
DENSITY-OF-STATES SPECTRA FOB THE fcc LATTICE. . .

the sc and bcc spectra could be followed as they
respectively change to those of the fcc and sc under
the application of second-neighbor interactions.
Anisotropic effects would produce more singulari-
ties, e. g. , by considering a dispersion relation of
the form a(l —cosx)+P(1 —cosy)+y(l —cosa) on a
sc la,ttice.

While other methods might be used to obtain more
precise spectra, the method used is very simple
and quite sufficient for the investigations under-
taken and has resulted in several new results.
Computational facilities suitable for performing
these calculations are readily available.

The understanding now reached for a single band
can be of considerable help in appreciating compli-
cated density-of-states spectra where branches may
cross and bands overlap. Uses of the density-of-
states spectra are so diverse that it would be diffi-
cult to survey the applications that might be made

of our results.
A case that immediately comes to mind is that

of spin w'aves in' EuS which has spins of magnitude
+~on an fcc magnetic lattice, nn ferromagnetic ex-
change and suggested antiferromagnetic-second-
neighbor exchange of strength to give q- ——,'. Some-
what differently, a forthcoming paper by Thorpe
on two-magnon bound states in EuO gives another
possible application. That work suggests an ex-
perimental observation on the basis of the logarith-
mic singularity of the nn case, Fig. 2(b) part (v).
It is not clear to what extent that behavior is essen-
tial for the prediction but our study of second-neigh-
bor effects has obvious relevance to any real sub-
stance.
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The coupling of photons with long-wavelength magnons in antiferromagnetic MnFs is dis-
cussed, The consequences of this coupling for reflection spectra are pointed out, and num-
erical results for the dispersion curves of the coupled modes are presented. The discussion
is briefly generalized to more complicated situations.

It is now well known both from experiments and
theory tllat pIlonons and pllotons can couple ln lonlc
crystals to form coupled modes, namely, polaritons.
An analogous coupling between magnons and pho-
tons can occur in magnetically ordered crystals,
a,nd while the possibility of such a coupling in

ferromagnets has been discussed by several au-
thors, ~ 8 the more interesting case of antiferro-
magnets seems to have been generally ignored.
In this paper we investigate the latter problem with
specific reference to MnF&. The results obtained
are then briefly generalized.
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The technique we shall be employing is formally
similar to that previously used in connection with
the spin-resonance problem. ' Indeed, as will be
seen later, the results obtained also have much in
common. There is, however, an important con-
ceptual difference between the spin-resonance
problem and the one presently under discussion.
In the former, one studies the spin motions inthe
presence of external static and rf fields. Here,
on the other hand, we shall not be concerned with
externally imposed fields. Rather, we shall ex-
amine the effect on the spin waves of the photon
field associated with the spin fluctuations them-
selves. This interaction is usually ignored in the
study of spin waves, and this is justified except
when the magnon wave vector becomes very small.
In that long-wavelength situation this interaction
plays a significant role, and may be viewed as a
magnon-photon coupling analogous to the phonon-
photon coupling that one considers in ionic crystals
to allow for the effects of retardation on the phonon
spectrum. Our aim in this paper is to study this
magnon-photon interaction in MnFz and to point
out some of its consequences.

MnF2 has the rutile structure and becomes anti-
ferromagnetically ordered below 67'K, with the
spins of the Mn" ions oriented parallel to the c
axis. The spin-wave spectrum has been thoroughly
investigated, the long-wavelength modes by optical
and microwave techniques, ' '" and the short-wave-
length modes by slow-neutron scattering. ' For
purposes of discussing the magnon-photon coupling
we need consider only the long-wavelength part of
the magnon spectrum. Let us first deduce the
relevant equations from the conventional spin-wave
equations, which do not allow for the effec t dis-
cussed above. This deficiency will subsequently
be corrected. The starting point for deriving the
spin-wave equations is the Hamiltonian'

S = S(x(JZ S)+gus Hg) (2)

the summation over j being restricted as usual to
the first neighbors of S,. Upon multiplying (2) by
gp,, we get

where II= V/N, with V being the volume of the crys-
tal and N the number of magnetic ions in it. It is
clear that M~, defined above, denotes the magnetiza-
tion associated with the first sublattice. In par-
ticular, M„denotes the saturation magnetization,
while M&„and M» represent the fluctuations about
the equilibrium value. Using (5) and (4) in (3) we
obtain

