N

f(.)=~, "„-.-=(--.;) ri(. -~;) n(. —;).
(2. 11)

The purpose of this exercise is that we may now
recast our expression for the attack frequency (do,

Eq. (1.7), into the form of Eq. (1.9) by evaluating
f(o):

Further, it is obvious from Eq. (2. 9) that f(x) has
a simple pole at each of the N unconstrained fre-
quencies &o„. This means that f(x) can be written
as a rational function with numerator and denomina-
tor completely factored. The numerator will con-
sist of N —1 factors of type x —Q~, while the denom-
inator is made up of N factors of type x —su~. This
analysis determines f(x) to within a multiplicative
constant which may be found by taking the limit

gA2 g 2 N N1

(A,./„„.)=z(,„'/...)
=ll„„' ll 0,. (2 13)

This result shows that the attack frequency of the
dynamical theory has exactly the same form as that
of the reaction-rate theory. In either case the at-
tack frequency represents the average rate with
which the system sets off in a certain configuration
space direction, and in either case the frequency
can be calculated from the ratio of constrained and
free partition functions.

It should be remarked that the physical meaning
of ~0 is that it is the average system velocity along
the direction of R divided by the average displace-
ment along R. That is,

~o=&[y. RI2)/(iy R[2), (2. 14)

where the brackets indicate thermal averaging.
This observation will be of importance in under-
standing the physical origin of the diffusion isotope
effect in Sec. V.

The fact that the two theories give expressions
of the same type for the attack frequency does not
mean, of course, that the two frequencies so cal-
culated are identical. There would be identity if
the direction of R and the direction normal to the
saddle-point surface were identical, but this is not
to be expected. That is, the product of constrained
frequencies appearing in the denominator of Eq.
(2. 13) will be different in the two theories. The
nature of the constraining surface in the dynamical
theory favors the high-frequency modes in Eq. (1.7)
for the reasons discussed in I, while the corre-
sponding surface of the rate theory leads to less
weighting of these modes. Thus, one is led to ex-
pect a higher attack frequency from the dynamical
approach than that found by the rate-theoretic
formalism.

III. MIGRATION ENERGY

In I, it was noted that the migration energy E of
Eq. (1.8) is not the harmonic potential energy at
the point R. Indeed, it was shown that E is always
less than the energy of the configuration R. In this
section, we shall demonstrate that E is precisely
the harmonic energy of that configuration on the
hyperplane S defined in Sec. II of lowest energy.
That is, the hyperplane S plays the role of the sad-
dle-point surface, and it is the configuration of
lowest energy on S that sets the rate.

To see the correctness of this assertion, it is
only necessary to find the configuration r of lowest
energy, and compare its energy with E . Let r
have components u&„ that minimize the potential
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energy x(t)= o.r .R=na', (4. 4)
1 ~ 2 2V —2 1Ã ~~ k uk (3.1)

subject to the constraint of Eg. (2. 1). Using the
differential form of Eg. (2. 1), the minimization
condition may be written as

2 / 2
uom~uim= eo&i/&6 ~ (3 2)

This last expression may be substituted into Eq.
(2. 1) to solve for u, :

R2 S2
k 1

uim g .~~,2 ' (3.3)

Thus, from Eblis. (2. 1), (2. 3), and (3.3) we have
that

2 2uom=Ao~o~~o ~

and the minimum energy from Eg. (3.1) is

(s.4)

= —(m(uo) 'r„~ F(y) . (4. 2)

From the two above results, it is seen that x(t)
may be viewed equivalently as a measure of either
the degree to which the thermal displacement y has
overcome the reaction force barring the configura-
tion r or the degree to which the forces which have
been overcome in achieving the thermal displace-
ment are in the direction of r . Notice that if the
displacement y were purely along r, say,

y= +rm ~ (4.s)

2 2 & 4x~ 2t -2 & 2 2
~min ~~~ k km ~ ~ 0~+k~+k 2~ +0+ Em

(3.5)
That is, the minimum energy on 8 is just the

migration energy as was claimed.

IV. REACTION COORDINATE x{t)

We turn now to an attempt to give a more yhysical
interpretation of the reaction coordinate x(t) and the
reaction vector R . It is easy to see that R is as-
sociated with the lattice reaction force at the con-
figuration r corresponding to the saddle point of
rate theory. This force is just

2 ~ 2~ 2F ( r ~) = —PFl /~ (dg, uo~Eg, = —BE (doMAotg, = —tPl (doR

(4. 1)
where the components of r and uk are given by
Eq. (3.4). Comparison of this expression with that
for the migration energy, Eq. (1.8), shows that the
effective oscillator analogy of the introduction may
be carried over to the "saddle-point" force.

