PHYSICAL REVIEW B

VOLUME 5, NUMBER 1 1 JANUARY

Droplet Model for Tricritical Points: Metamagnetic Transition*

L. Reatto
Research Institute for Theovetical Physics, University of Helsinki, Helsinki , Finland
and Istituto di Fisica, Univevsitd di Parma, Parma, ImlyT
(Received 25 June 1971)

The phase transition of a two-sublattice spin-% Ising antiferromagnet in an external magnetic
field is studied on the basis of a modified form of Fisher’s droplet model for critical phenom-
ena. Itis assumed that the interaction also contains an intrasublattice ferromagnetic coupling
so that the model is appropriate for metamagnetic substances. By taking into account the
contribution to the free energy, both of antiferromagnetic (AF) and of ferromagnetic (F) clus-
ters, it is found that the phase boundary of the AF phase consists of a line of critical points
at small fields when the AF clusters first become critical, but thislinemergesintoalineofa
first-order phase transition for magnetic fields above a threshold value H, when the F clusters
first become energetically favorable. The end point at (H;, T,) of the first-order phase tran-
sition is a tricritical point, in agreement with the results of the Landau and of the molecular-
field theories. Two kinds of critical behavior at the tricritical point are found. In what is
called a tricritical point of the first kind, only the AF clusters become critical at (H;, T,).

In this case, the difference M; —M_ of the magnetizations of the two coexisting phases on the
first-order transition goes to zero linearly at the tricritical point. The free energy does not
have a homogeneous form near this point. At a tricritical point of the second kind, both AF
and F clusters become critical. In this case it is found that (M, —M_) ~ | (T'— T)/T;|°, where,
in general, ¢ is different and less than unity. Under certain conditions it is found that the
free energy has a homogeneous form near (H;, T;). The critical behavior near (H;, T,) is
discussed in detail for both kinds of tricritical points. Better agreement with experiments

is found than in the case of the molecular-field theory. The tricritical point of dysprosium
aluminum garnet seems to be of the second kind, but more detailed measurements are needed.
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The two-fluid critical mixing point in He’~He? is briefly discussed.

I. INTRODUCTION

Detailed experimental information'~? is becoming
available on the magnetic phase transition of meta-
magnets. 1'* This name refers to strongly aniso-
tropic antiferromagnets with the following behavior
in an external magnetic field H HHis pointing
along an appropriate direction (the easy axis for a
two-sublattice antiferromagnet), the low-tempera-
ture antiferromagnetic phase ends with a continuous
phase transition (the antiferromagnetic transition)
for small fields H but with a first-order transition
for fields larger than a threshold H,. This first-
order phase transition, which we call the meta-
magnetic transition, takes place between a phase
with antiferromagnetic order and a paramagnetic
phase of high magnetic moment induced by the ex-
ternal field. Therefore, the phase boundary of the
antiferromagnetic phase in the H-T plane consists
of a line of critical points which continues at (H,,
T,) in a line of a first-order phase transition. The
over-all qualitative behavior of a metamagnet is
understood on the basis of the molecular-field the-
ory for a strongly anisotropic magnetic Hamiltonian
with an antiferromagnetic interaction between spins
on different sublattices and a ferromagnetic inter-
action between spins on the same sublattice. *°
Similar results are obtained on the basis of Lan-
dau’s theory.® However, we do not expect such
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“classical” theories to give a correct description
of the critical phenomena near the continuous tran-
sition because we know that “classical” theories
fail near a critical point.” On the other hand, the
critical behavior in the neighborhood of (H,, T,),
the end point of the first-order phase transition, is
expected to be of particular interest. In fact, it
has been recently pointed out by Griffiths® that this
end point is an example of a tricritical point—a
point which lies on the intersection of three lines
of critical points. One of these lines corresponds
to the antiferromagnetic transition line and the two
others are lines at which two coexistence surfaces
of another first-order transition terminate. These
two surfaces extend in the H #0 region and their
intersection with the H =0 plane coincides with the
metamagnetic line. Hj is the staggered magnetic
field, that is, a magnetic field which points in op-
posite directions on the two magnetic sublattices.
Experiments on metamagnets, as well as on
He®-He* mixtures near their two-fluid critical mix-
ing point, which is another example of a tricritical
point, show some discrepancies with the predic-
tions of the “classical” theory.® Moreover, some
metamagnets and He®-He* mixtures seem to differ,
to a certain extent, in the critical behavior near
their tricritical point. All this indicates the neces-
sity of going beyond the “classical” theory. Grif-
fiths has proposed® a homogeneous form for the

204



5 DROPLET MODEL FOR

free energy in the neighborhood of a tricritical
point which resolves the discrepancies in the case
of He®-He* mixtures. However, we should like to
have a description based on more physical terms
which might also help to understand if the charac-"
terization of different tricritical points is unique
or not. To this end we have studied the phase
transition of a metamagnet on the basis of a gen-
eralization of Fisher’s droplet or cluster model
for critical phenomena.® This model is particular-
ly attractive because in the case of an ordinary
critical point it goes beyond the “classical” theory
by giving free energy which agrees with the results
of the scaling description of critical phenomena’
and, on the other hand, it is formulated in a form
which is physically rather transparent. We con-
struct the theory for a spin-; Ising model, but the
theory also describes the behavior of a strongly
anisotropic Heisenberg model such that no “spin-
flop” phenomenon'® occurs. Therefore, our model
should give a description of the metamagnetic
compounds.

The basic idea of the cluster model can be for-
mulated in the following form in the case of an
antiferromagnet: If we compare the free energy
of the system at a temperature 7T and in a stag-
gered field H, with the free energy of the system
at the same temperature, but in the completely
ordered state (this can be obtained by H,~ «), the
main contribution to the difference between these
two free energies comes from antiferromagnetic
clusters of compact shape—regions of overturned
spins so that the sublattice magnetization has lo-
cally the wrong direction. In this case, one is
able to estimate the contribution of a cluster to the
free energy and its probability of occurrence, if one
neglects the interaction between clusters. To ex-
tend the model, in case an external magnetic field
is present, we must also take into account the con-
tribution from ferromagnetic clusters. We find
that if the interaction between spins on the same
sublattice is ferromagnetic, these ferromagnetic
(F) clusters have a positive surface free energy at
low temperatures, like the antiferromagnetic (AF)
clusters. Therefore, also F clusters have a com-
pact shape and we are able to evaluate their rela-
tive contribution to the free energy. By suitable
population factors we also take into account the
“exclusion” effects between clusters of the same
type and between AF and F clusters. In fact, we
have recently argued, 1 41 the case of an ordinary
critical point, that to have a more realistic de-
scription of the system above the transition tem-
perature, the droplet formula should also contain
an explicit population factor which takes into ac-
count the “exclusion” effect between clusters. Ex-
plicit calculations!? with this modified droplet
formula show that it gives a rather good description

TRICRITICAL POINTS:... 205

of the critical behavior of the Ising ferromagnet in

two and three dimensions by also giving the critical
amplitudes of significant thermodynamic quantities

in fair agreement with the exact results or with the
results of series analysis. "’

Our formula for an Ising antiferromagnet in an
external magnetic field contains two phase boundar-
ies in the H-T plane (H,= 0): One is the locus on which
the surface free energy of AF clusters is zero,
and this corresponds to the AF transition. The
other boundary corresponds to the intersection with
the H =0 plane of a surface extending in the H #0
region. This surface gives the limit of stability of
the AF phase with respect to F clusters and this
represents a surface of coexisting phases of a
first-order phase transition. We identify this sec-
ond boundary in the H-T plane with the metamag-
netic transition, and the tricritical point corre-
sponds to the intersection of the two boundaries.
The fluctuations in the neighborhood of the tricrit-
ical point can be quite different, depending on the
magnitude of T, with respect to T*, the tempera-
ture at which the microscopic surface free energy
of F clusters is zero. I T*>T,, only the AF
clusters become critical at the tricritical point.

In this case we find that the difference AM of the
magnetizations of the two coexisting phases at the
metamagnetic transition goes to zero linearly with
T,-T. ¥ T*=T,, both F and AF clusters become
critical at the tricritical point, and in this case
AM goes to zero with a power behavior |T - T,|°
with an exponent ¢, which is most likely less than
unity. It seems probable that the parameters of
the theory are never such that T* < T, because, in
this case, the interaction between the two different
kinds of clusters has the tendency to depress the
AF boundary until 7*=T,. Not only AM has a dif-
ferent behavior near (H,, T,) depending upon
whether T*>T, or T*=T,, but the whole critical
behavior is different in the two cases. We speak
of a tricritical point (and, by extension, a meta-
magnet) as being of first or second kind corre-
sponding to T*> T, or T*=T,, respectively. In
the case of a tricritical point of the first kind, the
free energy does not have a homogeneous form,
contrary to Griffiths’s proposal.® If suitable re-
strictions are satisfied by the parameters of the
model the free energy has a homogeneous form near
a tricritical point of the second kind. This homo-
geneous form coincides with the one proposed by
Griffiths if the basic exponents of the model are
such that £=1 results. We also construct a drop-
let formula for the paramagnetic high-field phase,
starting, in this case, from the ferromagnetically
ordered state present when H- ., In this way we
are also able to describe the paramagnetic phase
at the metamagnetic transition. The droplet for-
mula for the free energy has been constructed in
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the case of a magnetic system. However, we ex-
pect that the formula also applies in the case of
other tricritical points whenever the ordered phase
is destroyed by two different and competing kinds
of fluctuations, both of which are characterized by
a positive microscopic surface free energy at small
temperatures.

At least one metamagnet, * dysprosium aluminum
garnet (DAG), has a power behavior for AM with
¢£<1, thus suggesting that this compound is an ex-
ample of a metamagnet of second kind. The ex-
perimental data, however, are not yet detailed
enough to exclude the possibility of a very steep
linear behavior for AM. The difference of compo-
sition, a quantity analogous to AM, has a linear
behavior near the two-fluid critical mixing point13
of He®-He®. Therefore, He®-He! mixtures seem
to offer an example of a tricritical point of the
first or second kind but in the exceptional case in
which ¢=1.