M, = M, X(ZQ (Sq) +gy, a H„)

which is the equation of motion for the magnetic
moment p. ; at the site i in the first sublattice. At
this point we remind ourselves that the spin fluc-
tuations associated with spin waves are of small
amplitude, and are essentially confined to the x
and y components, the z component remaining fixed.
This amounts to setting

S;,=0, p. ;,= 0, (4)

and is in the spirit of a classical treatment of the
spin-wave problem. We now make the further
assumption that the spins in each sublattice are
precessing around the z axis with very nearly the
same phase. This allows us to replace each S;
and S; by their local spatial averages (S;) and

(S&), which vary only slowly in space. In effect
this implies that we are considering a long-wave-
length mode of spin fluctuations.

Now we write

,g P,a(S ) = —,'(P;) —M, Q,

K=-J Z S; S, —P„gga(ZS;, -ZS;,). (I)

Here J is the nearest-neighbor exchange integral, '
p.~ the Bohr magneton, and g the gyromagnetic
ratio. H& denotes the anisotropic field and is di-
rected along the z axis taken parallel to the e di-
rection. The subscripts i and j label, respectively,
the spina on the two subla. ttices. Thus P;S;, in-
dicates a summation of the g component of the spin
operators pertaining to sublattice 1; a similar
meaning applies to g&S&, . Furthermore, in the
first term, (ij) implies that, corresponding to any
given S; on sublattice 1, the summation over j is
restricted to nearest neighbors.

Starting from (I) it is straightforward to obtain
the following equation of motion for the spins on
the first sublattice:

Z&a ='V

ZAn/(gus)'= &

Eq. (6) becomes

Mg =yMg x (A.Ma+Her) ~

Remembering that XM~, =H~ is the exchange field
acting on sublattice 1 due to the magnetization of

(8)

JOn—gp&MI, —

& M2+ HA
(g tja)

where n is the number of nearest neighbors and
Ma is defined similar to Eq. (5). It is to be re-
membered of course that M~, =M2, = 0. Introducing
the notations
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sublattice 2, we may rewrite (8) in component form
as

M~„—y[M— q~(H@+ Hg) —&M~~M~~ ]

M~~ ——y[M(g(- XMs, ) —M~„(Hs+H~)]

(9a)

(9b)

M„= 0.

A similar set of equations may be written for the
second sublattice.

As previously remarked, Eqs. (9) (as also the
corresponding set of equations for the second sub-
lattice) do not give a proper representation of the
spin motions in the long-wavelength limit since
they do not allow for the coupling with the photon
field associated with the spin motions. These
equations are analogous to the long-wavelength
lattice dynamical equations of ionic crystals ob-
tained by ignoring the effects of electric fields
generated by the vibrations themselves. The de-
ficiency noted above concerning the lack of inter-
action with the photon field is, however, readily
corrected by slightly modifying Eqs. (9) to ac-
commodate the effects of the fluctuating field H

associated with the spin motions, and by further
requiring H to obey Maxwell's equations. For-
mally, the interaction between the spin motions
and the photons could be described by adding a
term —peg(5';S&+5'zS&) ~ H to the Hamiltonian. Thus,
for a proper discussion of the long-wavelength
motions, we must really consider the equations

M, „(k,~)

Mo e,(k, ro)

M, ~(k, ~)

Ho „(k, (u)

Ho, (k, (u)

&&(k ~ r-~t)

(12)
Using these in (10) and (11) it is easy to show that

Mo„(k, &u) =MD ~„(k, &u)+MD 2„(k, &u)

~M H
QP g

—CO

Mo (k &) =Mo, s (k &u)+Mo, a (k

(13a)

where

22'Y MsH& H (k )
CO g

—CO

(13b)

denotes the saturation magnetization and

conjunc tion with Maxwell's equations. Formally,
this is similar to the approach of Pincus and of
Kittel, ' who had earlier solved the spin-resonance
equations for ferromagnets in conjunction with

Maxwell's equations in order to delineate certain
aspects of the resonance problem. Let us consider
as solutions, plane waves of the form

Mo q (k (u)

M~„——y[M( (Hs+Hg) -M~, (H +AM@,)]

M =y[M, (H„-AM2„) —Mi„(H +H~)]

