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gradient is in general sufficient to yield a nonzero
voltage across the shock front. This is the same
mechanism which has been invoked to explain'
the acoustoelectric effect. The shock results in
a region of local charge density accompanying the
shock front as it propagates down to the medium,
in agreement with the ideas of Mineev et al. '

We wish to point out that aside from the details
of band structure, the same phenomena are ex-
pected to occur upon shocking a semiconductor.
The effect has been observed' in semiconductors,
and we have given a tentative explanation of the
details elsewhere. 7

There is also the possibility that a Hall-effect
measurement, without the presence of an external

Hall current, will give nonzero results. Such mea-
surement would give useful information concerning
the interaction of a shock wave with the electronic
structure of a material (perhaps a large amplitude-
phonon drag effect). Such signals would undoubtedly
be easier to observe in semiconductors, where
shock effects have already been observed in the
presence of an external Hall current.
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A new approach is presented to the calculation of the charge density induced around a charged
point particle in the electron gas; this approach includes contributions beyond those considered
in linear-response theory. The method can be used to treat impurities with infinite as well as
finite mass. Results from calculations with various charges, positive and negative, are pre-
sented. In particular, results for the electron density distribution around a positron are pre-
sented. The positron-annihilation rates obtained are compared with results of other authors
and with experiments.

I. INTRODUCTION

A new treatment of the screening effects in an
electron gas has recently been presented by Singwi
et al. Particular attention was given to the strong
Coulomb repulsion between two electrons that are
close to each other. This was achieved by con-
structing an effective electron-electron interaction
which took into account the depletion of particle
density around a particular electron by means of
the static pair-correlation function. The latter
was finally determined from the calculated di-
electric function in a self-consistent manner. This
theory led to a considerable improvement upon

earlier treatments of the static pair-correlation
function as well as some other properties of the
electron gas.

Here we present a generalization of the above
treatment which provides a new method going be-
yond linear-response theory, for calculating the
electron distribution around a point charged parti-
cle in the electron gas The particle may have a
positive or negative charge and may be at a fixed
location (infinite mass) or have a finite mass, in
which case it will be affected by recoil effects.
An interesting example would be a positron in
thermal equilibrium in an electron gas.

A brief outline of our method and the results of
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some preliminary calculations appeared in an
earlier paper. The philosophy of our approach
is as follows. We consider a two-component sys-
tem consisting of electrons with an equilibrium
density n and of impurity particles with density

The charge neutrality of the whole system is
maintained by a uniform charged background. To
this system we apply infinitesimally weak external
potentials V (x, t) and V'(x, t) which act separately
on the electrons and impurity particles, respec-
tively, and which vary in both space and time, By
calculating the linear response of the electron
density to the external potential V'(x, t), for in-
stance, we obtain an expression for the electron
distribution around an impurity particle. Then .

letting the impurity particle density n' tend to zero
we obtain a result valid for the case of a single
impurity in the electron gas. We shall assume an
effective interaction between the electrons, as
well as between the impurities and the electrons
which has a form similar to that employed in the
papers of Singwi et al. In this way we take into
account, in an approximate way, the strong Cou-
lomb interaction between particles that are close
to each other. If we should assume that the im-
purity-electron interaction is weak and use this to
approximate our final expressions, we obtain a re-
sult for the electron distribution around the impurity
which is the same as that obtained from ordinary
linear-response theory.

The material is presented in the following order.
In Sec. II the mathematical formulation is given
leading to an integral equation which has been
solved numerically. Some of the results so obtain-
ed have been compared with results based on the
nonlinear Hartree approximation, and a brief sum-
mary of the latter is given in Sec. III. A com-
parison of the numerical results of these two
theories for the case of an infinitely heavy impurity
is presented in Sec. IV. Section V contains re-
sult for the case of an impurity having the mass of
the electron. In particular, the electron distri-
bution around a positron is calculated; the result
is compared with that of other calculations; and
then estimates of the positron lifetime are made and
compared with the observed results for some sim-
ple metals. Finally, in Sec. VI we make some
concluding remarks.

