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Approximate kinetic equations have been derived for the critical dynamical variables of easy-
axis ferro- and antiferromagnets. Particular attention is paid to nonlinear couplings and their
influence on the dynamics of the long-wavelength fluctuations of the order parameter. The non-
linear nature of the problem is reflected in the inverse reduced-susceptibility matrix. When on-
ly the linear susceptibilities are retained the equations reduce to those of Schwabl and Michel.
Including both linear and nonlinear susceptibilities leads to a number of new effects. Among
these are the renormalization of the decay rates, a change below T, in the relative weights of
the two central peaks in the linear dynamical susceptibility of the antiferromagnetic order
parameter, and the introduction of a high-frequency background in the order-parameter power
spectrum. Provided the thermodynamic scaling laws are obeyed, these effects are essentially
independent of temperature. An experimental test of the theory involving measurements of the
width of the imaginary part of the dynamic susceptibility of the ferromagnetic order parameter
at corresponding temperatures above and below T~ is proposed.

I. INTRODUCTION

According to the current interpretation, insofar
as the critical dynamics is concerned, magnetic
systems undergoing second-order phase transitions
fall into two categories. In the first category are
the so-called conventional systems, which are char-
acterized by the property that, as the critical point
is approached from the high-temperature side, the
fluctuations in the order parameter decay at a rate
which, in the first approximation, is inversely pro-
portional to the corresponding susceptibility. The
unconventional or strong-coupled systems are those
where the decay rate has a weaker temperature de-
pendence. Easy-axis ferro- and antiferromagnets
are in the first category, while isotropic and planar
ferro- and antiferromagnets are in the second.
(In applying these criteria it must be kept in mind
that when the anisotropy is weak, e.g. , MnF2, fully
conventional behavior may be realized only at tem-
peratures very close to T„. at higher temperatures
the dynamics may resemble that of isotropic sys-
tems. )

The purpose of this paper is to examine in detail
the critical dynamics of conventional systems, with
particular emphasis on the nonlinear effects. The
approach will be sufficiently general to encompass
both ferro- and antiferromagnets at temperatures
above and below the critical temperature. The

starting point in the analysis is a set of kinetic equa-
tions for the critical dynamical variables which was
obtained recently by Kawasaki. ' As discussed by
him the critical dynamical variables are those
variables whose long-wavelength fluctuations decay
very slowly near the critical point. Included in this
set are the hydrodynamic variables as well as the
order parameter, if the latter is not conserved. In

addition, in a nonlinear theory one must also include
products of these variables. For easy-axis ferro-
magnets the critical variables are combinations of
the energy density and the magnetic-moment density
along the preferred axis. If the Hamiltonian has
the property of being invariant with respect to spin
rotations about the preferred axis, then the order
parameter is also a hydrodynamic variable. In the
case of easy-axis antiferromagnets the critical
dynamical variables are normally the energy den-
sity, the magnetization density (provided the sys-
tem has the rotational symmetry mentioned above),
and the staggered-moment density along the pre-
ferred axis. Since the uniform field susceptibility
of an antiferromagnet remains finite at the critical
point, the fluctuations in the magnetization do not
behave anomalously. Furthermore, in the absence
of an external field, which we will henceforth as-
sume, there is no linear thermodynamic coupling
between the magnetization and either the staggered
magnetization or the energy. Although nonlinear
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couplings are present (i.e. , the magnetization can
couple to a product involving one factor of the mag-
netization and two factors of the order parameter),
we will nevertheless exclude the magnetization,
thus limiting our critical dynamical variables to
combinations of the order parameter and energy
densities. In spite of not being able to give a rig-
orous justification for this step, we feel that it is
a reasonable one. In effect we are assuming that
the critical dynamics of the easy-axis ferro- and

antiferromagnets are essentially the same, apart
from those aspects which reflect the conservation
of the order parameter. Thus, with this choice
of critical dynamical variables, the easy-axis sys-
tems separate into two categories depending on
whether the order-parameter density is also a hy-
drodynamic variable. We will refer to those sys-
tems where the order parameter is conserved as
"ferromagnets, " and those systems where it is not
conserved as "antiferromagnets, " although included
among the latter are those ferromagnets not pos-
sessing rotational symmetry about the easy axis.

The easy-axis systems are distinguishable from
the isotropie and planar systems by the fact that
the time derivatives of the critical dynamical
variables, expressed as commutators with the
Hamiltonian, are not themselves critical variables.
As a consequence fluctuations in the rate of change
of the critical dynamical variables decay rapidly
in time. (This property is made obvious by a direct
evaluation of the relevant commutator, all terms of
which involve at least one factor of the transverse-
spin operators, which are not included in the set of
critical variables. ) Because of this property, the
general kinetic equations for the critical dynamical
variables developed in Ref. 3 reduce to a particu-
larly simple form, since the first-moment frequency
matrix defined by Eq. (2. 6) of that paper is zero.
This is a consequence of the fact that this matrix is
in effect the projection of the rates of change of the
critical variables on the space spanned by the vari-
ables themselves. Since the fluctuations in the
rates of change decay quickly, the projection is
taken to be zero.