M)g
——0,

(10a)

(10b)

(10c)

(o~ ——y[H~(H„+ 2H~)]~~2 (14)

is the AFMR frequency. Note that if H were an
applied oscillatory field, then (13a) and (13b) would
define the transverse susceptibility ~(e), i.e. ,

M „=y[M ( H H„) M,-(H, ——M„)—], (11a)

M, = y[M„(H„M,„) M„( H, -H„)-], -(11b)

M~g
——0, (11c)

supplemented, of course, by Maxwell's equations.
A consistent solution of all these equations will
provide a proper answer to the long-wavelength
magnon problem. In writing these equations we
have taken note of the fact that like the spin
Quctuations, H has only x and y components.

It is pertinent to remark here that Eqs. (10)
and (11) are similar to those usually employed in
the discussion of antiferromagnetic resonance
(AFMR), ~~'6 the difference being that, whereas
in the AFMR problem H is the oscillatory field
applied externally, here H represents the spon-
taneously generated field associated with the spin-
wave motions.

Presently we wish to solve Eqs. (10) and (11) in

( )
2Y MHg

CO g
—

CO

(15a)

Furthermore, since M, = M«+M&, = 0, we have the
longitudinal susceptibility

X,(~)=0 . (15b)

~ ~ ~ 0

2-=
C

H —V H=4ggraddivM —
&

— M .
C

Substitution of the trial solution (12) leads to

(16)

[k(k 9) —(~'/c')NI]
H = —4m —

(k2

Combining (17) with (13), we obtain, using the
notation (15), the equations

(17)

Equations (13a) and (13b) show that the fluctuation
magnetization is related to the flue tuating field by
the transverse susceptibility.

Next we observe that from Maxwell's equations
we may write



1S96 C. MANOHAR AND G. VENKATARAMAN

[4wX, ((g)(c k ~ ) i (c k —v )]MD„+4m)tL((u)c k„k,MO
- 0,

4m&(&u', c k„k,Mo„+ [4m&(&u)(c'k, —~')+ (c k —&u )]MD ——0 .

The requirement of nontrivial solutions for Mo, and M(b, then leads to the equation

(18a)

(18b)

4m)(L(~)(c k„—~ )+ (c k —(g )

4m'((u)c k„k

4m X,((u )c''k„k,

4vg(v)(c k~ —up )+ (c k —(u )

=0 (19)

k c
— = 1+4m)tL((u) =

CO C01 —
CO

(20)

The roots of this determinantal equation yield the
dispersion for the coupled magnon-photon modes
or what may be termed the magniton modes, prop-
agating in the direction k(= kjk).

We shall now discuss the solutions of (19) for k

along various directions. First, choosing k to be
along the z axis, we obtain

The dispersion curves appropriate to these are
sketched in Fig. 2. We observe that, in contrast
to Fig. 1, only one of the two magnon branches is
affected. The remaining photon and magnon modes
are unmixed. However, this unmixed magnon
branch, though dispersionless, appears with an
enhanced frequency ~2 instead of ~1.

The situation corresponding to k lying in the xz
plane and making an arbitrary angle 8 with the z
axis is represented by the equations

where

m2 = V1+ 8' M, II&2= 2 2 (21)

y2C2 ~2 2
M2 —(d

CO CO
—(d1

(24a)

The dispersion curves appropriate to (20) are
sketched in Fig. 1, where clearly each branch is
doubly degenerate. The photonlike and the magnon-
like parts of the dispersion curves are easily iden-
tified. We note that consequent on the magnon-
photon coupling, there is a frequency gap ranging
from v, to v~. Furthermore, from (21) we have

&u22Smy2M+„
(d (d1 1

2= & j 2+k2c2y [( 2+ k202)2

—4k c (u)2sin'8+(u, cos'6)]~i I . (24b)

The dispersion curves for 0 = 45 are sketched in

= 1+4m)(„(0)

= ~,(0), (22)

where p, (0) denotes the static magnetic permeabil-
ity. This result is analogous to the Lyddane-Sachs-
Teller (LST) relation familiar in connection with
long-wavelength vibrations in diatomic cubic crys-
tals. In fact, just as the longitudinal-optic fre-
quency ~~o occurring in the LST relation corresponds
to a mode for which D=O, we have that &2 is the
frequency of a mode for which B=0. It must be
mentioned that the appearance of a gap at k = 0 and
the LST-type relation involving the limiting fre-
quencies have previously been noted by Pincus and
Kittel' in their studies of ferromagnets.