The contents of the paper are the following. In
Sec. II we construct the free energy for the model
and in Sec. III the surface energy of clusters is
studied for two different AF structures: the case
of two compenetrating cubic lattices® and the case
of antiferromagnetic stacking of ferromagnetically
ordered planes. *2 The metamagnet of first and of
second kind is studied in Secs. IV and V, respec-
tively. In Sec. VI the renormalized critical be-
havior! near the tricritical point is discussed, and,
finally, Sec. VII contains a comparison of the the-
ory with experiments and the conclusions.

II. DROPLET FORMULA

We consider a spin-3 Ising system with Ham-
iltonian

3=2d,p 2u sfs,‘,—ZJF<Z} stsi+ 25 s,‘,s:)
Cin) ) (o)

+(H-H) Y si+(H+H) 2 s%, (1)
i »

where the Latin and the Greek indices refer to sites
on the a (“up”) and b (“down”) sublattices, respec-
tively. (iu) indicates a sum over pairs of nearest
neighbors on different sublattices and (ij), (uv),
a sum over pairs of nearest neighbors on the same
sublattice. H and H, represent, respectively, a
local magnetic field and a staggered magnetic field
in the z direction in units of gug. The positive
quantities J 4y and Jy must be consistent with the
assumed AF order of the system in its ground
state when H=H;=0.

On basis of the mean-field theory, *® we expect
that the phase diagram of such a system has in the
(T, H, H,) space the shape given in Fig. 1, where
only the H,> 0, H>O0 region is shown. There is an
obvious symmetry for change of sign of H and of

H if the two sublattices are equivalent. The phase
diagram has two regions of coexisting phases. A
first region lies on the H =0 plane and the coexist-
ing phases are characterized by (M,, M) and by
(-M,, M), where M, and M are the staggered and
the total magnetization as follows:

Mg=M,~-M,, M=M,+M,, (2)

where M, and M, are the magnetizations of the two
sublattices. The boundary of this AF region con-
sists of two parts. Curve 1 corresponds to the AF
phase transition where M -~ 0, and it is charac-
terized by a field-dependent transition tempera-
ture T, (H). Curve 2 corresponds to the first-orde:
metamagnetic transition where three phases co-
exist, 'two AF, (M, M) and (M,, M_), and one

F, (0, M,). This part of the phase boundary, char-
acterized by a field-dependent temperature T,,(H),
represents the intersection with the H =0 plane of
another surface of coexisting phases which differ,
this time, both for the values of M  and of M. The
differences in M and in M vanish on curve 3 which
corresponds, therefore, to a line of continuous
phase transitions. The tricritical point (H,, T,)
lies at the intersection of three lines of critical
points: 1, 3, and the symmetric of the last one

in the negative H region.

The cluster model gives the free energy as a
high-field (H, for an antiferromagnet) expansion,
that is, a power expansion in the variable exp(~ H,/
Ky T). This expansion can be obtained if in the
partition function

Z= 23 expl-3(s;,s,)/KzT]
(s‘,su)

one singles out the term corresponding to the per-
fect AF order (the only important term when Hg~ )
and classifies the other terms on the basis of the
number of spins deviating from that order. These
overturned spins can be collected in clusters and
we expect that near the phase transition only rather
large clusters are important. ® We review briefly
the usual droplet model by considering the H=0
case first. The spin configurations which enter,
with some weight, the partition function correspond
to the presence of regions in which the spins are
antiferromagnetically ordered but with an inter-
change of the roles of the aand b sublattices. If one
neglects the interaction between these AF clusters
and assumes that the clusters are compact, then
the free energy for spin takes the well-known clus-
ter form:

FO(T; HS)N _%Hs_ UO

_KyT é 21(5)) expl - 8,()/KxT],  (3)

where U, is the interaction energy in the fully or-
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dered state and 8,(1) is the difference between the
energy of an AF cluster of ! spins and the energy
of the same region in the fully ordered state. For
large clusters, 8, has the form

81(l)=Hsl+§1w1 N (4)

where the last term is a surface energy due to the
broken bonds at the surface of the cluster which is
assumed to have an average area s;=a;l°. The
combinatorial factor gy(s;) is proportional to the
number of AF clusters of [ spins with a fixed center
and surface 5;, and it has the form® gy(5;) ~gnjt
x351/° where gy, A\, and T are constants. Then
(3) can be written in the form

FNT,H)==-%H,-Uy-qoKpT 2, I*YIX" F(),
1=1
)

where

Y= exp( - Hs/KB T) ) (8)
X =281 exp( -3, wy/KpT)

=exp| - @, (w; — w0, T)/KpT], (7)

and we have written 3, = exp(w;/Kg). In (5) we have
also introduced a population factor F(I). I f(l)=1,
(5) is Fisher’s droplet formula. We have argued®
for the presence of such a population factor on the
basis that only compact clusters contribute to the
singular part of the free energy and, moreover,
that the presence of a cluster on some sites ex-
cludes other clusters from the same sites. The
form

FO=BX+1)", b>1 (8)

was suggested'! and found satisfactory for the Ising
model. ¥ On the basis of expression (5) for the
free energy, the following picture of the phase
transition emerges. As long as H >0 (Y;< 1) the
fluctuations, as described by (5), are finite. Also
at H,=0(Y,=1) and at low temperatures, such that
X <1, the fluctuations remain finite but they in-
crease with T up to T=Ty=wy/w;. At this tem-
perature the fluctuations are infinite, as shown by
the fact that the derivatives of F beyond a certain
order diverge, and this point is identified with the

FIG. 1. Schematic phase
diagram for a metamagnet
in T, H, Hg space. The
hatched areas represent
surfaces of coexisting phases
(first~order transition).
Curves 1 and 3 are lines of
critical points.

Néel temperature. For T> Ty the “microscopic”
surface free energy (w; — w;7) is negative and the
AF order is no longer spontaneously stable. One
does not automatically find M =0 when H =0 be-
cause (5) does not possess the symmetry that the
total free energy has under H,~ —H,. B and b in
(8) must be chosen!! in such a way that M =0 re-
sults when H;=0 and T>Ty. For H <O the series
(5) diverges, and this corresponds to the fact that
a state with a negative value for M, is stable.
From (5) it is easy to calculate®!! the critical ex-
ponents and, in particular, they turn out to be equal
above and below T'y.

In the presence of an external magnetic field, the
free energy still contains the AF contribution (3),
but now the surface energy w,; depends on H and,
at least for small fields, we have

wy(H)=wy -AH?, (9

where A is a constant. However, in this case we
expect that configurations containing regions of
ferromagnetically ordered spins also give an im-
portant contribution to the free energy. In Sec. III
we show that these F clusters also have a positive
surface energy, so that we may assume that they
have a compact shape. Neglecting again the inter-
action between clusters, the free energy contains
another contribution which coincides with (3) in
form, but with functions g»(3,) and 8,(7). The
combinatorial factor g, has the same form as gy,
but it could have different constants g,, Az, and

T, because the average area for F clusters might
be characterized by different constants a, and o,
so that S;=a,1%. The cluster energy 8,(I) contains
again a bulk and a surface term and it has the form

82(0)=[Eo(H, H,, T) - 3(H - H)] 1+ Gwz 1% . (10)

The bulk term contains the factor 3(H - H,) because
a F cluster of !/ spins is constructed by overturning
only the spins of the b sublattice. E,(H, H,, T)is
the difference between the interaction energy of the
spins in the F and AF configurations. Actually,

we expect that this energy depends on H, H,, and
T because it should be the difference of the thermal
averages in the two different constrained configura-
tions. At finite temperatures we expect that the
energy E, decreases for an increase of T or H,
whereas we expect the opposite dependence on H,.
When necessary, we will use the following form:

Ey(H,H,, T)=E,-B'T?(1+CH® -FH?) ,

where E,, B’, C, and F are constants. However,
we notice that no results depend on this particular
form of E, as long as it is an analytic function of
its variables.

On the basis of the previous discussion, it fol-
lows that the significant part of the free energy per
spin can be written in the form
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F(T’ H, Hs)w —%Hs— UO+F1(T’ Hs Hs)

+Fy(T,H,Hy), (11)
where
FI(T’ H, Hs) =-q, KgT

X 21 Gy b ) fi(l) , (12)
1=

FZ(T’ H, Hs)= - g KT

X 25 LR YRXR2 f5,(1) fa2(ls) , (13)
Ip=1

M) =191, 2(0) =152, (14)
Xy =exp| - @[wy(H) -0, TI/K5T} (15)
Yy=exp{ - [Ex(H, H,, T) -3 (H-H)]/KsT},

(16)

Xp=exp{ - G(ws - w.T)/K5T},

and Y, is given in (6). The index 1 refers to AF
clusters and the index 2 refers to F clusters. In
(12) and (13) we have introduced the population fac-
tors f,;(1). For f;1(1) and fy5(I), which give the ef-
fect of AF and of F clusters on themselves, we use
the form?

fu) =B XMW L 1) L £,(0) = (B X 322+ 1)
a7
where B;, By, b;, and b, are constants. Analogous

factors take into account the effect of F clusters
on AF clusters and vice versa:

fral) = (B X322V v} 1),
(18)
faall)= (Byy X 1Dy} 1),

These terms significantly differ from (17) by the
presence of the factors Y} and Y!, respectively.
The reason for this difference is the following.