II ~ MATHEMATICAL FORMULATION

We consider a two-component system consisting
of electrons with charge -e and mass m and of
point impurity particles with charge Ze and mass
M, where Z may be positive or negative. In the
absence of any external disturbance the dynamics
of the system is governed by a Hamiltonian 80.
We now apply weak external potentials V (x, t)
and V'(x, t) which act only on the electrons and

impurity particles, respectively. The dynamics
is then governed by the new Hamiltonian

&=Ho+ fdx[p'(x, t) V'(x, t)+p (x, t) V (x, t)],
(l)

where p' and p denote the operators for the charge
densities contributed by the two components. We
shall use the notations n' and n for the correspond-
ing particle number densities.

From the linear-response theory we obtain the
following expressions for the corresponding in-
duced mean charge densities:

(P (x) t) )(dd

dt' dx' p' x, t, p+ x', t' V' x', t'
-a

dt'I dx'([p'(x, t), p (x', t')]) V (x, t'),
(2a)

(p (x, t)),„„
~ t

dt' dx'([p (x, t), p'(x', t')]) V'(x', t')
~ ()0

t

dtJ dx' ([p (x, t), p (x', t') ])V (x', t'),

(2b)
where ([, ]) are the equilibrium values of the
commutators entering in conventional response
theory and should be calculated with no external
disturbance present. We notice that an external
potential acting only on the impurities will, through
the impurity-electron interaction, induce a change
in the electron density.

By analogy to the conventional procedure used
in treatments of the one-component system we
introduce frequency- and wave-number-dependent
dielectric functions e d(q, (d), where &, p repre-
sent + or —,and write the Fourier transforms of
Eqs. (2a) and (2b) in the form

V'(q, ~)
(p ('q) ) )ind &())5( &) u() 4&yq, co

By comparing Eqs. (2a) and (2b), and (3) we find
that

1
e d(q, &o)

2 004",(' a~e"'([no()), ~(o)])),
q kV

(4)
where f,= Z, k = —1, and V is the volume of the
system; we have also made use of the translational
invariance of the unperturbed system. The quan-
tities nd(t) are the operators for the spatial
Fourier transforms of the particle number den-
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&n„'n', )= Vn [5.,+n'y"(q) ], (6)

where we have used n' and n to denote the equilib-
rium particle number densities. The partial
pair-correlation functions are then given by

g (r) —1 = (2o) f dqe 'o'y d(q} .

The quantity g (r) gives the probability of finding

a particle of type n a distance ~ from another of

type P. The first term in the brackets in Eq. (6)
arises from the self-part of the density-density
correlation and the corresponding term is therefore
absent in our expressions for g "(r). It follows
from Eq. (6) that y' (q) = y '(q).

In calculatin. g the dielectric response functions
we shall follow the procedure developed in Ref. 1.
The induced densities are calculated as if our
system were composed of free particles responding
to effective potentials. This leads to [cf. Eqs.
(2a) and (2b) ]

(p (q, ~) ) i..= (& e)'Xo (q, ~) V:ii (q, ~), (6)

where Xo(q, (d) are the free-particle response func-
tions given by the expression

Xo(q, &) =
~V

«e'"'([n"~(f), nd(0)]}.
g 0

The mean value of the commutator in Eq. (9) is
calculated for a noninteracting system. For the
effective potentials we choose

V,'«(x, f)= V'(x, f)+ Z
~I

dx'4' (x —x')

x (p (x', t)},,d (10)

sities of the two components.
The Fourier transforms of the static density-

density correlation functions, denoted by (n;n&),
are given in terms of the corresponding dielectric
functions by the relations

(n",n, ) = ((„(g)- i:, , d Im „, ) .
0

(5)
These quantities are closely related to the desired
density distributions around a particular particle.
We introduce for convenience four structure fac-
tors y (q) through the relations

surrounding particle densities. If we choose
g'o(x) = 1, this gives us the ordinary Hartree field.
We are then, however, neglecting the fact that the
unperturbed mean densities around a particle,
which are actually disturbed by the external potential,
may be depleted or enhanced from the uniform
mean densities depending on whether the particle
interaction is repulsive or attractive. This is taken
into account here in an approximate way by insert-
ing the static pair-correlation functions g'd(x)
which are determined through a self-consistent
procedure. The nonlinearity in. the response of
the electron density to the imPuxity charge enters
in our treatment only through the functions g d(x).
Puttingg (x}=1we recover the ordinary linear-
response result.