Next let us consider 0 parallel to the x axis. Here
we have several solutions, namely,

~~ AD)2 /

LU I
I

I

(2)
m~

LL

and

co= ck'

1 + 41T )4 (M ) = 0, 1~ e ~, (d = &d g

2C2 2 2
(d 2

—(d

CO CO
—CO1

(23a)

(23 )

(23c)

WAVE VECTOR

FIG. 1. Schematic drawing of the dispersion relations
A

for coupled magnon-photon modes in MnF& for k parallel
to the g axis. The dashed lines indicate the uncoupled
modes, while the numbers in parentheses denote the de-
generacies. ~i is the AF MB frequency.
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FIG. 2. Sketch of the dispersion curves for A parallel
to the x axis. As compared to the previous figure, only
one of the two magnon branches is coupled to the photon.
The remaining magnon and photon branches are uncoupled,
although the frequency of the magnon branch is enhanced.

WAVE VECTOR

FIG. 3. Curves similar to the previous figures but for
k making an angle of 45' with the z axis. One set of
branches exhibits the same behavior as the correspond-
ing set of the first two figures; the other set shows an
intermediate behavior.

TABLE I. Parameters used in calculation of magnon-
photon coupling in MnF2. These are theoretical values
(Hef. 20), and yield a value of 9.10 cm for co&, which is
in good agreement with experiments (Hefs. 10 and 11).

Hg
H~
Ms

5.4~105 Oe
8. 8x 103 Oe

590 G

Fig. 3. Taking all three figures together, we note
that whereas one set of branches remains unchanged
as 8 varies from 0' to 90', the other set goes from
a mixed to an unmixed state. This anisotropy
arises specifically from the graddivM term in Eq.
(16), and was not considered in earlier discussion
of similar problems pertaining to ferromagnets. '

It is also interesting to observe in passing that
there is an almost exact parallelism between the
problem under discussion and the formation of
polaritons from the doubly degenerate infrared-
active vibrational modes in uniaxial crystals of the
ZnO type. '

There is one other feature common to polariton
and magniton spectra which arises from the fre-
quency gap mentioned earlier. Consider the re-
flection of electromagnetic radiation of frequency
~ incident normally on a semi-infinite specimen
having its c axis normal to the face. The reflec-
tivity R(&u) is given by

( )
1-n((u)
1+n((o)

where n(&u) is the refractive index appropriate to
wave propagation along the c axis, and is itself
given by'

n((u) = [&,((u) p, ((o)]' ',

ILI

IL.
LU

I

I

I

I

I

I

G3)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

GD2

FREQUENCY
FIG. 4. Ref lectivity spectrum R(~) for light incident

normally on a thick flat crystal having the c axis perpen-
dicular to its face. The dielectric susceptibility &i(~) is
assumed to have a constant value of, say &. At co = 0, the
value of R is I (&~ —&~2 )/(co&+&~2) t, while at high fre-
quencies it tends to t (1—&)/(1+&) ( .
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FIG. 5. Magniton-dispersion curves for MnF& for k
parallel to the z axis. The parameters employed in the
calculation are listed in Table I. The value of co& is
9. 10 cm, while that of ~2 is 9.2 cm

(2V)

This leads to

(28)

in Table I. Inspection of Fig. 5 shows that the
frequency gap, though present, is disappointingly
small for measurement by ref lectivity experi-
ments. Furthermore, in contrast to polariton
spectra, the dispersion effects are also small, the
transition between the photonlike and magnonlike
regions being abrupt. Even so, it is conceivable
that the sloping part may be accessible to forward-
Raman- scattering experiments. The experimental
problems will, however, be considerable in view
of the small frequency shifts involved in the scat-
tering.

Finally, we would like to observe that even
though the effects of magniton formation in MnF~
are rather small, it is possible they are much
larger in other crystals. This of course can be
confirmed only by detailed calculations. For-
mally, the equation to be solved can be obtained

by combining (17) with

M= y (&u) H

e, (&u) being the transverse dielectric function. The
ref lectivity spectrum to be expected is sketched in
Fig. 4, the characteristic feature of which is a
flat-topped band extending from +~ to its "longitu-
dinal counterpart" 2, exactly analogous to the re-
flectivity bands associated with infrared vibrational
frequencies of crystals. The ref lee tivity spectra
for other directions of incidence may be obtained
in a similar manner.