Some insight into the reaction coordinate itself
can be found by writing it in terms of r instead of
R. Thus,

x(t)=RA, u, e ' "=a,o~&u, ~,'u, e '"&'

so that the critical displacement would be reached
at x=8 . In general, this critical value corre-
sponds to the thermal motion having carried the
system to any configuration on the hyperplane S of
Sec. II.

It should be remarked that although the configura-
tion r plays a role in the dynamical theory analo-
gous to that of the saddle-point configuration in the
reaction-rate theory, the two configurations are not
physically similar. The configuration r corre-
sponds to a dynamical fluctuation in positions and
velocities which is dynamically connected with the
jump. That is, the equations of motion, with r as
the initial condition, carry the system through a
jump.

In I, we discussed a model calculation for a va-
cancy jump in a two-dimensional hexagonal lattice.
The system was started in the saddle-point dissolu-
tion mode with very small velocity and the equation
of motion integrated to the bottom of the potential
mell where the velocities were reversed. The re-
sulting configuration and velocities were used to
derive a reaction coordinate. The same information
could be used to find the configuration r through
Eq. (3.4). This analysis yields a configuration
very close to the equilibrium configuration; the
jumping atom approaches the barrier while the bar-
rier opens up. More precisely, the displacements
were

xg =0.0093, x2= x3= -0.0026,

y2= -y3=0.0094

in units of &a, with a the lattice constant, and the
velocities were

v (xf ) = 0. 1105, v (xo) = v (xo) = —0.0046,

v(yo) = -v(y, ) =0. 0565

in units of &a~&, where ~& is the Einstein frequency
of an atom in the perfect crystal. Here atom 1 is
the jumping atom and atoms 2 and 3 form the bar-
rier; x is the jump direction and y the perpendicular
direction. The above configuration is far removed
from the saddle point (x~ = o). As discussed in I, it
is equivalent to a reaction coordinate proportional
to

x(t) = xq —0.432 (xo+xo) +0.802 (yo -yo), (4. 5)

which clearly shows the importance of the trans-
verse motion.

Actually, it may be possible to make a crude
estimate of the reaction coordinate in terms of
geometric quantities when the interaction between
the jumping atom and the barrier atoms is more
important than those with the rest of the lattice.
We are looking for a fluctuation that will bring the
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Db„ b"=-~= -tan8,
&b, b„

(4. 6)

where 8 is the angle that b makes with the jump di-
rection. Equation (4.6) defines a configuration
space plane in which such motions lie. The distance
from the origin of a point on this plane is measured
by

jumping atom to the center of the barrier with the
minimum expenditure of energy. If the rest of the
lattice were ignored, this could be accomplished by
merely rotating the bonds, i.e. , by displacements
that bring the jumping atom forward while leaving
the jumping-atom-barrier-atom distances un-
changed. %'e will assume that such motion ade-
quately describes the start of a jump, an assumption
that becomes more valid as the interactions between
barrier atoms and the rest of the lattice become
weaker.

Suppose, for example, that the vector b separating
a barrier atom from the jumping atom has compo-
nents b, in the jump direction and b„normal to this
direction. Then infinitesimal displacements 5b„
and 6b, leave I b I unchanged to first order if

re =N/(N+sec 8) .
For the bcc vacancy jump, Eq. (4. 8) gives a

reaction vector

(4. 10)

a value of (do of about half the Einstein frequency
for an atom in the perfect crystal.

Equation (4.8) may also be applied to real crys-
tals. The resulting reaction coordinate is identical
to Flynn's as far as motion along the jump direc-
tion is concerned. It differs in that account is taken
of the necessity of transverse barrier atom motion,
i.e. , that the barrier ring must open up as the
jumping atom approaches. If one assumes a Debye
spectrum of lattice vibratio'ns, and calculates the
summands of Eq. (1.7) to order k as was done by
Flynn, one finds his value of (q)'~~ &u~ for the fcc
vacancy attack frequency to be reduced by about
10% by the inclusion of transverse barrier motion.