Let us consider the population effect on a AF clus-
ter. For example, a cluster of / spins might have
a very irregular surface and in this case it will not
contribute to F;. The probability of occurrence of
such a cluster depends on X ;‘1‘”, being very large
when X,;> 1 and becoming larger as the surface of
the cluster increases. This corresponds to the
behavior of f3; given in (17) which should give the
probability that a cluster is compact. On the other
hand, Y; should not enter fy; because we started
with a cluster of / spins and, whatever the shape
of its boundary, this gives a factor Y} which ap-
pears explicitly in (12). The situation is different
with respect to the factor f;, because, in this case,
one is interested in the probability that an AF clus-
ter is irregular owing to inclusion of F clusters.
The Y! factor in (12) does not give any constraint
on F clusters because these have an equal number

of “up” and “down” spins. On the other hand, the
probability of occurrence of F clusters is large or
small depending on whether Y,>1 or Y,<1. This
effect is taken into account by the form for f,, given
in (18). A similar argument applies to the factor
Jz1- We notice that the precise form of f;; given in
(17) and (18) does not matter as long as f;; depend
on the same arguments and have the same limits
when /-, Moreover the constants appearing in
(12), (13), (18), and (19) might be analytic func-
tions of T, H, and H,.

The AF order is stable as long as Y;<1 and Y,
<1 and becomes unstable when one of these two
variables becomes greater than the unity. If, for
fixed H and T, the surface defined by Y;=1 is first
met, the instability is due to the formation of a
phase with dominant AF order with the roles of a
and b interchanged. On the other hand, if the sur-
face Y,=1 is first met, the instability is due to the
formation of a phase with dominant F order.
Therefore, the region of the plane H,=0(Y;=1)
with Y,(H, 0, T)<1 gives a possible surface of co-
existing AF phases of a first-order phase transi-
tion. This region actually represents a first-order
phase transition only if X;<1, The region of co-
existing phases terminates on a line of critical
points where X;=1, corresponding to a field-depen-
dent transition temperature Ty(H), where

Ty(H)=w,(H)/®; ~ OTN -A'H?,
H

-

(19)

The other possible surface of coexisting phases,
one with dominant AF order and the other with
dominant F order, is determined by Y,=1 or

EZ(H9 Hsy T)=%(H _'Hs) ) (20)

which can be solved for T to give a function T,(H,
H,). Only the region of this surface with X,<1,
i.e., Ty(H, Hy)<T*, where

T*=wy/ws , 21)

corresponds to a first-order transition.

Let us call T'=T,(H)=Ty(H, 0) the intersection
curve between the surface given by Eq. (20) and the
H =0 plane and let us call (H#,, T,) the point at the
intersectionof the two curves T=Ty(H) and T
=T, (H), i.e.,

T,=Ty(H,) = T,(H,) . (22)

The behavior near (H,, T,) is rather different de-
pending on the magnitude of 7* with respect to T,.
If 7*>T, [see Fig. 2(a)] at the point (T,, H,), the
AF clusters are critical, that is, their surface free
energy is zero, so that there is a large probability
of finding large clusters, whereas the F clusters
are normal. Also, if F clusters are normal, this
point (H,, T,)is the end point of the metamagnetic
transition and it can be identified with the tricriti-



len

H
(b.
H @) ®

i H,

H T
Pl
I
T TRT*T

FIG. 2. Schematic H, T phase diagram. Solid line
represents metamagnetic transition; dot~dashed line
represents antiferromagnetic transition. (a) T, <T*.
Dashed lines give the continuation of Ty (H) and T,,(H) but
do not represent lines of phase transition. (b) T;=T*.
Dashed line represents the unrenormalized T y(H).

cal point in Fig. 1. In fact, as one moves along the
T,(H) line in the direction of higher temperatures,
first F clusters become larger because the sur-
face free energy of these clusters becomes small-
er. However, beyond T, the opposite behavior oc-
curs because X; > 1 there and the population factor
f21 in (13) limits the size of the F clusters. At T*
all the derivatives of F, are finite because the fac-
tor f;; assures convergence of the series (13) for
F,. This corresponds tothe fact that even if near T*
the surface free energy of the F clusters is small,
there is a vanishing probability of finding large and
compact F clusters because there the AF clusters
are overcritical, so that there is a very large
number of them.

If T*=T,, at the point (H,, T,) both the AF and
the F clusters become critical. The case T*< T,
[see Fig. 2(b)] does not seem to take place. In
fact, suppose this was the case and let us consider
the system near T,. Very large AF clusters are
present because one is near Ty(H). In Sec. III we
show that the surface energy of an AF cluster is
decreased by decorating it with small F clusters.
On the other hand, there is a large probability that
this happens because Y,=1 and X;> 1, so that there
is a very large number of these small F clusters.
The over-all effect of this interaction between
clusters is that of decreasing Ty(H), and it seems
likely that this renormalization of Ty(H) is such
that T*=T,. Next we study the T* =T, case and
we do not consider the other possibility, namely,
T*< T, One mightalso wonder if, in the case
T*>T,, the interaction between clusters should
not cause T*=T,. This does not seem to be the
case because decoration of a large F cluster with
small AF clusters does not change the surface en-
ergy, at least for the models considered in Sec. III.

As we said before, for H #0, the surface T
=To(H, H,) represents a surface of coexisting
phases which terminates at 7=T* on a line of crit-
ical points. Therefore, if T*=T,, the point (T},
H,) is a tricritical point because it lies at the inter-
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section of three lines of critical points. This is not
the case if T* > T, because on the basis of (11) the
first-order phase transition terminates at T, if H,
=0 but it terminates at T* if H,#0. This follows
from the fact that

lim fgl(l) =0 if Hs= 0
1+

and

lim fp()=1 if H,#0 .
1+ o

This discontinuous behavior is not realistic and it
can be traced to a defect of the form (18) for the
population factor. Consider, for example, the ef-
fect of F clusters upon themselves. A cluster of

! spins is excluded by the other clusters of any
size, whereas Eq. (17) for f5(1) depends only on
X3, The reason for this choice is that the popu-
lation factor plays an essential role only when the
clusters are overcritical (X,>1), and in this case
the largest probability is for clusters of size [.

So we have approximated the exclusion effect by
its largest term. A similar situation applies to
f21(1), with respect to the effect of AF clusters on
F clusters, when X;>1and Y;>1. On the con-
trary, if X;>1 and Y;<1, the probability for AF
clusters first increases with /, owing to the X1
factor, but it finally decreases when the Y} factor
takes over. If His very small, the total number
of AF clusters is very large and the exclusion ef-
fect on F clusters is important, whereas the ap-
proximation (18) for f5(I) severely underestimates
this effect, particularly if [ is large. A more
realistic form for f(I) would be a function which
in the - < limit is equal to 1 or to 0, depending
on whether P>gq, or P<gq,. P is the fraction of
available sites for F clusters and ¢, is a constant
expected to be related to the critical percolation
probability for the given lattice.'® We do not dis-
cuss further a more realistic form for f because
we are interested only in the case H =0, the ex-
perimentally accessible plane. We simply assume
that with a more realistic form for fj; the first-
order phase transition terminates on a line on the
surface T=Ty(H, H,) which is continuous, ends at
T, on the H,=0 plane, and approaches T* for large
values of H,. Thus, (T,, H,)is a tricritical point
in this case also.

Summarizing the results of this section, we find
that, for a given field H, the AF phase terminates
with a continuous transition or with a first-order
phase transition, depending on whether first the
AF clusters become critical or first the F clusters
become energetically favorable. For the tricriti-
cal point we find two possibilities. Either the
metamagnetic transition terminates because the F
clusters become critical as well as the AF ones,
or the transition is driven by the fact that the AF
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clusters become critical, whereas the F clusters
remain normal. We expect a rather different crit-
ical behavior in the two cases, and this expectation
is borne out by the calculations of Secs. IV and V.
If one is interested in the free energy of the high-
field paramagnetic phase, in the expression for the
partition function one should order the sum over
spin configurations with respect to the fully ordered
F configuration, the only state which contributes
to F in the limit H—~« and H, finite. The main
contribution to F comes, at least at small tempera-
tures, from AF clusters. These clusters now play
exactly the role the F clusters have with respect
to the antiferromagnetic state. A difference is that
the energy of an AF cluster has an expression sim-
ilar to (10) but with the bulk term changed in sign,
i.e.,

8.()=[3H-H) - E;(H, H,, T)]1+awal% . (23)

These clusters give a contribution F, to the free
energy F, now written with a tilde to distinguish
it from that of the previous case. We have

F(T, H, 0)~ - 3H ~ Uo + F1(T, H, 0) + F4(T, H, 0)
(24)
where U, is the interaction energy in the fully F
ordered state (we consider only the H,=0 case).

Taking into account Eq. (13), F, can be written in
the form

Fy(T, H, 0)= =G KT

X 5 1Y X B full) full), (29)
2= ’

where Y, and X, are given by (16) and the popula-
tion factors are given in (17) and (18). At the pos-
sible phase boundary T=T,(H), an AF cluster is,
on the average, a single domain as long as X;<1,
that is, for T,(H)<T,. However, as we approach
T,, X;~1and an AF cluster has the tendency to
consist of many domains. In (24) we have included
the term 17‘1, which takes into account these fluc-
tuations inside the AF clusters. Since near T, the
total volume occupied by the AF clusters is a finite
and rather large fraction of the total volume, we
approximate 7, by an expression similar to (12):

Fy(T,H,0)= - q, KT 21 LX) fially)s
=

(26)
where 7, is a constant, fy,(1) is given in (17), and
712(2) has the same form as f;, but with different
constants By, and byy: -

Fra(t) = (B X512 00 vh1 4 1) @7

because of the somewhat different role this term
has in this case. On the basis of (24) we conclude
that 7,(H) is the temperature of the metamagnetic
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FIG. 3. Antiferromagnetic
spin configuration with a F and
AF cluster.

transition for T,(H)< T,, which is in agreement
with our previous discussion. The different con-
stants which appear in the expressions for F and
F must be such that the two free energies (11) and
(24) coincide all along T,(H). Moreover, the
entropies and the magnetizations calculated on the
basis of (11) and (24) must coincide along T,,(H) for
H< H, because on this part of the curve there is no
phase transition. This condition corresponds to
the one imposed on (5) that M =0 when H,=0 and
T>Ty.