Inserting the above effective potentials in Eq.
(8) we obtain two coupled equations for the induced
densities. We may write

[I-e'~ (q)XO(q, ~)1(p (q, ~))"
-e'~ '(q)xo(q, ~)(p'(q, ~)}i.d

= e xo (q, o)) V (q, o)) ~ (12a)

(Ze) + ('q) Xo (q ~) (p ('q (d))

+[I —(Ze)'e"(q)Xo(q, ~) l(p'(q, ~)}i..
= (Ze) Xo (q, (()) V'(q, (()), (12b)

where
fo '+/ + +p

4m

Solving the above equations we get explicit expres-
sions for the quantities ( I/e —1), appearing in

Eqs. (3)-(5). Finally, we may, through Eq. (5),
determine y (q) in a self-consistent way.

It is sufficient for our purpose to let V'= 0, thus,
assuming that the external potential acts only on

the electrons. A considerable simplification enters
if the impurity density n" is small. Because Xo(q, (d)

is proportional to n', we may then in Eq. (12b) re-
p»ce [I —(Ze) g"(q)Xo (q, o))]by unity and also neglect
the second term in Eq. (12a,). This gives us

(P (~q ~)}i d (Ze)' +' (q) xo (q, ~) (P (q, ~) )i d

(14a)
and

where

(x)=g (x) Vg(x),

(p ('q ~))i d = e' [I —e'~ (q)Xo(q, (())]

x xo(q, ~) V(q, ~) . (14b)

and we have written P(x)= 1/x, the bare Coulomb

potential. By this choice of the effective potential
we take into account the fact that a single particle
experiences, besides the external potential, an

induced one, arising from the disturbance of the

The induced electron density is the same as for the
pure electron gas and we may, through Eq. (3), ex-
press it in terms of the dielectric function & (q; (d)

of the pure electron 'gas. The disturbance of the
impurity density is proportional to n'. We may
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againthroughEq. (3) introduce e' (q, (o) and write
Eq. (14a) in the following form:

p
dq qq

q, o)
= (Ze) }~i, —„Y'(t} t( })J 2v

x p(q) 1 & '(q ) (15)
& (q, ~)

where we repeat that e (q, (d) is here the dielec-
tric function for the pure electron gas.

Now taking the imaginary part of I/e' (q, &u) from
Eq. (15) and inserting it in Eq. (5), we obtain an
integral equation for p' (q):

~I ~ ~P
~' (q)-f(q)~ 2, o .o ~' (q-q')=f(q),

(16)
where we have written

Zk "
1f (q) =, d(elm - bio(q, (o)

+Pl Pl p e q, (d

(17)
The angular integration in Eq. (16) may easily be
performed to yield a simple equation for Z' (q):

3
~' (q) —4,. f(q)

We see that from a knowledge of the dielectric func-
tion for the pure electron gas we can calculate f(q)
for any chosen value of the impurity particle mass
and then by solving Eq. (18) we obtain the equilibri-
um density of electrons around the impurity parti-
cle.

If we ignore the integral term in Eq. (18), we
recover for p' (q) the result obtained by considering
merely the linear response of the electrons to the
disturbance caused by the impurity. Clearly, this
would only be valid approximation for p' (q) for a
weak electron-impurity interaction. The numerical
results that we shall present will show that the
correction to linear response is actually very large
even for Z= +1.