An interesting point regarding the self-diffusion
isotope effect in bcc lattices may be made here.
Using Eqs. (5. 5)-(5.7) of Sec. V which relate the
quantity hK to the reaction vector R, the general
reaction coordinate of Eq. (4.8) is seen to corre-
spond to a value of bX for self-diffusion (and van-
ishingly small isotopic mass difference) of

—Ob„+tan85b, =g& -x~+tan8y& (4.7)
R&xq —3 ~&x;+-,' v 2~) p, , (4. 11)

in terms of displacements from equilibrium. Here,
the subscripts 1 and b refer to the jumping atom
and barrier atom, respectively; x refers to the
jump direction and y to the normal direction. %e
are assuming that only symmetrical compressions
and dilations of the barrier enter the reaction
coordinate, so that only the outward normal dis-
placement is included in Eq. (4.7).

There is an expression like Eq. (4.7) for each of
the N barrier atoms; adding these together gives a
reaction coordinate of the form

tan8
x(t) = x) ——&~x, + 5 y„.N N

(4. 8)

R ~Sf —0.5(xq+xs) + ~ W3 (ya —ys) (4.9)

where y is now a Cartesian coordinate. The reac-
tion vector of Eq. (4. 9) should be compared to the
reaction coordinate of Eq. (4. 5) found directly from
the equations of motion. Including relaxation re-
duces the coefficient of the transverse motion to
0.836, the remaining difference between Eqs. (4.5)
and (4.9) being due to interactions not included in
the above analysis. This reaction vector leads to

Equation (4. 8) determines the structure of the reac-
tion vector, although not the critical value. Thus
the migration energy, Eq. (1.8), remains a param-
eter. It is sufficient, however, to determine the
attack frequency via Eq. (1.7). For example, in
the two-dimensional model discussed earlier, Eq.
(4. 8) predicts the reaction vector

where p, refers to the outward displacement of
barrier atom i. Equation (4. 10) gives a value of
0.5 for hK. The inclusion of interactions other than
those considered would, presumably, increase this
value as before. However, the effect of relaxation
is the opposite of that in the two-dimensional model
or fcc crystals where relaxation decreases tan8 in
Eq. (4. 8), thereby increasing LkK. For the bcc
lattice, calculations' show that the triangular bar-
rier to the jumping atom relaxes outward. That is,
relaxation increases the coefficient of the transverse
displacement, and therefore decreases ~; Thus,
hK is seen to have an upper limit for bcc vacancy
diffusion on the order of 0. 5, in contrast to the fcc
case where the same considerations lead to a lower
limit on AK.

The above is meant to be no more than a crude
qualitative step toward understanding why metals
of the same crystal structure have approximately
the same isotope effect for self-diffusion, and why
this quantity might be lower for bcc metals than
for fcc metals.

V. DIFFUSION ISOTOPE EFFECT

In I, assuming R to be mass independent, it was
shown that the mass dependence of the jump rate
arose entirely from coo. That is to say, the migra-
tion free energy was found to be mass independent
in the dynamical theory. It appears that this might
be a discrepancy with the rate theory which predicts
that the migration entropy may also be mass depen-
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dent through the constrained frequencies 0; and 0;
of the equilibrium and saddle-point surfaces [Eq.
(1.10)J.

This discrepancy is not real, however. Although
the equilibrium hyperplane So is only vaguely de-
fined in Vineyard's rate-theoretic formulation, it
seems natural to orient it parallel to the saddle-
yoint surface S. In this case, the ratio of products
of frequencies in Eq. (1.10) is just the square root
of the ratio of the two constrained dynamic matri-
ces. This ratio is mass independent, as can be
seen by writing it in terms of the full dynamic ma-
trices D and D of the equilibrium and saddle-point
configurations, respectively:

~,' n,' ' '" ID' '"
(5.1)

where m', [Qq]~ is the single negative eigenvalue of
D, ~, is the attack frequency as before, and I*is
the effective mass associated with the attack fre-
quency. Now the dynamic matrices are mass in-
dependent. The two effective masses above refer
to the same direction in configuration space and so
are identical [see Eq. (3.1) of IJ. Finally, the two
frequencies above both refer to the same effective
mass and so have identical mass dependence. Thus
the migration entropy is mass independent if the
surfaces S and So are parallel. Also note that since
the two frequencies have the same mass depen-
dence, i.e. ,

1 80~ 1 9cuo
T

~m coo
(5. 2)

the isotope effect as calculated from coo is identical
to that calculated from 0& (the usual rate-theoretic
prescription). Once again we see a complete formal
analogy between the results of the rate and dynami-
cal theories.