Bather than write the equation in the form em-
ployed by Kawasaki, it is convenient to label the
variables by a Greek and a Roman index. The
Greek index specifies the particular symmetrized
combination of products of the order parameter
and energy densities, and the Roman index specifies
the set of wave vectors characterizing the fluctua-
tions. Thus n = 1 is a fluctuation in the order-pa-
rameter density, a = 2 a fluctuation in the energy
density, ~ = 3 the product of two fluctuations in the
order-parameter density, o. =4 the (symmetrized)
product of the energy and order-parameter densi-
ties, n = 5 the product of two fluctuations in the en-
ergy density, etc. If fluctuations in the order-pa-

A, =(E--(E-))/[(E-, E-) —Pi (Z-) i']"'
As„= (Ng Ng —(N- N- ))/

(2)

[(N- N;, N; ¹ ) —P~(N; N~ )~ ], etc. , (3)

where we have subtracted the ensemble average
to ensure (A, „)=0. The variables, as defined,
are also normalized in the sense

(A „,A „)=1,
where (X, Y) denotes the inner product

(X, Y)= f dX(e' Xe" Y),
0

in which R is the Hamiltonian and P= I/ET.
With the vanishing of the first-moment matrix

and the change in labeling, the equations equivalent
to Eq. (2. 21) of Ref. 3 take the form

gA
dt g„ , a.&s.

where the matrix I' is expressed as a product

I=TU .
The matrix T is given by

T,„=f (A„(t), A~„)dt, (8)

in which A = (t/g) PC, A]. In writing T in this way
explicit use has been made of the fact that the fluc-
tuation in A. decay in a microscopic time. The ma-
trix U is the (normalized) inverse-susceptibility ma.
trix defined by

The approximations that precede Eq. (6) have
been discussed by Kawasaki. ' In this paper, Eq.
(6) is taken as the starting point and additional ap-
proximations are introduced which lead to further
simplifications. As with many treatments of dy-
namical effects, the approximations are difficult
to control. They are plausible, but precise esti-
mates of the attendant errors are hard to obtain.
This difficulty is partially offset by the fact that the
theory, in its final form, makes a number of pre-
dictions which in principle can be tested by experi-
ment. The extent to which these predictions are
verified can perhaps be taken as evidence supporting
the over-all success of the approach.

II. FORMALISM

The focus of attention in this section is on the

rameter density having wave vector q are designated
by N», and fluctuations in the energy density by E;,
then the critical dynamical variables have the form

A, „=(N; —(N;))/[(N;, N;) —
P~ (N;)( ]"', (1)
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kinetic equations for the linear fluctuations N; and

E; (n = 1, 2) for q «k„where k, is the inverse cor-
relation length associated with the order-parameter
susceptibility (N;, N;). If the nonlinear terms cor-
responding to n & 2 are omitted from T and U ' the

equations take the simple form

dA1n R R
~in, in A1n ~in, 2nA2n & (10)

dA2.
~2n, 1nA1n I 2n, 2nA 2n

(v-')„. ,„-(v ')., „,
where

(U ')„, pp= lim (A, , Ap„) (ne P)
all q 0

(~= p) .

(12)

(13)

This approximation amounts to treating all the
A of a given n on anequal footing insofar as their
contribution to U is concerned. It is suggested by
the behavior of (N;, N;) which, in general, is rather
insensitive to q when q «k, and can be approximated
by its small-q limit, the isothermal thermodynamic
susceptibility. (Strictly speaking, the limit q «k,
applies only to p= 1, 2. The amplitudes Ai and

A2 will also couple to products of fluctuations with
individual factors having wave vectors = A, . For
these entries the approximation is somewhat more
severe. )

Having made this approximation we can write the

where I' is a 2& 2 matrix obtained by leaving out
all but the first two rows andcolumns of T and
U . In writing these equations it has been recog-
nized that I'"„ =0 for n &m, which is a consequence
of translational invariance. Equations (10) and (11)
are a set of coupled linear equations for the fluctua-
tions in the order-parameter and energy densities.
They resemble, and in fact are equivalent to, the
dynamical equations of Schwabl and Michel. ' '
Equations similar to these have also been used in
the interpretation of recent neutron-scattering data
from MnF2.