III. CLUSTERING PROPERTIES

The droplet formula for a metamagnet, given in
Sec. II, is based on the existence of a cluster-
ing tendency for the spins which are overturned
under the influence of the external field H to form
a F cluster. To study this property one must spec-
ify the Hamiltonian of the system. In a family of
compounds, 2 like FeCl,, a sublattice consists of
the spins on alternating planes and the basic part
of the interaction consists of a F coupling —J be-
tween nearest-neighboring (nn) spins on the same
plane and of an antiferromagnetic coupling J’ be-
tween nn spins on nn planes. For simplicity, we
assume that the spins are located at the vertices
of a simple tetragonal lattice. If the F planes are
parallel to the xy plane, the spin distribution on a
xz plane is shown in Fig. 3. Other compounds, like
DAG, have a more complicated magnetic structure’
However, the system can be treated as a simple
AF with two intercompenetrating sublattices if the
magnetic field H is in particular directions. As a
typical structure for this case, we consider a sim-
ple cubic lattice with nn AF coupling J;, and sec-
ond-neighbor ferromagnetic coupling —J,. In Fig.
4 the spin distribution on one of the coordinate
planes is shown.

We begin by considering the case of the layer
structure (Fig. 3). In this figure we have also
shown some examples of clusters. An AF cluster
corresponds to a region of overturned spins equal-
ly distributed, on the average, on the two sublat-
tices. There is clearly a clustering tendency be-
cause thereis a positive surface energy corre-
sponding to the “wrong” couplings of the spins at
the boundary. Part of the boundary affects the J
coupling and the remaining part the J’ coupling. It
is possible to calculate the shape of a cluster which
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has the lowest energy. If a cluster has an extension
of n,, n,, and n, spins in the three coordinate
directions, by minimizing the surface energy with
the constraint that n,n,n,=const, we find

n/ny=1, n/n.=J'/J, wy=6JJ'/(J+2J"),

(28)

where w; is the surface energy per spin. A F
cluster corresponds to a region in which only the
spins of the b sublattice are overturned. Since
there is no direct coupling between spins of the
same sublattice but on different planes, there is no
clustering tendency with respect to the z axis.
However, clustering is present inside a plane be-
cause of the broken J bonds, and we conclude that
F clusters are two dimensional. Simple considera-
tions give the bulk energy E, at zero temperature
and the surface energy w,, respectively, as

E2=4JI N W2=2J . (29)

Moreover, we expect that the exponent o, for the
average surface of a F cluster is close to 3, the
two-dimensional value, whereas o; is expected to
be closer to %, the three-dimensional value. How-
ever, any ferromagnetic interaction between spins
on second-neighboring planes changes this two-
dimensional character into a three-dimensional
character. In case F clusters are truly two dimen-
sional, the factor 3 in front of (H - H,) in (10) must
be deleted.

We consider now the interaction between AF and
F clusters. We are interested in the effect of dec-
orating the surface of a large cluster with small
clusters of the other species. Between a large AF
cluster and a small F cluster there is an attractive
interaction because, if the F cluster is in contact
with the boundary of the AF cluster, a smaller
number of bonds are broken. If there is a finite
probability of finding F clusters on the surface of
an AF cluster, the resulting effect can be described

as a decrease of the surface energy of AF clusters. .

On the contrary, since the F clusters are two
dimensional, so that their boundary reduces to a
line, the probability of contacts along this boundary
with the AF clusters is very much reduced, and it
seems likely that we may neglect the resulting ef-
fect of the interaction on w,. Contacts of other
kinds may renormalize the bulk term E,(H, Hy, T).
For the cubic antiferromagnet too, some ex-
amples of clusters are shown in Fig. 4. The sur-
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face energy of AF clusters has a positive contribu-
tion both from broken J; and J, bonds. The sur-
face energy of F clusters does not depend on J; be-
cause the number of broken J; bonds does not de-
pend on the configuration of the overturned spins

of the b sublattice. On the contrary, the number

of broken J, bonds depends on this configuration and
one easily finds that the surface energy per spin is

wy=8J3 . (30)

We conclude that there is a clustering tendency if

the second-neighbor interaction is ferromagnetic.
Moreover, the geometry of F clusters is the same
as that of AF clusters, so that we may expect not
too dissimilar values for the exponents ¢, and o,
and for 7, and 7,. Should the second-neighbor in-
teraction J, also be antiferromagnetic there would
be an anticlustering tendency and our model would .
not be valid. We speculate that in this case the
AF transition continues to 7=0°K, where the tran-
sition becomes first order.

Also, in the case of the magnetic structure of
Fig. 4 the interaction between F and AF clusters
is asymmetric when one cluster is large and the
other is small. In fact, it makesnodifference fora
small AF cluster to be at the surface of a F cluster
because the number of broken J; and J, bonds is the
same at the interface of these two clusters or at
the interface of the F cluster with the original AF
configuration. On the contrary, thereis a differ-
ence in the case of a small F cluster on the surface
of a large AF cluster. In fact, a F cluster is ob-
tained by overturning some spins on the b sublat-
tice. However, for those spins which are at the
interface with the AF cluster the correct local
order of the spins is restored. We conclude that
it is convenient to decorate the surface of an AF
cluster and this effect can be described again in
terms of a reduction of its surface energy. The
previous argument holds true only if the F clusters
are rather small and there is a very large number
of them. If this is not the case, the loss in the
entropic factor becomes relatively more important
than the energy gain.

IV. METAMAGNET OF FIRST KIND

In this section we study the critical behavior of
a metamagnet of the first kind, i.e., a system for
which T*>T,, where T* and T, are defined by
(21) and (22), respectively. If H<H,, the F, term
of the free energy (11) is a regular function of its
arguments and only the F; term has a “singular”
part at the antiferromagnetic line Ty(H). It is con-
venient to split Eq. (12) for F, in two parts:

Fy(T,H,H)=F(T,H,H,)+G(T,H,H,) , (31)

so that only F;,, given by
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Fy(T,H,H,)= - q KT Zl YR X P f,(1) ,
11 =

(32)

contains the “singular” part of the free energy. In
fact, this term has the same structure as the usual
droplet formula (5), so that some of the derivatives
of this term are divergent at Y;=1(H,=0) and X,
=1[T=Ty(H)]. The remaining term

G(T’ Hi Hs)= - qlKBT

% 21 Gy X8, [ f1a0) - 1]
1= .
(33)

is analytic at Y;=1, X;=1; this is guaranteed by
the (fiz —1) factor. Taking into account Egs. (6),
(15), and (19), we see that (31) can be written as

T

P, B, 1) = gy

F°[T*(T, H), H¥(H,, H)],

(34)
where

T T
*(T. H)=—t H*(H. H)=—2— H_ .
T(T, H) TN(H)T’ s( s’ ) TN(H) $

(35)

Ty is the transition temperature in zero field, Ty
=Ty(H=0), and FO(T*, H*) represents the droplet
formula (5) for an antiferromagnet at temperature
T* and staggered field H* and in zero external
magnetic field. From (34) we deduce that in our
approximation the effect of the magnetic field on
the antiferromagnetic transition is simply described
by a renormalization of the variables T and H,.
This behavior coincides with that assumed by
Fisher in his theory of “renormalization” and, in
particular, is found to hold true for a certain deco-
rated Ising model® in an external field. Because
T* and H¥ are the simple linear functions (35) of
T and H, the critical exponents for the order pa-
rameter M, the staggered susceptibility x,, the
specific heat Cy, and the critical isotherm for
fixed H coincide with the values in zero field, so
that they are, ® respectively,

11— 2 3- Ty

= = ': =
BI“B o1 ’ Y1=71=7 01 ’

(36)

T1—1
—, 5,=0=

4
=al=qa=2— —_
=" oy T1-2"

where the usual notation for the critical exponents’
has been used and the index 1 indicates that the ex-
ponents refer to the antiferromagnetic transition
in a finite field H. The critical behavior at T\ (H)
of the magnetization M and of the susceptibility y
is related to the behavior of the entropy S and of
the specific heat C;. In fact, from (34) and (35)
one finds near Ty(H)

len

M(T, H)~ - Ty (H) S(T, H) ,

X(T, H)~ T 3(H) [ Ty (H)F Cu(T, H) - TY(H) S(T, H) ,
(87)
where T4 and T, denote the first and the second
field derivatives of Ty(H). Relations (37) refer to

the most singular parts of the different quantities.
From (37) and (34) we deduce, if H#0,

AM =M(T, H) - M (Ty(H), H)~ || -2,

(38)
X(T; H)~ ,61’ - ’

€= (Ty(H) - T)/Ty(H) . (39)

In zero field Ty =0 and T% #0 [see Eq. (19)] so that
the susceptibility remains finite and its exponent

is (1 - @), in agreement with previous results.
We have assumed that the constants appearing in
(32) (for example, go and B,) are temperature in-
dependent. Should these constants have an analytic
temperature dependence, (34) would not apply.
However, (36) and (38) continue to hold true in this
case also, but one finds that the relative amplitudes
are temperature dependent.