III. NONLINEAR HARTREE APPROXIMATION

An alternative procedure for calculating the elec-
tron density around a fixed charged impurity in

the electron gas has been followed by Stott et al.
using the nonlinear Hartree approximation. There,
one solves the single-particle Schrodinger equation
for the electrons:

[ —(h/2M). V + V(r) j 4(((r) = E(;4'„-(r), (22)

where the potential V(r) is determined from the
Poisson equation

dxx 1+ ln
1 —x 1+x

0 2x 1 —x
y' (qx) V V(r) = —47T[eZ 5(r) + (p (r) ) + en j . (23)

=f(q). (18)

The free-particle response function entering the
expression for f (q) is easily obtained from Eq. (9)
and is explicitly given by

n' 1"'" "'= e ~-(hq'/2M)+fq

The first term in the bracket of Eq. (23) repre-
sents the charge distribution of the impurity, the
second term is the electron charge distribution,
and the third term accounts for the positively
charged background. The mean electron density
is given in terms of the eigenfunctions of Eq. (22)
through the relation

(d+ (hq'/2M) + ig ) (19 (p ( )) = —e &
I
'4(r) I',

E~ (Ef
(24)

where q is a positive infinitesimal and M is the
mass of the impurity particle. Finally, we obtain
an explicit expression for f (q):

Z 1-( h '/2M)

7t'S
p E Q', (d

hq'/2M
eq eve~

where ~ represents the principal value. For a
fixed impurity (M = ~) we have

(21)

where the label k includes spin. We take account
of the Pauli principle in an ad hoc way by placing
one of the N electrons in each of the lowest N
single-particle states. Apart from regarding this
as merely a self-consistent Hartree calculation,
we could alternatively think of this as an application
of the theory developed by Hohenberg, Kohn, and
Sham' in which the ground-state properties of a
many-particle system are expressed in terms of
the local particle density where the latter is written
in terms of single-particle eigenfunctions This
method is, in principle, exact; our approximation
here corresponds to neglecting the exchange and

correlation contributions to the effective single-
particle potential.

It is well known that by linearizing Eqs. (22)—(24)
we obtain the random-phase-approximation (RPA)
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result for the electron distribution. Our main
point here is to obtain the solution beyond this
approximation.

At this point we are already able to make some
comparisons between the treatments presented in
this section and Sec. II. In the nonlinear Hartree
approximation one automatically guarantees the
particle density to be positive or zero [see Eq. (24)]
whereas this is not the case in the other treatment.
In fact, the pair-correlation function we calculate
from the integral equation is slightly negative for
large x, and for small distances from a repulsive
impurity particle. The nonlinear Hartree approxi-
mation takes correlation and exchange effects into
account only to the extent that the RPA does. However,
in the procedure outlined in Sec. II such effects
are more properly included. At present, one does
not know precisely the degree to which these effects
are included in the treatment. Both procedures
are not restricted to weak potentials and are there-
fore of considerable interest. The theory of Sec.
II is easily applied to impurities of finite mass,
which does not seem possible in the case of the
nonlinear Hartree approximation. Because of the
difference in the two methods, it is of interest to
compare the numerical results one obtains. This
may clarify some of the physical assumptions and

possibly help to improve both theories.

IV. RESULTS FOR FIXED POINT IMPURITY

Before presenting the results, we shall give
some details of the calculational procedure. In
the nonlinear Hartree calculation the radial Schro-
dinger equation was solved using a trial potential
V(r). The radial wave functions and a number of
scattering phase shifts were calculated for a set
of occupied k values which characterize the radial
eigenstates. Using these results, the correspond-
ing Hartree potential was calculated from Eqs.
(23) and (24) and it was employed in choosing an
improved trial potential for a new calculation.
This routine was repeated until sufficient self-
consistency was achieved. The Friedel sum rule,
relating the phase shifts to the charge on the im-
purity, was satisfied to high numerical accuracy
(-0.01%) and this guarantees the charge neutrality
of the system.

