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The T-matrix method has been used for determining the effects of a low concentration of ran-
domly distributed point defects on the elastic constants of a crystal of bcc structure. The ex-
pressions for the bulk elastic constants have been obtained in terms of the local changes in the
central and noncentral force constants. The lattice dynamics of molybdenum have been dis-
cussed in Kreb's model with interactions up to second neighbors. The obtained eigenfrequencies
and the eigenvectors are used to evaluate the different Green's-function matrix elements.
Numerical estimates have been made for molybdenum crystal containing two different concen-
trations (7 and 7. 4%) of rhenium. The results are compared with the experimentally measured
elastic constants of the dilute alloys. An almost exact agreement between the theory and the
experiment is observed.

I. INTRODUCTION

The elastic properties of a crystal containing a
finite concentration of defects are significantly
altered. The local strains around the defect are
seen to be different from those of the host lattice.
A knowledge of these strains, induced locally by
the applied stress, is required to interpret a num-
ber of experimental measurements of the effects of
elastic strains' and electric fields' on the prop-
erties of crystals containing point defects. In re-
cent years, some experiments have also been done
to study the effect of defects on the bulk elastic
properties of metals. Several theories ' have
been proposed to account for these effects, but
none of them takes into consideration the local be-
havior of defects and. the discrete nature of the
lattice. The T-matrix method takes into account,
in a natural way, the peculiarities of the discrete
nature of the lattice. A different theory has been
developed by Ludwig" and Pistorious. ' Earlier,
the present authors applied a T-matrix method to
determine the effect of substituted point defects on
the elastic properties of the crystals of CsC1 struc-
ture ~3'~4

In the present paper, we use the T-matrix method

for determining the effects of a low concentration
of randomly distributed point defects on the elastic
properties of the crystals of bcc structure. Ex-
pressions for the bulk elastic constants have been
obtained in terms of local changes of central and
noncentral force constants in Sec. III. Numerical
estimates have been made in Sec. IV for the case
ot' molybdenum containing rhenium impurity ions.
The calculated values are compared with the avail-
able experimental results. '

II, THEORY

Consider a solid containing a low concentration
of similar substitutional point defects. In order
to understand the lattice dynamics of the imperfect
solid, one evaluates the perturbed phonon propagator
as a Green's function which is given by

G(z) = [Lo+ P„(&u ) —zI ]

where I.o is the mass-reduced dynamical matrix
of the perfect host lattice and P „(&u ) is the per-
turbation matrix caused by a specific configuration
of the defects. For the explicit forms of these
matrices, we refer to an earlier paper. ' z = w

+2icup ' is the complex squared frequency in the
limit as $' O'. The propagator defined by Eq. (1)
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has been written for a single specific configuration
of defects and the averaged perturbed Green's func-
tion is given by

&G(z))=G,(z) -G,(z) Z &G(z)),

where the self-energy Z is periodic like the perfect
phonon propagator Gp. On account of the config-
uration average we can, therefore, go to the
normal-mode representation and write

&G(k)) = I~.„,+ Z(k, s) —zl]
2

where w»„, denotes the squared frequency of the
host lattice corresponding to the wave vector k in
the polarization branch s. If we consider only
multiple scatterings by the same defect and limit
ourselves only up to the first order of concentra-
tion of defects, there is no mixing in the polariza-
tion branches along certain symmetry directions
and, therefore, the self-energy Z(k, s) can be
written as '

Z(k, s)= c&k, s
I
T(z)

I
k, s),

where c is the fractional concentration of defects
and T (z) is the T matrix for the single site and is
defined by

TABLE I. Group velocities along symmetry directions.

pv»2

k, s

L
T1
T2

&ioo)

C44

C44

44~

—,'(C
&&

—C&2+ C44)
—,'(C» —C,2+ C44)

C«+C& &+C44

C44

+c —, 10

elastic constants, i. e. , C11, C12, and C44 are re-
quired to give a complete account of the group ve-
locities in any direction. In Table I, these rela-
tions are given for the three symmetry directions.
The density of the imperfect crystal, p, is deter-
mined by

p = p(1+ chM jM),
where M is the mass of the host lattice unit cell,
4M is the local change of mass when defects are
introduced, and p is the density of the pure solid.
To first order in c,
IAt

pv»
&, s

2 8 2 += pv-„, , 1+c z & k, s
I
T(~»+i0')

I
k, s)

w
k~s

Here P(~ ) is the perturbation matrix due to
single defect and g (z) is Green's-function matrix
in the impurity space. The poles of the propagator
given by Eq. (3) in the complex z plane give us the
squared frequencies and the phonon widths for the
perturbed phonons. The shift in the squared fre-
quency is given by the real part of the self-energy
defined by Eq. (4). The squared frequencies of the
perturbed phonons are, thus, given by

&u„-' = &u.„„+c Re & k, s
I

T (z)
I
k s),

where the tilde over cu-„, specifies the perturbed
phonon frequency. After considering the symmetric
properties of the perturbation matrix, the T matrix
can be written as

&k, s
I

T(z) k, s)=&,&k, s
I
T(z) lk, s),

where T„(z) is the projected T matrix in the vth
irreducible representation occurring in the defect
problem.