If H=H,, so that Ty(H,)=T,=T,(H,) and the
variable Y, defined in (16) approaches the value
unity, the terms F, and G given by (14) and (33) are
also nonanalytic at Ty. This nonanalyticity cor-
responds to the essential singularity that the usual
droplet formula (5) has at Y;=1. However, if X
#1, this singularity is extremely weak because all
the derivatives remain finite but the radius of con-
vergence of the Taylor series is zero.® The same
kind of singularity is found for F,; when Y,=1 and
for G when Y,=1and Y;=1. It is clear, however,
that these weak singularities superimposed to the
stronger singularity of Fy, play no role in the de-
termination of the critical exponents. We conclude
that, if the tricritical point is approached with con-
stant H, the relative critical exponents, denoted
by an index #, are the same as those relative to
the antiferromagnetic transition:

Be=B1, Y1="1, @p=ay, 0;=0;. (40)

These same exponents, but now relative to the ap-
propriate variables, also apply if the tricritical
point is approached in the H =0 plane along any
other line which is not asymptotically parallel to
Ty(H) and T,(H). For example, if the (H,, T,)
point is approached keeping the temperature fixed,
the exponents in (40) are relative to the variable
(H, - H)/H, in place of €,.

In case the tricritical point is approached along
the metamagnetic line T,(H) we have to specify, in
the first place, which kind of contact the two curves
Ty(H) and T,(H) have at the crossing point (H,, T,).
In the mean-field theory® the two curves have a
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common tangent and different second derivatives.
In the present model, the two curves do not have
any particular relation at the tricritical point so
that it seems natural that the two curves should
have a different tangent. However, some form of
interaction, which we have not considered, between
the different clusters might change the situation.
So, to be more general, we assume that

Ty(H) - Tp(H)~ G(H - H,)* (41)

for H>H,, where g is an integer. Measurements

in some metamagnets suggest that the first deriva-

tive of the phase boundary'~® is continuous at

(H,, T,). However, the measurements are not yet

able to determine with great precision the phase

boundary in particular near the tricritical point,

so that a small discontinuity cannot be excluded.
Along the T,(H) curve, the basic variables [(15),

(16)] take the following values near the tricritical

point:

Y1=1 ’

X;=exp (— ay T = TyH) (HI),"} 3) (H)>

~ exp (— a; %(H - H,)’) (42)

G [T,e,\*
IR AC Ut
. ‘

V=1, Xp~X,=exp[-a(T*-T)/T,],
€n= [Tm(H) - Tt]/Tt 5 (43)
a;=q, Gi/KB (i=1,2), (44)

where T!, =[dT,(H)/dH]y , and we have taken into
account (41). The contribution to the magnetization
which comes from (32) is similar to the contribu-
tion relative to the magnetization near Ty(H), with
the only difference being that In X, ~ ¢ in place of
InX;~¢€,. We conclude that M has a singular term
proportional to (~¢€,)f"*"®, where « is the specific-
heat exponent [see (36)]. The contribution to M
from (14) is

2 1:;2 S21(22) f22(15)

(KT ge ;21 L yRxpRt <lz
5

- a—% % (H) Byy (Bgy X 21120 Y f2 4+ 1)

X byy 11 X321 %) Yo fzz(lz)> , (45)

and it is well behaved near (H,, T,) because X,
~X,<1. This expression, in particular the first
term, is similar to the expression for the mag-

netization of a ferromagnet in zero external field
at a temperature below its critical temperature.
However, a profound difference from this case is
due to the presence of the factor fy; in (45). As
was discussed in Sec. II, the first-order phase
transition terminates at (H,, T,) because when X,

- >1, i.e., for T,< T<T*, the fluctuations due to

F clusters are depressed by f3;, and at T*, in
particular, there is no singularity. Adding together
(45), which has a linear behavior in the variable

€,, with the singular term coming from F,, the
magnetization along T,,(H) near (H,, T,) reads

M_[T,(H)]~M,+Le€, -Ple,|***, (46)

where M, is the value of the magnetization at the
tricritical point and L and P are positive constants.
If the T,(H) line is approached from the paramag-
netic phase, the magnetization can be obtained by
using the appropriate expression (24) for the free
energy. A calculation similar to the previous one
gives

M[T(H)]~ M, -Le, -P|e, |4, (47)

where L and P are positive constants and the (M,

T) phase diagram has the shape shown in Fig. 5 in
the case g>1. If g=1, M, approach M, with a ver-
tical tangent corresponding to the |¢,|'"* term in
(46) and (47). This term, however, might be dif-
ficult to observe experimentally because this singu-
lar part is strictly related to the singular part of
the specific heat in zero field and it is well known
that the singularity in the specific heat is extreme-
ly weak when compared to the singularities of other
quantities. We notice that the coefficients L and

L in (46) and (47) become larger the closer T* gets
to T,. For the susceptibility along T, (H) one finds
that F, gives a contribution which is regular where-
as F, gives

X~ (—€)*% . (48)

As in all other cases, a=0 implies a logarithmic
behavior. The same behavior is found for the pa-
ramagnetic phase at the metamagnetic transition

X+~ ( - €m)-ga . (49)

The (M, T) phase diagram we have obtained is
similar to the one obtained on the basis of “clas-
sical” theories.® There are two basic differences.
In the first place, M, need not be the continuation
of the magnetization M[Ty(H)] along the antiferro-
magnetic transition because the free energy is not
analytic at (H,, 7,) and Landau’s argument® does
not apply. In fact, we do not expect this behavior
because the slope of M, depends on how large
(T, -T*)/T, is, whereas the slope of M[T(H)]

: basically depends on the field dependence of the

surface energy of AF clusters. In the second
place, M also has a nonanalytic part and the sus-
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FIG. 5. Schematic M, T
phase diagram for a meta-
magnet of first kind. The
hatched area represents a
region of coexisting phases.

ceptibility is divergent at (H,, T,) along both M,
and M_.. The mean-field theory predicts a finite
susceptibility when (H,, T,) is approached along
M, and a divergent one for M_. Experiments in
liquid He®-He* mixtures show!® that the phase sep-
aration diagram is similar to Fig. 5 if M is in-
terpreted as the He® concentration x. It is found
that x, is not the continuation of x along the X line,
and the quantity corresponding to the susceptibility
is divergent® along x,. As was discussed before,
it is not yet certain if the phase diagram of meta-
magnets has the shape given in Fig. 5 or not. In
any case, experiments in DAG?® clearly show that
if M, linearly approaches M,, then M, is not the
continuation of M[Ty(H)] and ¥, is divergent at the
tricritical point.

The free energy and the equation of state near
the tricritical point does not have the simple homo-
geneous form that has been suggested by Griffiths,
In fact, in the region of the (H, T) plane below the
T,(H) line, i.e., T< T,(H) for given H, the most
singular contribution to the free energy comes
from the Fy, term [Eq. (32)]. Taking into account
(34) and (35) and that” F° (T*, 0)~A(I T* - Ty1/
Ty)?"®, Fy, reads

F(T,+AT, H,+AH, 0)
~ |AT|?% ¢, .(AH/AT) + Fi(T,, Hy, 0), (50)

where ¢;.(x) is a suitable function. The contribu-
tions (33) and (13) to F can be represented by the
first few terms of their expansions in power of AT
and AH [these are asymptotic expansions due to the
essential singularity that (33) and (13) have at the
tricritical point]. We conclude that the deviation
of the magnetization from its value at (H,, 7,) can
be written in the form

AT 1oa AH

+AT zpz_(%%> , (51)

AM=M —M,~

where ;_(x) and 3,_(x) are two suitable functions
which can be explicitly obtained from (12) and (13).
We notice that ,_(x) has a zero of order (1 -a) at

lon

x=x,, where x,=[8Ty(H)/o H];‘t so that, taking
into account (41), Eq. (46) results when the tri-
critical point is approached along T, (H).

For the region of the (H, T) plane above the
T,(H) line, i.e., T>T,(H), by using (24)-(26) for
the free energy, an expression similar to (51) is
obtained with two functions iy,(x) and ¥,,(x). The
choice of the constants appearing in F and 17‘, as
discussed at the end of Sec. II, gives a constraint
on ¢y, and ¢,,, so that M is continuous across
T,(H) for H<H,. Moreover, (46) and (47) guarantee
that 9,.(x,) > 0 and ¢,,(x,) <0, in agreement with
Fig. 5.

A straightforward calculation gives the staggered
magnetization M, and susceptibility x, and the
specific heat at constant fields # and H,. The only
singular contributions arise from those terms
relative to the field or temperature derivatives of
Y; and X, because the derivatives of Y, and X, bring
a factor X322’ which gives convergence. This is
why the singular parts for these quantities have
the same form as in zero field and we find

Ms~(_€m)ﬂg, Xs~|€m'-”1 (52)

C~l el e, (53)

where 8, 7, and a are the zero-field exponents

(36). The exponents (52) differ from (36) for the
factor g. This is due to the form (42) for X,, which
takes into account the fact that, if g>1, the AF
singularity is approached along a curve asymptoti-
cally tangent to Ty(H).

Up to this point it has been assumed that 7' (H)
and T,(H) are analytic functions of H also at
H,, so that (41) implies an AF phase boundary
with a continuous first derivative at (H,, T,)
if g> 1. However, (41) for H > H, represents
an effective temperature distance for AF clusters
from their seeming critical point and we cannot
exclude that this effective distance is not related
to the shape of the phase boundary because g>1
implies some form of interaction between clusters.
If this is true, then Ty(H) might be nonanalytic at
H,; for instance, Ty(H) could have a discontinuity
at H, in its first derivative. This has no direct
observable consequences because Ty(H) for H>H,
does not represent a phase boundary but it serves
only to give a measure of the surface energy of
AF clusters along T,(H). In this case, g [in (41)]
must be interpreted as a new exponent, unrelated
to the shape of the antiferromagnetic phase bound-
ary. Precise measurements of the phase bounda-
ry and of M, along T, (H) and for H= H, should be
very valuable in clarifying this point.

V. METAMAGNET OF SECOND KIND

In this section we consider the case in which both
AF and F clusters become critical at the tricritical
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point, i.e., T*=T,. It is obvious that the critical
behavior along the antiferromagnetic line Ty(H) for
H<H, is exactly the same as in the case T*>T,
considered in Sec. IV. In fact, (36) and (38) still
apply because the F, term of the free energy [Eq.
(12)] is regular on this line as in the previous case
and the only singular contribution comes from the
Fy, term [Eq. (32)] which depends only on the vari-
ables relating to the AF clusters.