In solving Eq. (18) we used a finite-interval
Fredholm method. In order to handle the integrand
for large values of q we utilized the relation

(26)

for q»~, a result which follows directly from
Eq. (16). The number of intervals used in the in-
tegration procedure was increased until sufficient
convergence was attained. In determining f(q) we
used the dielectric function for the pure electron
gas as calculated by Singwi et al.

) dr [g' (r) —1] = Z, (26)

is correctly reproduced implies that too much
charge is moved away from the impurity to larger
distances. This leads to an overestimate in the
amplitude of the oscillations in the charge density
for large distance. Curves 2 and 3 are rather
close together and even though Eq. (18) does not
guarantee a positive g' (r) the violation of this
condition is very slight. This is consistent, with
the observations of Singwi et al. ' on the pair-
correlation function for the pure electron gas.

Figure 2 shows results for a point impurity with
Z = —3 and x, = 2. OV a. u. appropriate for aluminum.
Linear response is much worse than for Z= —1
[the (g' (r) —1) from linear response being linear
in Z]. Nonlinear Hartree theory and Eq. (18)
give qualitatively very similar results. The density
obtained from Eq. (18) is still only very slightly
negative for small distances bearing in mind that
the total density depletion is now three.

B. Z)0
The results for a positively charged fixed point

impurity (for Z =+ I the case of a proton in the
electron gas) are somewhat controversial and we
see no point in presenting our numerical results
in the form of figures. Our calculat ons for Z =+1
based on Eq. (18) gave for r, = 2 a. u. a very large
density enhancement around the impurity [g' (0)
= 39]. For r, &2 a. u. , g' (r) became negative and
large in the regicn near the impurity. The non-
linear Hartree calculations for all reasonable
choices of trial potential gave a bound s state for
~, ~ 2 a. u. This leads us to suspect that the failure
of our new method in this range of electron density
is due to the appearance of a bound state, which
this method was not designed to treat. One of the
trial potentials used in the Hartree calculations
was the Coulomb potential screened by the di-
electric function of Singwi et al. and this also led
to a bound state. This potential must therefore

A. Z&0

We first present results for a negatively charged
fixed point impurity. In Fig. 1 we show g' (r) for
various r, values within the range of metallic con-
duction electron densities and with Z= —1; the
curves are obtained from linear-response theory
(curves 1), from our integral equation (18) (curves
2) and from the nonlinear Hartree theory (curves
3). The pair-correlation function by definition
should never take negative values and we notice
that linear response gives quite unsatisfactory re-
sults over a sizable region in r space and it be-
comes worse in this respect as x, increases. The
fact that the total depletion of particle density,
given by
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FIG. 1. Electron distribution
around a fixed impurity g' (&.) vs q&r
for Z= —1, and y, = 2, 4, and 6 a.u.
calculated using linear-response
theory (curves 1), from the integral
equation (18) (curves 2) and using
nonlinear Hartree theory (curve 3).
The number associated with curves 1
is the degree of density depletion at
x= 0.
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be regarded as strong, invalidating the use of
linear-response theory. The screening has re-
moved the long-range part of the bare Coulomb
potential, which is the feature of the bare potential
responsible for the infinity of bound states for the
hydrogen atom. However, it has not significantly
weakened the strong attractive part of the potential
near the impurity. It is this part that leads to a
bound state in the case we are considering. We
noticed that the binding energy is considerably
reduced from that for the state of hydrogen atom.
Consequently, the bound-state wave function ex-
tends over a larger region and the amplitude is
correspondingly smaller. Unfortunately, the
calculational method we employed was not suitable
for making a fully self-consistent Hartree calcula-
tion when bound states appeared, We intend to
rectify this in the future. At present, we do not
consider our results conclusive concerning the ex-
istence or nonexistence of a bound state.