III. BULK ELASTIC CONSTANTS

The group velocities for the imperfect lattice
are determined by

where v"„, is the group velocity in the host crystal
lattice. From Table I, the bulk elastic constants
are seen to be related to (v-„,)-„o as

C11 P Vlpp, LA t

C44 P V100, TA )

C12- p V1ppqLA C11 2C44 .

The point group symmetry of a substitutional de-
fect in a cubic lattice is 0„. The perturbation ma-
trix is of 27x 2V dimension if we consider only
nearest-neighbor interactions. The symmetry co-
ordinates transform according to A1g, A2u, E, Eu,
+1g ~ 2+2g ~ 3+lu~ and F2u irreducible representations.
The necessary expressions for the T matrix for
various irreducible representations have been ob-
tained in an earlier paper (for a diatomic bcc lat-
tice). The results may easily be used for a mona-
tomic bcc lattice where the number of independent
Green's functions is further reduced to 10.

We now consider the components T „of the sym-
metrized T matrix which transforms according to
the irreducible representation v. When we work
in the limit kp=—2gkpa- 0 where a is the interionic
distance, only a few matrix elements T„are involved
in Eqs. (10); they are'

kgs
8(dP s
ek

(k, s
I Tz, I

k, s) = —(bM/M)&u"„. ..

It has been seen that only three independent
&k LAITY lk LA)=

1 i ko,
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(k LA
I
T., I

k, I,A&

3M 1 + X'/fg ks

(s.LA~ ~T ~k, LA)= ")

(
~ox &0~+ c p

2 2

X z
k0

(koo, TA T~ I
koo, TA)

1 2K+A. + 3XX /fs~
3M 1+X/f s~

(k, TA T„'
I
k, TA)=0,

(koo, TA
I Ts koo, TA)=0,

(k, s
I

T~ I k, s &
=fg(k~),

(k ~
I T;„Ik,s&=fs(k &,

(k, s T~ k, s& =fs(k ),
where c.p. denotes cyclic permutations. & and &'

are the local changes in the central and noncentral
force constants, respectively, and

f', =M [g,(0)+ 2g, (0)+g,(0) -g, (0) —g, (0) —2g, (0)]

fs~ 3M ([3g&——(0) + 2g4(0) —gs(0) —2gs(0) —3g,(0) + 6gs(0) +gs(0) —2ggs(0) ]
(13)

+ (&'/&) [3gt(0)+ 4g4(0) + g s(o)+ 6gs(0) —3'(0) —3gs(o) -as(o) —4g is(0)l

+ (3A.'/M) ([g,(0) + 2g4(0) +gs(0) -g7(0) -gs(0) —2g&p(0) ] [g&(0) —gs(0) + gs(0) —g7(0) + gs(0) + gs(0) ]

-2[gs(0) -gs(0)]')& '

In Eg. (12), f~ and f, are the effective force con-
stants for the Aj and E modes. They are defined
in terms of the zero-frequency Green's functions
as

fs, ™[gs(0)—2g4(0) + g, (0) + 2g s(0) —g, (0) + 2gs(0)
—gs(0) + 2g is(0) ]

(14)

f,= M[g, (0) —2g, (o) +g, (o) —g, (o) —g, (o) —g, (o)

—gs(o)+2gis(0)] '.
Note that the E&„symmetry coordinates transform

like the elements of a vector, so that they must not
enter the elastic strain; indeed the E&„matrix ele-
ments cancel out with the change-of-density term
[Eqs. (9) and (10)]. Also the Fs„,E„, and As„
terms, which are of the order of k', donotcontribute
to the elastic constants. These facts are consistent
with group analysis assignment of irreducible rep-
resentations to the components of the fourth-order
elastic tensor.

The Green's-function matrix elements g „(z) for
a monatomic lattice are defined as

II — J (kIs)
(2 )3 ?

Ba !-.,s

where 0 is the volume of unit cell (Bz represents
the Brillouin zone) and J,(k ~

s)'s for p. =1 to 10
are the following expressions:

Jg(k
I
s) = e„(k

I
s)

I
',

Js(k
I
s) =le„(k

I
s)

I
cos(2mk„a),

J,s(k I
s)= e„(k

I
s)

I
cos(2sk, a) . (16)

Using Eqs.