In studying the behavior near the tricritical point,
approached from the antiferromagnetic phase, it
is useful to split the free energy as in Sec. IV as
follows:

F(T,H,0)=~ U0+F15(T, H,0)
+G(T,H,0)+Fy(T,H,0), (54)

where these three parts are given by (32), (33),
and (13), respectively. We begin by studying the
critical behavior along the T, (H) line. The three
basic variables Y,, X,;, and Y, take the values
given in (42), whereas X, is

Xa = exP(azim) ’ (55)

where a; is given in (44) and ¢, is the reduced tem-
perature difference [(43)]. Since F,, depends only
on Y, and X;, the singular part of this term is the
same as we have calculated in Sec. IV. In par-
ticular, it gives a term proportional to |¢,|¢ -a)
for the magnetization. In the present case, how-
ever, G and F, also contain a singular part be-
cause now X,=1 at the tricritical point. In the
first place we consider the contribution [(45)] to

M which comes from F,. To obtain the singular
contribution, the sum over [, can be approximated
by an integral® so that the first term of (45) is pro-
portional to

7= f: d lZ lé-ﬂz [eXP(em lgz) - 1]~ l Eml (12-2)/02 ’
(56)
because the factors f,;, and f,; play an inessential

role in this case (€,,<0). The second term of (45)
is proportional to the integral

9= [ dlp187 [exp(e, 182 = | €| 1)~ 1] . (57)

This integral has a different asymptotic behavior
for €,,~ 0 depending on the values of g and of 0,/03.
If g=1and 0,/0,< 1, one obtains

g~ l€m| (15-1)/0y-1 ; (58)
otherwise
g~ lim‘ (rz-l-ol)/vz , (59)

but this term is always negligible with respect to
(56) because 0,< 1. One can easily calculate 8G/
9H from (33) to obtain the relative contribution to
the magnetization. A first term comes from the

field derivative of X;, and the singular part is
proportional to

g’ = f:‘dh 191771 [exp( — lgm'!lgl) 1]~ ‘emlg(l-a) ,
(60)
where « is given in (36). A second term comes

from the derivative of Y, contained in f;, and the
singular part is proportional to

T'= [Tdl i [exp( - |e,| S 11+ €, 182) —1]
~ IEmI minl(T4-2)/ 03, g(1y-2)/ 091 , (61)

where, in writing the asymptotic behavior, we have
assumed that 0y/0, < 2. Collecting together all the
different terms we obtain finally

M-_Mt~|€mlc’ (62)

b

. [12=2 m-2 71— 2
=min
g [ % o % g

-1~
g(l —a)’ gTa 01:] ’ (63)
01

where the last term of (63) has to be taken into ac-
count only if 05< 0.

If g> 1 the last three terms of (63) are certainly
negligible with respect to the first two, g being an in-
teger. Also, if g=1 it seems very likely that the last
two terms of (63) are negligible because we ex-
pect that o, and 7, are close to ¢, and 7, (0, = £,

7, = 2% for the 3D Ising model) or close to the
2D Ising model values (0=, 7=2%) if the

F clusters are two dimensional in character.
Then the two last terms of (63) are close to unity
and therefore larger than the remaining terms. We
also note that the amplitudes relative to the dif-
ferent terms of M are expected to be rather dif-
ferent in magnitude, the one relative to (56) being
the largest unless the interference effects between
clusters is very large. In fact, this contribution
is due to the direct effect of fluctuations of ferro-
magnetic kind on the magnetization, whereas the
other terms are due to interference effects be-
tween different clusters and thus they can be con-
sideredas a second-order effect. Therefore, even if
the asymptotic behavior is given by (63) we may
expect that, in any case, the dominant behavior in
the experimentally accessible region of ¢, is char-
acterized by the exponent ¢ = (1, —2)/05.

With a very similar analysis it is possible to
calculate the asymptotic behavior of the different
contributions to the susceptibility ¥ and to the spe-
cific heat C4 in constant magnetic field. I we de-
fine two new exponents 6 and a, for x and Cy by

X~ €], Cu~leq|™2, (64)

we find
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=T . (3-7 3-7
Gzz’mm( Uzl’g 011):]’
(65)
where we have neglected terms of order a on the
ground of the discussion following (63). For M, and

Xs along T,.(H) we find

0=aqay= ma.xl:3

o T1=2 T5-2 7,-2 72_2)
BZ =min (g 01 ’ 03 ’ 0z s 8 o1 ’
(66)
3-14 3-7'2>
- =Ty 2=Ts 67
r=max (g 120, 3=72) (®7)

having defined B, and y, by M ~ |€,,|% and X,
~l€,l™2. In this case the amplitudes of the terms
with exponents g (7, — 2)/0; and (7, — 2)/0, in (66),
as well as both terms of (67), are expected to be
of comparable size because both variables Y; and
Y, have a nonzero derivative with respect to H,.
The other terms of (66) are due to interference ef-
fects.

By using (24)-(26), the same exponents (63) and
(65) are also found when the tricritical point is
approached along T,(H) in the paramagnetic phase;
only the relative amplitudes are different. For the
magnetization M, —M,, in particular, the ampli-
tude of the term with exponent (7, - 2)/0, is nega-
tive, whereas the similar amplitude for M_-M, is
positive, thus corresponding to the behavior given
in Fig. 6. This difference in sign is due to the fact
that in (25) the cluster contribution to the free en-
ergy is proportional to Y ;%2 while in (14) it is pro-
portional to Y fe.

One might be interested in the critical behavior
when the tricritical point is approached from the
AF phase along a direction different from the one
of T,(H). For instance, if we keep the magnetic
field fixed (H=H,), then the basic variables [(6),
(15), (16)] become

Y1= 1 N thl"‘ €, lnY2~ €, lan"‘ €,

68
&= (T-T)/T,, (68)
and the calculations proceed in a way similar to
the previous case. The main difference is that the
singular contributions to the different quantities
are proportional to integrals similar to (56) or

FIG. 6. As for Fig. 5
for a metamagnet of second
kind.

5
(57), with an extra factor exp(e,l) wherever the
variable Y, is involved. We find
M =M~ | €| ™ntr-2irg2) (69)
x~Cy~ | €2| -max(3-1q,3-Tp) (70)

These same exponents apply for any other direction
which is not asymptotically parallel to T, (H) or to
Ty(H) at (H,, T,).

We now study whether or not homogeneity in the
(H, T) plane applies in the case of a metamagnet
of the second kind near its tricritical point. In
general, it is not possible to write the free energy
in a homogeneous form because of the different ex-
ponents which enter the different terms of . How-
ever, if the interference effects, i.e., By, and By,
in (18), are small, M, X, and Cj should be domi-
nated by the farromagnetic fluctuations so that the
only important term of F in the H =0 plane is given
by (13), with fo3=1. For T=T,(1+¢;) and H=H,
+ AH, and taking into account (15), (16), and (20)—
(22), this term reads

- g2 KTy 22 1372 exp(—dvly+ap €5 132)
Ig= 1

X [Byexplas by ez 182)+ 11, (71)

where d= - K 3 (8E,/8 )y, r,, apis given in (44),
and
v=(T,AH-T, &)/ T, (72)

is a measure of the distance from the 7,(H) line
and it is non-negative in the AF phase. T, is the
field derivative of T,(H) at (H,, T,). The contribu-
tion to the magnetization which comes from (71) can
be written in the form

MM =022 g (€,/0%) , (73)
g.(2)=R f: dxx 12 {(1+ B,)™ - exp( - x + hz x%2)

X[Byexp(by hz x2) + 1]}, (74)

where R and % are postive constants and we have
again approximated the series (71) by an integral.
If we are interested in A*M near the T,(H) line,
it is more useful to write (73) in the form

A*M = | &,| 2BV 02 p (5/0%) (75)

h_(z)=R’ fo“’ dyy(z-fz-az)/rrz

=1

-1 _ _ _i_ 2 _Z_
x{(1+Bz) exp[ n (lzl) T2 y]

X [Bz exp <ba lz—zl y>+ 1]-1} , (76)
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where R’ and 7’ are two other constants. The con-
dition that M is continuous across T,(H) for T> T,
implies that B, and b, are such that z_(+«)=0. In
this case one finds

nz) = |z|"E . (T7)

F Il

If v<0 the system is in the paramagnetic phase and
(25) must be used. An expression similar to (73)
is obtained:

A*M=—Iv\13'2g+(€z/|v|°2), (78)

where g,(z) has an expression similar to (74) but
with different constants. In (73) and (78) the as-
terisk indicates that, in general, these terms do
not give the asymptotically correct singular part

of the magnetization but they only give the contribu-
tion of the ferromagnetic clusters which should give
the dominant part. In this case the exponents in-
troduced in (62) and (64) have the values

§*=(Tz—2)/02 ’ 9*=C¥:=(3—Tz)/02 s (79)
and in place of (69) and (70) we have
XM~ | €|27F, x*¥~Ch~ €| 0. (80)

The homogeneous forms (73) and (78), but with dif-
ferent functions g,(z) and the exponents (79) and
(80), are exact in the case ¢y=0;, T4=Tz, and g
>1in (41). In this case, taking into account (36),
the following relations exist: '

£=8,

The homogeneous forms (73) and (78) are equiva-
lent to the homogeneous form for an ordinary crit-
ical point, with M playing the role of the order pa-
rameter and v the role of the field coupled to the
order parameter, if one takes into account that o,
and (7, — 2) correspond to (y+ )™ and 57!, respec-
tively, with the usual notation for the critical in-
dices.” The homogeneous form for the free en-
ergy near a tricritical point proposed by Griffiths®
corresponds to a particular case of (73), and (78)
when

9=a2=y-

0p=Tzg—2=1, (81)

where u is the index introduced by Griffiths. In
this case the exponents (80) turn out to be £=1 and
0=pt-1, thus corresponding to a phase diagram
as given in Fig. 5. The present picture of a tri-
critical point is rather different from the one given
by Griffiths. In our case, in fact, we find the
linear behavior for M, in the case T*>T,, but then
the divergence of x and C4 are due to the antiferro-
magnetic singularity, which is absent in the Grif-
fiths case, and the free energy cannot be repre-
sented by a homogeneous function. This repre-
sentation is possible in the case T*=T,, but for
the present model the relation ¢,=75 —2, which is

necessary to obtain ¢=1, seems artificial, even

if it cannot be excluded in principle. On the other
hand, even if this relation applies, it is very likely
that the values (79) for the exponents do not give
the true asymptotic behavior. For instance, using
the 3D Ising model values for oy and 7, both

(1, -2)/0, for 0,>% and g (1, ~2)/0y, if g=1 or 2,
turn out to be smaller than unity so that =1 is not
given by (63) and ¢ more likely lies in the range

%+ -%. However, in this case too, the values (79)
might describe the dominant part of the critical
behavior for most of the range of €;, but this im-
plies that the interference effects must be very
small; the larger the difference between =1 and
the value given by (63), the smaller the interfer-
ence effects must be.