V. RESULTS FOR FiNITE-MASS POINT IMPURITY

(curves 2). For comparison we also show the pair-
correlation function for electrons of opposite spin,
g,

' (r), for the pure electron gas as given by Singwi
et al. ' (curves 3). We notice that the recoil effects
have considerably reduced the degree of density
depletion near the impurity, making linear response
somewhat better. However, it still gives a g' (r)

10—

0.8—

06

I
+

Ul 0g

Calculations have been performed for the im-
purity mass equal to the electron mass and for
both positive and negative unit charge. Because
of its finite mass the impurity will now be influ-
enced by recoil effects. We would expect the de-
pletion of density around the negatively charged
impurity to be less pronounced than before. In
the case of the positively charged impurity the
enhancement of electron density should, similarly,
be less than for the fixed impurity.

0,2

-0.2 q r

A. Z(0

Figure 3 presents the results for various &,
values and Z= —1 obtained from linear response
(curves 1) and from the integral equation (18)

FIG. 2. Electron distribution around a fixed impurity
g' (~) vs q~ for Z= —3, and &, =2.07 a.u. calculated
using linear-response theory (curve 1), from the integral
equation (18) (curve 2) and using nonlinear Hartree theory
(curve 3).
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FIG. 3. Electron distribution around
an impurity having the mass of the
electrong' (z) vs q~r for Z= —1, and

y, =2, 4, and 6 a.u. calculated using
linear-response theory (curves 1) and
from the integral equation (18) (curves
2). The g„(y) for the pure electron
gas taken from Hef. 8 is also shown
for each ~, value (curves 3). The
number associated with curves 1 is
the degree of density depletion at x= 0.

-02

/ 10

&.29

2.0
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q r

2.0 1.0

-2.10

2.0 30

which is negative at small distances. In fact, for
x, &1.8 a. u. , g' (0) is negative. The density ob-
tained from Eq. (18) is now positive over the whole
range r, = 2-8 a. u. and we find g' (r) to be nearly
the same as g „(r) for the pure electron gas, partic-
ularly so for the larger values of x, . The differ-
ences between the two quantities is due to the fact
that the electrons are not distinguishable from
each other whereas the point impurity, even though
it has the mass and charge of an electron, is still
distinguishable from the electrons. As we can
see from the figure, these exchange effects be-
come small as ~, increases.

We have noticed that the full pair-correlation
function for the pure electron gas, as calculated
by Singwi et al. , lies rather close to the g' (r)
obtained for the fixed point impurity with Z = —1.
In order to illustrate this we have, in Fig. 4, plot-
ted g' (r) from nonlinear Hartree theory and the
pure electron gasp(r) from Ref. 8 for x, = 3 a. u.
Effects due to recoil and the Pauli principle, ap-
pearing in g ( r), seem to cancel each other to a
large extent.

B. Z)0

density around the impurity is Z. This implies
that linear response distributes this density over
too large a region.

We have calculat d the total induced density
within a sphere of radius ~, around the impurity
both from linear response and from our nonlinear
theory (see Table I).

First of all we notice that the induced density
extends further from the impurities with Z= —1
then for those with Z =+ 1. This is apparent also

1.0—
f »3

0.8

0.6

0.4

Figure 5 illustrates results for an impurity carry-
ing unit positive charge and having a mass equal
to the electron mass (this could be the case of a
positron in the electron gas). We present results
from linear-response theory (curves 1) and those
obtained from Eq. (18) (curves 2). We notice a
large nonlinear effect in the density buildup close
to the impurity as x, increases. This density en-
hancement is much less pronounced in the case of
the linear-response results. We conclude that
linear-response theory greatly underestimates the
enhancement in the metallic range of x, values.
It should be noted that in all cases the total induced

0.2

1.0 2.0 3.0
r

FIG. 4. Pair-correlation function g(y) for the pure
electron gas taken from Ref. 8 (curve 1) and the electron
distribution around a fixed impurity g' (y) for Z = —1
calculated using nonlinear Hartree theory (curve 2); x~
=3 a.u. and the curves are plotted against q&y.



2116 A. SJOLANDER AND M. J. STOTT

4.0 8.0 16.0—
r=g

S

3.0

I
I 2.0

iV)
.0

FIG. 5. Electron distribution around
an impurity having the mass of the
electron g' (x) vs q&x for Z =+ 1, and

y~ = 2, 3, and 4 a.u. calculated using
linear-response theory (curves 1)
and from the integral equation (18)
(curves 2).