Turning now to a quantitative estimate of the
dispersion effects in MnF2, we present in Fig. 5

the curves for k parallel to the z axis. The param-
eters employed in this calculation are summarized

the requirement of nontrivial solutions for H then
yields the determinantal equation

(d
g g ((u) —k &, g+ k kq = 0 (29)

which is analogous to the general equation for ex-
cj.tpn-photon and phpnpn-phptpn cpupl jng. ' By
relating p, (&u) to the details of the magnon spectrum,
the effects of retardation may be explicitly calcu-
lated for any given case, as we have done here
for MnF~.

We would like to thank Shri V. C. Sahni for
helpful discussions.
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Recent studies of the instantaneous magnetic correlations in (CD3)4NMnC13 using quasielastic-
neutron-scattering techniques have shown that the MnC13 chains in this compound exhibit purely
one-dimensional paramagnetic behavior down to 1.1'K. The interactions between Mn~' ions
along the chain are such that a molecular field theory would predict an ordering at - 76'K. It
was found that both the spatial and thermal variation of the instantaneous correlations could be
quantitatively accounted for using Fisher's theory for the classical Heisenberg linear chain.
In this paper we report a detailed study of the time-dependent magnetic correlations in (CD3)4
NMnC13 using inelastic-neutron-scattering techniques. It is bound that at low temperatures,
for q»v and cu ~0, the Van Hove scattering function $(Q, ~) may be accurately described by
spin-wave theory with a dispersion relation Sc'= 6.1/sine@~+ meV over the entire one-dimen-
sional Brillouin zone, even though there is no long-range order. As the temperature is in-
creased from l. 9 to 40 K these "spin waves" typically weaken in intensity and broaden asym-
metrically, with the scattering increasing on the low-energy side. In no case were both well-
defined spin waves and a central diffusive component observed simultaneously, although the
latter, if weak, could have been masked by the large incoherent scattering.

I. INTRODUCTION

Recently, there has been considerable effort on
the part of experimentalists and theorists to under-
stand the dynamical behavior of the spins in Heisen-
berg paramagnets both near T, and at higher tem-
peratures. The most complete study to date has
been on the compound RbMnF3, which is an ex-
cellent example of a three-dimensional (3d) Heisen-
berg antiferromagnet. One of the striking fea-
tures of the spin dynamics near T„ in this system
is the persistence of magnonlike modes into the
paramagnetic regime. This effect is more pro-
nounced for systems of lower dimensionality, such
as the 2d antiferromagnet K2NiF4 and the linear-
chain system CsMnC13 2H&O. The possible ex-
istence of paramagnetic spin waves, together with
the fact that a truly 1d system cannot exhibit long-
range order at nonzero temperatures, make a
complete study of the dynamics of an ideal 1d Heis-
enberg paramagnet particularly appealing.

In this paper we report a detailed study of the
spin dynamics in the linear-chain antiferromagnet
(CD,)4N MnC13 (TMMC). ' Both bulk-susceptibility

measurements and measurements of the instan-
taneous correlations ' using quasielastic -neutron-
scattering techniques have shown that the MnC13
chains in this material exhibit remarkably good ld
paramagnetic behavior from high temperatures (the
molecular-field-ordering temperature TMF is -76' K) down to 1. 1'K. Furthermore, the instantane-
ous correlations can be quantitatively accounted for
at all temperatures using Fisher's exact solution
for the classical Heisenberg 1d antiferromagnet
with nearest-neighbor interactions. The dynamic s
of the spins in this system therefore should be par-
ticularly amenable to theory.

Theoretical work on the spin dynamics of the
linear antiferromagnetic chain at other than in-
finite temperatures has until recently been wholly
concerned with the S= —,

' case at O'. Lieb, Schultz,
and Mattis" derived the spectrum of first excited
states for the X'F model, and that for the Heisen-
berg model has been calculated exactly by des
Cloizeaux and Pearson. In both cases these states
have been identified as magnonlike states with a
simple sine dispersion curve, although the coeffi-
cients differ for the two models. des Cloizeaux and