VI. RENORMALIZED CRITICAL BEHAVIOR

In Secs. IV and V it has been assumed that the
local magnetic field H is under control. In prac-
tice, the experiments are performed in fixed ex-
ternal field Hy= H+ NM, where N is the demagnetiz-
ing factor of the sample, so that the observed crit-
ical behavior is renormalized.!* In the magnetic
case it is experimentally feasible to express the
different quantities in terms of the local field, so
that the unrenormalized critical behavior can be
obtained. However, it is useful to know the theo-
retical renormalized behavior, both because the
needed experimental data are not always available
and because in the reduction process one may lose
accuracy. At the antiferromagnetic transition
Ty (H) the critical behavior is renormalized accord-
ing to Fisher’s theory.!* In fact, the form of the
singular part (34) of the free energy has exactly the
form considered by Fisher and we conclude that the
exponents (36) become, respectively,

51x=3/(1—a), y1x=y/(1—a),

61X=6/(1—a) ’

In a similar way the renormalized behavior of M
and x can be obtained by the use of (37) and it turns
out to be

ayx=-a/(l-a). (82)

Ay~ |€1’ a/ (l-a) . (83)

The renormalization [Egs. (82) and (83)] also holds
true at T, in the case of a metamagnet of the first
kind. In fact, as has been discussed in Sec. IV, F
clusters introauce a term which has only an es-
sential singularity at T,, with all the derivatives
remaining finite. For our purpose this term can
be assimilated to a regular function and Fisher’s
results still apply. Expressions (46) and (47) for
the magnetization at the metamagnetic transition
are not changed by renormalization because the
phase boundary is uniquely determined, indepen-
dently of the constraint one imposes.

AM~ |€1‘ .(l-a)'l ,
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To obtain the renormalized critical behavior of
a metamagnet of the second kind it is necessary to .
take into account also the ferromagnetic singular-
ity, and we cannot make use of Fisher’s results.
In the first place, for the specific heat we have to
take into account the relation'®

sM\é [1 [am)
Cﬂfcﬂ“(ﬁ)” [F(‘aﬁ)r] (84)

between the specific heat in constant external field
Cy, and the specific heat in constant local field Cy.
The second term on the right-hand side of (84)
cancels the strong divergence of C, as given by
(65) or (70), depending on the direction of approach
to (H,, T,), and leaves a much weaker divergence.
We find

Cuy~ AT}y = T €2] 1%+ Ag| &5 -, (85) ,

where A, and A, are constants, T}, and T, in-
dicate the field derivatives of Ty(H) and T,(H) at
(H,, T,), and « is given in (36). If (H,, T,) is ap-
proached along T, (H), then c¢; and @ read

Cc1=8 »
—_ : -1 . 1~ O
a=max| o3 [1+20, — min(ry, 75)] , g - )’
(86)
otherwise, c; and a read
C1=1, a=1+20'g"mi.n(T1,Tz). (87)

Since @ is of the order of o, we conclude that the
specific heat in constant external field at (H,, T
has a divergence with an exponent similar to the one
of the specific heat for H=0. The calculation of
(85) is straightforward but rather lengthy. We
proceed in the following way. The free energy is
considered as a function of the variables X;, X,,
Y, which were defined in (15) and (16) (H,=0 so
Yy=1): F(T, H, 0)=F(X;, X,, Y;). Taking into
account (19), (22), and (44), at the tricritical point
the field and temperature derivatives of these
variables are

(?_2&) Lo () _Tha
oT J, T,’ \e8H/, T, ’
DANA (®8
9T J, T,
aY,\ _d (3Y,\ _ Tpd
<8T>t_Tt ’ (aH)t_ T, ’ (89)
where d is defined following Eq. (71). Then we ob-

tain
82F>
Cﬂ-'T-(m

- 2 2
= - T (df Fxx,+d" Fy,r,+az Fx,x,

"9H3T, and we do not write them explicitly.

len

+2ayd EFX1Y2+2a1 a Fx x,

+2a,d Fxpry+eee), (90)

where Fxy indicates the second derivative of F with
respect to the displayed arguments, and the dots

in (90) indicate terms containing the second deriva-
tives of the variables X,;, X,, Y, and terms rela-
tive to the deviation of the first derivatives from
their values [Eqgs. (88) and (89)] at the tricritical
point. It is possible to show that those terms that
are not explicitly written in (90) give.a negligible
contribution. Expressions similar to (90) can be
obtained for aM/eH= - 8°F/oH? and 8M/8T = - 8°F/
Use of
these expressions and of (90) in (84) gives (85) if
we take into account the following asymptotic be-
havior of the second derivatives of ¥, which can

be obtained by proceeding as in Sec. V:

E}.erzN |€2' cglra-3) ‘Ez‘ca(fl-a) ; (91)

Fxyz,” [€2] %1% 1) 4 | | 520

(92)
EFYZXZN l€2| cg(1y-2-05) | ‘52' Gy (15=2=0y) ;
gxlx1~ 'ézlc3(12-201-1)+ |€21c1(71-2u1-1)/ql ,
Fxpx,~ | €5] %8120 4 | gy | 2 (a0 l) |

(93)

SXIXZN ‘62‘03(71-1-01-02) + ‘ Ea’c:;(‘rz-i'ﬂl'ag) .

Here the constants ¢, take the values c;=g, c;= o3,
c;=min(o3!, goil), if (H,, T,) is approached along
T,.(H), otherwise they take the value unity. In
(91) and (93) we have not written, for simplicity,
the coefficients in front of each temperature-de-
pendent term.

Having obtained the singular part (85) for Cy,
we are now in a position to study the renormalized
behavior of Cy,, M, and x when the tricritical
point is approached, keeping the external field Hj
fixed to the critical value Hy;=H,+ NM,. For
simplicity, we consider only the case o,=0; and

~Ty=T, or the case in which the ferromagnetic clus-

ters dominate the fluctuations near the tricritical
point so that we need to consider only the term
(13) with f,;=1. In this case we can use (73) for
M and the constraint equation Hy,=H+ NM takes
the form

AH=NyT22/%g (¢,/v%) , - (94)

where v is given in (72). I T<T,, (94) does not
have any solution because g.(z) is finite and dit-
ferent from zero for 0< —z <9, This implies that
the tricritical point is approached from the two-
phase region in Fig. 6. If T>T,, it is more con-
venient to use the representation (75) for M. Tak-
ing into account (77) it is found that AH=H - H, is
given by
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AH~?T—,‘: € (1+L'|e| B2 02), (95)
A ‘

where L’ is a postive constant. This shows that
the tricritical point is approached along a direction
asymptotically parallel to the T,(H) line. The
rate of approach to this direction is | €yl @-2/ %,
and this is fast enough so that one obtains the same
results as if the tricritical point were approached
along the 7, (H) line. In fact, the singular contri-
butions to the different physical quantities are
proportional to integrals of the form

Jy dly18 exp(~ | €518 — | €| @2/ %2 1)
~ || -f1+s)min[o;1,1+ @) o) | | W)/ o2 | (96)

where use has been made of the condition (7, - 2)/
0p< 1. We conclude that the renormalized expo-
nents for M, yx, and C,,,0 coincide with those given
in (79) and (86) which in this case read

tx=(12~2)/03, 0x=(3~75)/02,

ax=(1+20; - 1,)/02, (97)
respectively. If o, and 7, take values which are
typical for ¢ and 7, @y is positive and of the order
of @, and this contrasts with the finite cusp at T, (H)
as given by (82). In case o; and T, satisfy relation
(81), the renormalized specific heat Cy, has an
exponent ay=1— u! which is negative. Then the
renormalized C,,,0 remains finite at the tricritical
point, but it has anomalies in its first- or higher-
order derivatives depending on the value of pu.

This corresponds to the behavior discussed by
Griffiths® of the specific heat C,, of a He®-He* mix-
ture at constant pressure and composition near the
tricritical point.

VII. SUMMARY AND CONCLUSIONS

We have shown that the ferromagnetic fluctuations
induced in an antiferromagnet by an external mag-
netic field have a tendency at low temperatures to
consist of compact ferromagnetic clusters if there
is a ferromagnetic coupling between the spins of
different sublattices. This is similar to what hap-
pens to the fluctuations of an antiferromagnet in
zero external field, the only difference being that
in this case the clusters are antiferromagnetic.