1.0

1.0 2.0 1.0 2.0 1.0

I

2.0 3.0

from Figs. 3 and 5. This effect is due to there
being no restriction on the degree to which the
density near an attractive impurity may be enhanced
apart from the cost in kinetic energy and provided
the total induced density fulfills the charge neutrali-
ty condition. As a consequence, in these cases
we see g' (0)»1 for large values of r, . In con-
trast, the electron density around a repulsive im-
purity may only be reduced at any point by an
amount n from the average density and the range
of the induced density is at least ~, . We also
notice from Table I that the nonlinear results for
r, = 4 and Z =+ 1 indicate that the impurity is over-
screened within the radius x, . This is compensated
for in g' (r) at larger r by substantial oscillations
about unity. Further investigation is needed in or-
der to say whether this is a reasonable result.

The present calculations enable us to calculate
the positron-annihilation rate & in an electron gas
using the relation'

g' (0) x10 sec '.1. 2

&s

Our results are presented in Fig. 6 and are com-
pared both with earlier calculations of Carbotte, "
using the Bethe-Salpeter equation, and of Bergersen
and Terrell. ' The theoretical calculations are
compared with the experimental results of Weis-
berg and Berko. The results of our new method
compare favorably with those of other authors in
the metallic range up to r, -5 a. u. However, the
theoretical results lie consistently below the ex-
perimental results for the simple metals.

The electron-gas model used to describe posi-
trons in metals is inadequate on two counts. Of.
lesser importance for the simple metals is the
effect of the periodic crystal potential on the valence
electrons. We believe, in addition, that the pene-
tration of the positron into the ion cores and the

VI. CONCLUSION

We have found thatan impurity particle carrying

TABLE I. The number of displaced electrons within a
sphere of radius z, about the impurity particle for a
variety of cases.

Z&0 s=2 a.u. z~=4 a.u. x~=6 a.u.

Z= —1, M=~
Results from Eq. (18) —0.460 -0.544 —0.579

Z= —1, M=~
Nonlinear Hartree —0.404 —0.594 -0.642

Z= —1, M=rpz
Results from Eq. (18) —0.307 —0.394 —0.441

Z&0 %~=2 a, u. v+ = 3 a.u. 7'~= 4 a, u,

Z=+1, M=m
Results from Eq. (18) +0.588 +0.893 + l.312

subsequent annihilation with a core electron con-
tributes substantially to the total annihilation rate.
Both of these effects will lead to a broad com-
ponent in the two-photon angular corelation curves.
The area of this broad component in the case of
lithium metal amounts to a fraction (-15%)'4 of
the total and this fraction represents the contribution
to the total annihilation rate which accounts approxi-
mately for the discrepancy between our results
and the experiments.

Our results are unreliable for ~, - 5 a. u. The
method breaks down in the same manner as for
the heavy impurity with Z=+ 1 and the range of x,
in which the nonlinear Hartree method indicated
a bound state. We suspect that the breakdown of
the method is connected to the appearance of strong
electron localization, but further investigation of
this point is required.
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unit electric charge is a strong perturbation on an
electron gas within the metallic range of densities.
Linear-response theory leads to an unreasonable
distribution around the impurity. In particular,
for a unit negatively charged impurity linear-re-
sponse theory gives a negative electron density near
the impurity both for a fixed impurity particle and
for one having the electron mass.

Calculations that go beyond linear response have
been performed. The cases of impurities with
large mass and the electron mass have been treated
by a new method which takes some account of ex-
change and correlation effects. The case of a
heavy impurity was also treated using nonlinear
Hartree theory. These two approaches in the case
of a negatively charged fixed impurity gave similar
results for the electron density around the impurity.
The results are reasonable physically, being es-
sentially positive, and the corrections to linear-
response theory are substantial in the metallic
range of electron density.