In the remainder of this section we will outline
an approximate treatment of the nonlinear terms
in the kinetic equations. The coupling to products
of the fluctuations has two main effects. First, the
decay rates I's„p (n, P=1, 2) are renormalized.
Second, transients are introduced which lead to
high-frequency wings in the absorptive parts of the
dynamic susceptibilities. In dealing with the non-
linear terms it is convenient to consider separately
their effect on the matrices U and T. We begin with
U. The basic approximation in the evaluation of
U is equivalent to replacing all elements of U of
a given n, P by the value obtained in the limit as
all the wave vectors approach zero, i.e. ,

kinetic equations in the form

dA~ ~ 1 - 1
Tem, gn ~r(im) ~gy ~r(lm) Ayp p""y

n, P

(6')

where Nz' ' is the number of modes of type p which
are coupled to Aim~ that is to say, the number of
modes of type P whose wave vectors sum to q, the
wave vector of A 1 . The matrix U is given by the
inverse of the reduced-susceptibility matrix:

(v '). = (v ').. (14)

where (U ) p pp is given by Eq. (13). With respect
to the terms associated with values of P or y & 2,
Eq. (6 ) is in effect an averaged kinetic equation
involving an averaged T matrix

1
~(im) ~ ~mtn

8 n

and an averaged amplitude

1
N(1w& ~+ +vP '

The simplification which results from this approx-
imation occurs because the elements of the matrix
U ' can all be expressed in terms of the second
and higher derivatives of the free energy with re-
spect to temperature and field conjugate to the or-
der parameter, which are evaluated in the limit of
zero conjugate field, i.e. ,

(16)

(II')»= (v') =&. '- (&.&5)"'(x )"'
C

(v ')»=1,
(16)

(1V)

8'(N ) s(N ) "' 8'&N ) "'
(U )» =

s~gp
—

sffg gp ~
etc. i

(18)
where CH~ is the magnetic specific heat at constant
conjugate field H*; p& is the isothermal order-pa-
rameter susceptibility; T, is the critical tempera-
ture. It should be noted that the reduced-suscep-
tibility matrix still has an infinite number of rows
and columns. Presumably the essential features
of the theory are retained if U is approximated
by a finite matrix obtained by omitting elements
associated with high-order thermodynamic deriva-
tives. This matter has not been investigated in
detail, however.

At this point it is convenient to introduce the
thermodynamic scaling hypothesis for the free en-
ergy. ' It is postulated that the singular part of
the free energy has the form'
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f...,(y, n')=() ——') y(
'

)
(T & T,), (19)

where y and ~ have the conventional interpretation
as critical indices. With this form for the free
energy we obtain the important result that the ele-
ments of the matrix U approach a constant value in
the limit T- T, (apart from terms involving
1nl 1 —T, /Tl which would arise from logarithmic
singularities in the various susceptibilities).
This property is a consequence of the fact that the
elements of U are all of the type

pl+m+n+& wJ sina
~l+m e~gn+p

1
xr(im) T1nt, 8n ~8y

It is argued that near the critical point only the term
P=1, n=m makes an important contribution to the
sum when q «k„ that is

1
~(lm) Tlm, BnUBy Tlm, lm Uly ~

8, n

(20)

The justification for this approximation comes
from an examination of the temperature and wave-
vector dependence of the various terms. We have

0
Tim im ~ q

~0( /2+v/2 2
im, 2m q

Tl, -2y' q' (T& T,), etc. ,

where the temperature dependence is assumed to
arise solely from the normalization of the A8n,
since A8n is not a critical dynamical variable. The

g2t +2n ~ ' 1/ 2 82m+2@ g 1/2fs dna J sing
Zl 8~+2n e&2™aH@

iH =0 H =0

where c = l 1 —T, /Tl .
It is beyond the scope of this paper to discuss

whether the scaling laws are exact for any particu-
lar system. The evidence that they are often a
good approximation is strong, and when this is the
case U is at worst a slowly varying function of

10

Provided the free energy has the form displayed
in Eq. (19}, the temperature dependence of the
critical slowing down of the fluctuations in the or-
der parameter is determined by the matrix T. In

discussing this matrix it is necessary to consider
separately the two classes of systems. We begin
with antiferromagnets. Our main interest is the
equation for Ai, for q «k„ the energy fluctuation

A2 has only a secondary role. The right-hand side
of Eq. (6') is seen to involve combinations of terms
of the form

I „(I)=T, (22)

The analysis of the T matrix in the ferromagnetic
problem is complicated slightly by the fact that both
the order parameter and the energy density are hy-
drodynamic variables. As a consequence, the ki-
neticequationsforA1 and A2 remain coupled jn
the small-q limit. Thus it is necessary to separate
out both P= 1 and P= 2 in the ferromagnetic equiva-
lent to Eq. (20):

1 ~n)

(lm) Tlm, Bn UBy = Tlm, lm Uly+ Tlm, 2m UBy, (23)
8, n

1 )n)

(Im) T2m, Bn By 2m, lm ly+ T2m, 2m 2y ' ( )
8,n

The terms which are omitted on the right-hand side
of (23) and (24) are all of order q2 but vanish more
rapidly with temperature in the limit e -Q.