In this situation the formula we propose with the
inclusion both of F and AF clusters seems very
sound, like the original droplet formula, ® at low
temperatures. This includes the low-tempera-
ture part of the metamagnetic transition which,
therefore, can be identified with the locus of sta-
bility of ferromagnetic clusters. On the other
hand, we are not so much interested in this region
as in the high-temperature region around the tri-
critical point. The extrapolation of our droplet
model to high temperatures is questionable, ex-
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actly as in the original model. The fact that the
droplet model is satisfactory” in the case of ordi-
nary critical points (in the sense that it gives a
picture consistent with scaling) gives some confi-
dence that the extrapolation has some validity in
the present case also. The only reason why the
extrapolation of the model at high temperatures
should work less well when an external field is
present might be the presence of an extremely
strong interaction between the clusters of the two
different kinds near the tricritical point. We have
also found it necessary to take explicitly into ac-
count the effects of the interaction between clusters
through population factors. Again this problem is
strictly connected with the problem of a similar
factor being present in the droplet formula for
ordinary critical points.!! In that case we have not
been able to give a microscopic justification for
this factor, but the effect which this factor tries to
take into account is certainly present and the modi-
fied droplet formula gives a much better descrip-
tion of the fluctuations above T, than the original
model. Moreover, it is found™ that the modified
droplet formula is also rather satisfactory for both
the amplitudes of the different singular quantities
and the complete singular part of the equation of
state in the neighborhood of the critical point for
the Ising model in two and three dimensions. All
this gives confidence in our droplet model even in
the present case. Besides, we notice that our re-
sults do not depend on the particular form [Egs.
(17) and (18)] of the population factors as long as
these factors depend on the same basic variables
and have the property of becoming unity or zero,
when [~ », as for expressions (17) and (18). Our
discussion has concerned the spin-3 Ising model,
but it holds for strongly anisotropic Heisenberg
models too. We expect, indeed, that our model
describes, at least qualitatively, the tricritical
point of other systems whenever the order is de-
stroyed by fluctuations of two different kinds which
consist of clusters of compact shape. In particu-
lar, this is the case for the spin-1 Ising model re-
cently considered by Blume et al.'® as a model for
He®-He* mixtures.

One of the main results of our model is that it
predicts the existence of two different kinds of tri-
critical points with rather different critical be-
havior. In the first case the first-order metamag-
netic transition ends at a tricritical point because
of the effect of the antiferromagnetic clusters which
become critical. The second possibility is that at
the tricritical point both kinds of clusters become
critical. The fluctuations for the former kind of
tricritical point are much less pronounced than for
the second kind, as shown by the stronger diver-
gence of the susceptibility and of the specific heat
in the last case. Another remarkable difference
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is present for the difference (M, —M_) of the mag-
netizations of the two coexisting phases along the
metamagnetic transition. In the first case this dif-
ference has essentially a linear behavior near the
tricritical point, whereas in the second case it goes
to zero with a power behavior like the order pa-
rameter at an ordinary critical point. From the
experimental point of view this is probably the
most easily observable characterization of the two
kinds of tricritical points. The critical behavior

is completely determined by the two exponents oy
and 7, characteristic of the system in zero field,
by two exponents ¢, and T, relating to the ferromag-
netic clusters, and by the exponent g which deter-
mines the variation of the microscopic surface free
energy of antiferromagnetic clusters along T,(H).
As a summary of our results, the critical behavior
is given by (36) and (38) at T, (H) for both kinds of
metamagnetic substances. For a tricritical point
of first kind the critical behavior is given by (38)
and (40) if H is kept constant and by (46)-(52) if
(Hy, T,)is approached along T, (H). For a tri-
critical point of second kind the critical behavior

is given by (69) and (70) if H=H, and by (62)—-(67)
along 7T,(H). In this last case, if the interference
effects between F and AF clusters are small, (79)
and (80) apply and relations between the critical
indices similar to the scaling laws’ can be deduced.
In the general case such relations do not exist. The
renormalized critical behavior is given by (82),
(83), and (97).

In comparison with the results of “classical”
theories, the present theory is in disagreement on
different counts, apart from predicting “nonclas-
sical” exponents at the AF transition. In the first
place, the Landau theory predicts only one kind of
tricritical point, similar to the one we call the
first kind, and does not predict a tricritical point
of the second kind. In the case of a tricritical
point of the first kind the main differences are the
two following. The antiferromagnetic line in Fig.

5 need not, as in the Landau theory, be the contin-
uation at the tricritical point of the paramagnetic
line M,. Moreover, the susceptibility is divergent
upon approaching the tricritical point along M, ,
whereas the Landau theory predicts no anomaly.

In both cases our results are in better agreement
with experiments and agree with the results im-
plied by Griffiths’s homogeneous form for the free
energy.® However, the present picture of the tri-
critical point is rather different from that of Grif-
fiths. In fact, for our model the free energy near
the tricritical point of the first kind does not have
a homogeneous form and the linear behavior of M,
and the anomaly in x come from different terms

of the free energy. Griffiths’s form for F is ob-
tained in our model for a tricritical point of the
second kind for a particular choice of the basic ex-

ponents 7, and o, of the droplet formula if the effect
of interference between F and AF clusters can be
neglected. In fact, if o5=75—2 then M, and M_
have a linear behavior as in Fig. 5. However, this
relation among o, and 7, seems rather unlikely to
be present, in view of our physical picture of the
system, even if it cannot be excluded in principle.
The two possibilities we find for obtaining a linear
behavior for M, can be distinguished on the basis
of a behavior of x and Cy. In fact, if the tricriti-
cal point is of the first kind the critical indices

for x and C, must be the same as at the antiferro-
magnetic transition in finite magnetic fields, and
only the relative amplitudes may be different. In
the other case, the critical indices for x and Cy
are different.

We now compare the results of our model with
the available experimental data. As already men-
tioned in the Introduction, the tricritical point in
some magnetic systems, in particular in DAG, ®
seems to have a rather different character from
that at the two-fluid critical mixing point of He®-
He*, in spite of the fact that the two systems are
thermodynamically analogous. (M, -M_) in DAG
seems more likely to have a power behavior near
T, as in Fig. 6, whereas the analogous difference
in composition (v, —x.) in He®-He* has a linear be-
havior.!® The specific heat Cy, in constant ex-
ternal field of DAG has an anomaly at (H,, T,),
whereas experiments®® show no anomaly in C,, at
the critical mixing point of He3-He* mixtures.

This suggests that the tricritical point in He3-He*
mixtures is of the first kind (or of the second kind
with the atypical value 0,=7,—2). More precise
measurements of M in DAG, as well as in other
metamagnets, are needed to confirm this differ-
ence. Also, precise measurements of the phase
boundary near (H,, 7,) and of the sublattice mag-
netization along 7,(H) should be very useful.

The absence of data close enough to the tricritical
point of magnetic systems does no allow, unfor-
tunately, a detailed comparison with the theory.

The most extensive data are those for DAG, % and
they seem generically in agreement with our
picture of a tricritical point of the second kind.
As we said above, M, seems to have a power be-
havior as in Fig. 6 and, in any case, M, is not the
continuation at (H,, T,) of the magnetization along
Ty(H). The specific heat Cpy, and the susceptibility
has an anomaly at (H,, T,), and both the specific
heat at constant internal field C4 and x seem to have
a stronger anomaly upon approaching the tricritical
point than along Ty(H). All these features are in
qualitative agreement with our model. Keen et al.?
interpret their data as showing evidence that the
AF transition for H#0 is of “higher-order” type
because Cy and x have finite peaks at Ty(H). This
is in disagreement with present theoretical views®
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and, in particular, with the predictions of our
model. However, in disagreement with that inter-
pretation, the data in DAG seem consistent with
our model. It is true that our model predicts a
divergence for x at Ty(H), but this divergence is
proportional to the specific heat. It is well known
that for any X point the anomaly of the specific heat
is very mild so that the same should be expected
for x. The experimental data seem to be in agree-
ment with our formula (34), at least semiquantita-
tively. As an example, from the experimental
phase boundary® of DAG, we roughly estimate

8Ty (H)/8H ~ - 10"*°K/Oe at H=0. 75 kOe and
3Ty(H)/8H ~-2.5x10™*°K/Oe at H=2.0 kOe. In
zero external field the maximum value of Cy which
has been observed® is ~5 R, so that from (34) we
estimate that the maximum value we may expect
for the singular part of X iS Xg5e~1. 5% 107 emu
cm™ at H=0.175 kOe and X4y, ~8x 102 emucm™ at
H=2,0kOe. These values compare rather well
with the experimental data® from which we estimate
Xsing=0.03 and 0. 11 emucm™, respectively. The
shape of the anomaly of the specific heat C, of
DAG in finite fields has not yet been analyzed, but
the data already show a field dependence of the
amplitude of the anomaly along Ty(H). This be-
havior can be interpreted on the basis of our model

by a smooth temperature dependence of some of
the constants appearing in the cluster formula, like
B, in the population factor (17). In this case we
should expect slight deviations from (37).

The tricritical point in He®-He* mixtures can be
interpreted as an example either of a tricritical
point of the first kind or of the second kind but with
the particular value o0p=T, — 2 and with small in-
terference effects between clusters. The measure-
ment of C,, is not able to distinguish between these
two possibilities. In the first case C,, is expected
to have a cusp (C,, is a “renormalized” quantity)
and the disappearance®® of the anomaly of C,, atthe
critical mixing point implies that the amplitude
of the cusp vanishes at the tricritical point. In the
second case the “renormalized” exponent is
(1-up™), 0<u<1, so that C,, might have, depend-
ing on the value of u, a continuous first deriva-
tive. This corresponds, in general, to a flat
maximum for C,,, and the experimental data re-
quire that the relative amplitude vanishes at the
tricritical point. In both cases the vanishing of
these amplitudes is not understood. Detailed mea-
surements of the quantity corresponding to x in the
magnetic case, i.e., 3x/8(y; — i,), where u; and
L4 are the chemical potentials of He® and He®, might
help in distinguishing between the two possibilities.

*Work supported in part by the CNR.
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