The treatment of the diffusion isotope effect in I
was carried out for the case of self-diffusion, i.e. ,
where the diffusing isotopes have nearly the same
mass as the host atoms. This situation permitted
us to expand in the small mass differences in-
volved. Such an approximation need not be made,
however, and avoiding it allows one to gain a more
general physical picture of the isotopic dependence
of the jump rate.

In Sec. III of I, it was shown that the attack fre-
quency is given by

&u, =(R m 'IR&/(R ID IR&, (5.3)

where m is the mass matrix and D is again the dy-
namic matrix. It is the numerator of Eq. (5.3)
that makes the frequency mass dependent. If we
write the reaction vector R in terms of the atom
coordinate representation x rather than the normal-
mode representation e„, the effect on the jump fre-

~,=(R I~ KIR&/z' (5 8)

is the isotope effect one would have for self-diffusion
with the same reaction coordinate, and

~K=I»&&
I I &( 2I l~ && I

(5.7)

is the projection operator onto the space of the dif-
fusing atom as in I. The factor g in Eq. (5.5) is
very nearly unity for all practical cases and will
be neglected in the discussion of the next few para-
graphs; it will be considered at the end of this dis-
cussion.

Equation (5.5) indicates that one should expect a
decrease in the isotope effect as the mass of the
diffusing atom is increased provided that the reac-
tion coordinate remains the same. This decrease
will be the more pronounced the smaller the value
of hKo, the rate of change of ~ with mass being
given by

This result reflects the fact that it is easier for an

incoming yhonon to set a light atom vibrating with

a large amplitude than a heavy one, as will be dis-
cussed in more detail below. Thus, one would

think, for example, that substitutional impurities
in the noble metals'7 (~o -0.Ss 9), which differ in

mass by less than a factor of 2 from the host, would
exhibit a value of ~ different from hKO by less
than about 8%. On the other hand, a substitutional
impurity in sodium (AKO-0. 5 ) could have a hK
significantly different from ~o. The variation of~ with the mass of the diffusing atom given by Eq.
(5. 5) is shown in Fig. 2 for two "typical" values of
~, to illustrate the above point.

It is also obvious from Eq. (5.5) that, in general,
hK does not measure the fraction of energy carried
by the diffusing atom in the pure jump motion (i.e. ,

quency of changing the mass of a single atom is
easily calculated. If

R=~&A„e„=h V x

and one substitutes for a host atom of mass m an
atom of mass M, the resulting jump frequency is
proportional to

I"(M)~ [(M -yn ) rQCOR +(R I mal R)], (5.4)

where mo is the mass matrix of the perfect lattice.
From Eq. (5.4) it is easy to calculate the isotope
effect to be expected upon diffusing isotopes of mass
M andM:

[I (M) —I (M ')]/I'(M')
(M '/M)'" 1-(M'/m)(1- nK, )+m,

xg(m, M, M ) . (5.5)
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FIG. 4. Variation of ~p with parameter k in double-
isotope experiment described in text. Solid curve is ~p,
dashed curve is —0. 1 B&Kp/ek. Curves are for Ca dif-
fusing in (a) NaC1 and {b) LiF.

Recalling that the factors g in Eq. (5. 13) are nearly
unity, we see that k is very nearly the ratio of the
two ~'s and must lie in the range

1~ k~ M, /M~ .
The uncertainty to be expected in AKO due to an
uncertainty 5k in k is given by the derivative

48) have a 20% spread in mass. Perhaps the neces-
sary concentration ratios could be measured with
the ion-beam mass spectrometer. In Fig. 4 we
show hKO and sdKO/Sk as a function of k for Ca,

diffusing in NaCl and LiF. The conversion from
the parameter k to the ratio ~f /hK', (the mea-
sured quantity) is shown for the LiF case in Fig. 5.
Notice that the experimental ratio has a possible
range of only about 15%. This tells us something
about the accuracy of measurement needed, but
the derivatives in Fig. 4 are more revealing. They
show that uncertainties in 0 show up as magnified
uncertainties in ~o. In particular, low values of
AKO cannot be determined accurately without great
precision in the determination of k. The reason
for this can be seen in Fig. 2. Heavy impurities
in a material with small ~0 lie on apart of the
curve with very small mass dependence.

Two systems for which double-isotope experi-
ments with radioactive tracers might be carried
out are Fe (masses 52, 55, and 59) and Ni (masses
5'7, 63, and 66) in Be. Curves similar to those of
Fig. 4 are shown for these cases in Fig. 6.