Cxz= Cx~+0

Cqa= Ci2+0

0C44= C44+

(10)-(12), we find

2c x 2A.

3 ) x// 1+I'// )
2c A.

3 I ~ z//, 1 ~ z //,)'
c 3& ~ x' sax'//, '.

)3a 1+ /)/fs.

Js(k
I
s) =

I
e„(k s) I

cos(2sk„sa) cos(2sk, —,'a)

x cos(27/k, —,'a),

Js(k
I
s) = e„(k

I
s)e, (k

I
s) sin(2sk„—,'a) sin(2vk, —,'a)

x cos(27)k,—,'a),
J4(k

I
s) =

I
e„(k

I
s)

I
'cos(2wk„a) cos(2', a),

Js(k
I
s)=

I
e„(k

I
s)

I
cos(2sk a)cos(2sk, a),

Js(k s) = e„(k
I
s) e,(k I

s) sin(2vk„a) sin(2wk, a),

Jz(k
I
s) = e„(k s)l cos(2wk„a) cos(2sk, a)

x cos(2vk, a),
J (k

I
s) = e (k

I
s)e,(k

I
s) sin(2wk„a)

x sin(2', a) cos(27)k,a),



The change in the bulk modulus nK= r (1/P), where

P is the compressibility, turns out to be

For central forces only, Eqs, (1V) reduce to

2c
11 11+ 3 1+g/f

0 2c
~ia=Ciz+ 3 (19a)

0 2c A.

44 44+ 3 1+~/f

fg = 3MI3g~(0)+2@4(0) -g, (0) —2g (0) —3g, (0)

+ 6g, (0)+@~(0)—2g, o(0)]
' . (19b)

The expression for the change in the bulk modulus
turns out to be unaffected.

From Eq. (19a), we note that for central forces
only, the elastic constants of the pure lattice obey
Cauehy's relation, but the same is not true for the
case of imperfect solids. The change in the elastic
constants due to presence of defects is similar for'

C&q and C», but they are different for C«.
IV. NUMERICAL ESTIMATES AND RESULTS

A.. LBttlcc DjjlMImcs

Molybedenum is a transition metal and crystal-
lizes in a body-centered-cubic structure with one
atom per unit cell. The electronic configuration
of its atoms is (4d)'(5s) . According to Fuchs,
the resistance to shear in metals stems from two
types of interactions: (a) the Coulomb interactions
between positive ions and negative conduction elec-
trons and (b) the exchange interaction between ions
assumed to be significant only between nearest and
next-nearest neighbors. Vfoods and Chen have
computed the dispersion curves for molybdenUm
with the help of a seven-force-constant model.
Mahesh and 03yal have calculated the dispersion
curves with the help of three force constants in
Kreb's model. The extra parameter involved in
their calculation is obtained by using the experi-
mentally observed frequency at the Brillouin zone
boundary in the [$/)] direction. Since the ionic
interactions in molybdenum are of short-range
type, we feel that the ion-ion interactions may ex-
tend to second neighbors only. In the present work
we have studied. the lattice dynamics of molybdenum.

l I

L~ooj

0.2 O.4 0.6 0.8 &.O O O.~ O.2 0.& O.4 O.5 O 0.&
nEoucEo wwc vEcron (f)

FIG. 1. Dispersion curves for molybdenum. Experimental data of Woods and Chen (Ref. 21) are marked as Q, &,
and && for the longitudinal and the first and second transverse branches, respectively.
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Green's function

g'2

g3

g's

g6

gs
ge
Ao

Value

1.02005
0.24538

—0.04729
0.11037
0.10282

—0.22011
0.10202

—0.02180
0.33902
0.15259

TABLE II. Values of the Green's-function matrix ele-
ments for molybdenum at zero frequency in the units of
10 ~ sec at room temperature (15 'C).

B. Green's Functions

In order to compute the Green's functions of
molybdenum at zero frequency, Eq. (15) can be
written as

1 + — J,(k I s)
(u'.

k, g

(21)

with Kreb's model. From the two calculations in
Kreb's model, we conclude that it is unnecessary
to start with a sophisticated model for the lattice
dynamics of molybdenum. One can reproduce the
dispersion curves by considering interactions only
up to second neighbors.