In the case of the heavy impurity carrying posi-
tive unit charge the new method breaks down in

most of the metallic density range; the nonlinear
Hartree calculations indicate a strong localization
of electrons near the impurity and the possibility
of a bound state cannot be ruled out, although this
point is under further investigation. %e believe
that this strong localization may be related to the
breakdown of our new method. The new method
breaks down in a similar fashion for an impurity
having the mass and charge of a positron for x,
~ 5 a. u. At higher densities the new method leads
to good results for the positron-annihilation rate.

One should notice that for large enhancements
the two terms on the left-hand side of Eq. (18)
cancel each other nearly completely. Approxima-
tions have been made in choosing our effective po-
tential and even a small error of the integral term
in Eq. (18) could have a large effect on Z' (q). It
could then easily introduce an unphysical overcom-
pensation leading to a negative density distribution.
Judged from this point of view it may seem sur-
prising that the method works so well in the posi-
tron case in spite of the rather large enhancement
effects.
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The optical and dielectric constants of Rb have been determined from reflectance measure-
ments for photons of energy between 3.3 and 10.7eV. Reflectance measurements were made
as a function of incident angle at a Rb-substrate interface in an ultrahigh-vacuum system.
The refractive index (n) was determined from the critical angle for total internal reflection,
and the absorption coefficient (k) from the slope of the reflectance curve at the critical angle.
The real part of the dielectric function (&&) and the optical conductivity (0.= +&2/4') were de-
rived from n and k. In 0., we find a broad strong peak centered at 7eV. It is attributed to ab-
sorption processes involving plasmon-assisted interband transitions and to direct interband
transitions to "f"'bands. && is analyzed in terms of a nearly-free-electron model to obtain a value for
the contribution of core polarization to &~ of 4mnp+ =-0. 25 +0. 02, and an effective mass of m, ff
= (1, 03 + 0 ~ 02)mp,

INTRODUCTION

The alkalis are the simplest of the metals, in
that their properties most nearly match those pre-
dicted using a simple nearly-free-electron (NFE)
model of metals. Optical measurements on Na, K,
Rb, and Cs in the visible and infrared region give
results in generally good agreement with the NFE
model. ' These results and optical measurements
on Na at higher energies suggest that there may
be additional absorption above the plasma frequency
that cannot be accounted for by the absorption
mechanisms usually included in the NFE model.
We have recently reported measurements of the
optical and dielectric constants of Cs for photon
energies between 4 and 10 eV that conclusively
demonstrate the existence of such an additional ab-
sorption process in this material. ' A broad ab-
sorption peak with a maximum at 5 eV was found
in the optical conductivity which we interpreted as
absorption resulting from the simultaneous excita-
tion of a collective mode and an interband transi-
tion.

In this paper we report experimental determina-
tions of the index of refraction (n), the absorption
coefficient (0), the real part of the dielectric re-
sponse function (e&), and the optical conductivity

(g) for Rb for photon energies of 3. 3-10. 'f eV. A

broad peak centered at 7 eV is observed in the con-
ductivity. The peak is somewhat weaker and broad-
er and lies at a higher energy than the correspond-
ing peak found for Cs. A Kramers-Kronig analysis
applied to the imaginary part of the dielectric re-
sponse function (ca = 4m'/&u) is used to calculate the

effect of the interband transitions and of the broad
high-energy absorption peak on &,. These contri-
butions are subtracted from e& so that the remain-
ing portion represents the e& expected for a NFE
model containing only free-carrier absorption.
This corrected value of e& is used to obtain values
of the core polarization and the effective mass,
which are the adjustable parameters of such a free-
electron model. The values obtained are compared
with those obtained by other authors.

EXPERIMENTAL PROCEDURES

The basic experimental procedures used in this
work have been described in detail elsewhere. "
The sample chamber is shown schematically in

Fig. l. In brief, Rb was deposited on the flat sur-
face of a transparent semicylinder substrate. The
reflectance of light incident on the Rb film through
the substrate was measured as a function of angle.
A semicylinder is used so that incident and re.—