The combination of the usual isotope-effect ex-
periment with a double-isotope-effect experiment
as outlined above would allow one to unambiguously
extract impurity correlation factors if the two con-
centration ratios could be measured to within 1 or
2%. The proposed experiment is a difficult one,
but seems worth attempting because of the new
knowledge that could be gained.

VI. DISCUSSION

We have seen from the foregoing that there exists

The magnitude of the above quantities is easily
calculated for a few favorable examples. One in-
teresting impurity is calcium, because the three
naturally occurring isotopes (masses 40, 44, and

1.15 t—
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I.IO
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I.O 12 k
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AK, 05

1.0
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FIG. 5. Conversion from the experimentally measured

ratio in double-isotope experiment for Ca in LiF to the
parameter k.

FIG. 6. Variation of ~p and —0. 1 BMCp/M (dashed
curve) for (a) Fe and (b) ¹idiffusing in Be.



DYNAMIC AL THEORY OF DIF FUSION. II. . .

a complete formal analogy between the rate-theo-
retic and dynamical expressions for quantities as-
sociated with the diffusion jump rate. All other
things being equal, one would tend to prefer the
rate theory because of its conceptual simplicity and
lack of arbitrariness. For example, with a known

potential for the interacting atoms, one can in
principle calculate all of the quantities that deter-
mine the jump rate from the rate theory, while the
magnitude of the migration energy remains a pa-
rameter in the present form of the dynamical theo-
ry. It is because of difficulties that arise in the
comparison of rate-theory predictions with experi-
ment, particularly in the case of the diffusion iso-
tope effect as discussed in I, that one feels moti-
vated to attempt alternative descriptions.

One consequence of the formal analogies between
the two theories is that certain purely formal anal-
yses can be carried over from one theory to the
other, keeping in mind the physical meaning of the
quantities involved. For example, the derivation
of the attack frequency as a ratio of constrained
and free partition functions has been treated by
Ebisuzaki et al. to show that, except for obvious
cases such as H diffusion in metals, quantum ef-
fects on the attack frequency will not be very sig-
nificant. For this reason, a classical description
of the diffusion isotope effect should be generally
appropriate.

The physical picture that emerges from our
analysis of the dynamical description of the jump
process is one quite analogous to that of the rate
theory, except that the role of the saddle-point
configuration is played by a dynamical state which
leads to a jump via the dynamics of the system.
The real potential is then replaced by an N-dimen-
sional harmonic well cut off at the hyperplane S of
Sec. II, and the probability rate of fluctuations that
carry the system to S is taken as the jump rate.
This replacement will presumably give reasonable
results provided that the dynamics of the system

can operate long enough after the critical fluctua-
tion has been reached, i.e. , that the fluctuation
rate is small compared to typical frequencies (a
condition also necessary" for the validity of the
usual rate-theoretic result).

It was found in Sec. IV that the reaction coordi-
nate is a measure of the extent to which thermal
fluctuations have overcome the lattice reaction
forces barring the dynamical "saddle point. " The
reaction coordinate is largely determined by the
geometry of the lattice, and may be significantly
affected by relaxation. It was found that the quan-
tity 4K has an upper limit greater than 0. 5 for
vacancy diffusion in the bcc lattice and a lower limit
of about the same magnitude for vacancy diffusion
in the fcc lattice.

The dependence of ~ on solute mass for a given
reaction coordinate was given in Sec. V. A double-
isotope-effect experiment involving the simultaneous
diffusion of three isotopes of the solute was pro-
posed that would allow one to unambiguously extract
impurity correlation factors in certain favorable
cases. hK was found to represent, in general, the
efficiency with which a fluctuation of the jumping
atom leads to motion of the system along the jump
direction in configuration space. It reduces to the
fraction of energy carried by the jumping atom in
the case of self-diffusion.

The dynamical description seems to provide a
reasonable account of the self-diffusion isotope ef-
fect and of the migration volume, two quantities
which the rate theory has been somewhat unsuccess-
ful in explaining. The principal physical assumption
is that a certain type of fluctuation (determined
largely by geometry) is necessary to initiate a dif-
fusion jump. The required energy of this fluctua-
tion remains a parameter. Although there remain
unanswered theoretical questions about the dynami-
cal description, such as whether there exists a
unique reaction coordinate, the explanatory power
of the model justifies its further development.
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