at room temperature in the Kreb's model after tak-
ing into account the next-neighbor ion-ion interac-
tions. In this calculation we have used the recently
measured elastic constants. ' The values of the
elastic constants are C» = 4. 66' 10,C» = 1.626
x10', and C«=1. 095x10' dyn/cm . The values
of effective charge Z and of the Bohm-Pines param-
eter P are taken to be 2 and 0. 353, respectively.
We have also considered the factor f(t) in the cal-
culation of the screening parameter 4, . The factor
is wave-vector dependent and is given by

where N is the number of atoms in the crystal.
All the numerical calculations were carried out in
the first Brillouin zone. The necessary eigenfre-
quencies and eigenvectors were obtained by di-
agonalizing the dynamical matrix for a bcc lattice
of molybdenum by the Jacobi method. Different
mesh sizes were tried and a grid which yielded
8000 points in the first Brillouin zone was chosen
because it yielded maximum accuracy in a reason-
able computer time. The eigenfrequencies and
eigenvectors so calculated were used in Eq. (21)
to calculate the zero-frequency Green's functions.
The results are presented in Table II.

f(t) = —+ ln
1 1 —t 1+(

(20) C. Elastic Constants

where

t=k/2k .

Here k is the wave vector and k~ is the Fermi
momentum. This factor has been approximated
by unity in the calculation of the parameter A (which
represents electron-gas contribution) by Mahesh
and Dayal. The results for the symmetry directions
[$00], [$/0], and

[)ted]

are presented in Fig. 1.
An over-all good agreement is seen with experi-
mental data of Woods and Chen, except for some
discrepancies at zone boundaries. In the [$00] di-
rection the agreement is complete up to approxi-
mately (=0.7 ((=k/k ).

In the [$/0] direction there are some deviations
near the zone boundary, but they are not large as
compared to the calculations of Mahesh and Dayal

Using Eqs. (16)-(18), the bulk elastic constants
and bulk modulus K were calculated for molybdenum
containing 7% and 7. 4% of rhenium as impurity ions.
A unique choice of changes in the central and non-
central force constants, i. e. , A. = 5. 913lx10'
g sec and g' = —1.9986' 10 g sec was made. The
calculated elastic constants along with the experi-
mental results are presented in Table III. From
the table it is clear that for 7% and 7. 4/0 concen-
trations of Be, the calculated values are in almost
complete agreement with the experimental ones.
For 7. 4% of rhenium, we have also estimated the
values of C&~ and K which have not been measured
by Davidson and Brotzen. '

From these calculations we infer that introduction
of rhenium into molybdenum enhances the first-
neighbor central and noncentral interactions. Ap-

TABLE III. Values of the elastic constants of pure Mo and Mo-Be alloys at 25'C in the units of 10~ dynjcm:
A, =5. 9131&&10 g sec and X' =-1.9986x10 g sec

Concentration
of

Be in Mo

0%
7%

7.4%

Calc.

~ ~ ~

4. 665
4. 665

Expt.

4. 660
4.665
4. 665

Calc.

0 0 ~

1.729
1.828

C)2

Expt.

1.626
l. 729

Calc.

~ ~ 0

1.147
l. 149

Expt.

1.095
1.148
l. 151

Calc.

~ 0 ~

2.708
2.774

~ 0 ~

2. 708
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proximately similar results have been obtained by
Davidson and Brotzen" with a different type of cal-
culation. The values of central and noncentral
force constants for a pure molybdenum crystal in
the force-constant model are 6. 005&& 10 g sec-
and —0. 418x 10 g sec, respectively. These
changes are somewhat higher than those obtained
by Davidson and Brotzen. The present situation

may be improved if one starts with a more ez-
tended perturbation due to a point defect.
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The coefficient of self-diffusion along the principal axes in zinc was obtained over the tem-
perature range 300-400 'C, and over the pressure range 0-9 kbar. The unusually high pre-
cision of 2% in the measurement of the vacancy activation volumes was achieved by means of
a novel technique that insured temperature reproducibility in the diffusion zone of + 0. 2'C at
high pressure. The activation volumes for diffusion, associated with the basal and nonbasal
vacancy mechanisms are found to be temperature dependent, isotropic, and approximately
proportional to T. Hence the thermal coefficient of expansion of an activated vacancy is given
by o'„= T ', and is about 15 times larger than the thermal coefficient of expansion of the perfect
lattice. The activation entropy is pressure dependent, whereas the activation enthalpy is
pressure independent to within the experimental uncertainty.

I. INTRODUCTION

A vacancy in a crystalline lattice is character-
ized by a set of properties that relate to its for-
mation and motion under conditions of thermody-
namic equilibrium. Considered as an entity un-
dergoing reversible thermodynamic processes in
both its formation and motion, the vacancy's

properties are obviously embodied in a knowledge
of the temperature and pressure dependence of
6 G&(T, p) and b G (T, p), the changes in the Gibbs
free energy of the crystal associated with the for-
mation and motion of the vacancy, respectively.
Thus, the formation enthalpy ~H& and entropy
AS& are respectively given by [s(AG&/T)/s(l/T)]~
and —(sn G&/BT)~, whereas similar temperature