The kinetic equations which follow from these
approximations take the form

dAim ~ ~ ~ 1= —~ (Tl)n, lm U18+ Tl)n, 2n) U28) ~(m) Aa„)
8, n 8

(26}

dA2
(T2m, lm U18+ T2m, 2m U28) +)m) ABn

8, n 8

(ferromagnet) . (26)

Equations (21), (25), and (26) are the principal
results of this section. We postpone discussion of
their significance until Sec. III.

III. DISCUSSION

In this section the kinetic equations obtained in

Sec. II are discussed in detail. We begin with the

dependence on q in Tl 2 (but not in the other terms)
reflects the fact that the energy density is also a
hydrodynamic variable. An examination of the re-
maining terms in the series indicates that they are
all of the form &'q with s &z. Thus, for P&2, the

Ti 8„vanish more rapidly with temperature than

Ti 1, while at a fixed temperature Ti 2 is small
compared with Ti 1 for q «k„even though it is
vanishing less rapidly with temperature. It must
be emphasized that these arguments are strictly
qualitative and do not necessarily hold at fixed wave
vectors for all values of e. A more detailed justi-
fication which goes beyond plausibility can only
come from an examination of specific cases.

Assuming the validity of the approximations re-
flected in Eq. (20) we can write the kinetic equation
for the order parameter in the form

dA1 1
VN(m) 4 U18 ~(lm) ABn

8, n 8

(antifer romagnet), (21)

where
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antiferromagnetic case, Eq. (21). It is convenient
to rewrite this equation in terms of the Laplace
transforms of the A

A, (S)= f"e 'A (t) dt.

The transform of (21) takes the form

s A,.(s) -A,.(0) =- r„(m) U„A,.(s)

(27)

( ), A,.(0)+ (U„/U„)A,.(0)
1m S+ r (I)

(U)p/~»)Af. (0)
( )S+ I'~(m)

in the limit r~(m) «r„(m). In this equation I'„(m)
denotes the renormalized decay rate

r„(m) = U„r„(m) .
By taking the scalar product of (28) with A, „(0)

we obtain the zeroth-order approximation to the
Laplace transform of the relaxation function
(A, (t), A, ). Writing this transform as

R1 (S) = f, e "(A1 (f), A1 ), (31)

we find

1+ (U,p/U„) [(V ') f1/(V ')»]
s+ r„(m)

(U)p/U«) [(V ')m«V ')»1
s+ r, (m)

(32)

having made use of Eqs. (4) and (9).
Equation (32) is a generalization of the ana. logous

expression obtained by solving Eqs. (10) and (11).
It differs in that it involves matrix elements of U
rather than the truncated inverse reduced-suscep-
tibility matrix obtained by leaving out all but the
first two rows and columns of U . The relaxation
function associated with the truncated matrix has
a transform which can be written

rz(m) U)pApm (S)

1—r~(1)1)& U1p ~&1m) Apn(s)

(28)

A nonlinear equation of this type can be solved by
iteration. To obtain insight into the significance
of the various terms we first consider the zeroth-
order solution which is obtained by leaving out all
terms on the right-hand side with P&2. What re-
mains is a set of equations involving N; and E;.
For small q («)'p, ) the fluctuations in the energy
density decay at a. rate determined by the renor-
malized thermal-diffusion constant (apart from spin.
lattice effects"). Writing this rate as r~(m) we
obtain the zeroth-order solution

It,.(s)"= Xs/Xr 1 Xs/Xr
s+ rN(1)1)(xr/xs) s+ rz(111)

and

1 + (U1p/U11) [(V )f1/(U )11]

(Ulp/U11) [(V ')p)/(V ')»1

respectively. It is apparent that the nonlinear
terms, in addition to giving rise to a broad back-
ground in the power spectrum, also renormalize
the decay rates of the order-parameter and energy
fluctuations. Furthermore, they affect the rela-
tive weight of the two peaks which are present be-
low T, . Provided the static scaling laws are
obeyed, these effects are essentially independent
of temperature. Their importance depends on the
relative magnitudes of the elements of U . About
these little can be said without specific expressions
for the free energy, apart from the obvious re-
mark that above T, all entries of U ' involving ex-
pectation values of odd powers ¹ vanish identical-

A

ly. As a consequence, U12, U», U», etc. , are
all equal to zero in the disordered state and the
I'~ peak is absent.

The analysis of the kinetic equations for ferro-
magnets proceeds in a similar fashion. In the first
iteration the zeroth-order solution to (25) and (26)
is used in the evaluation of the nonlinear terms.
In solving the zeroth-order equations an important
simPlification occurs if T,m 1m, T1m 2m, and T2m 2m

are such that

Tlmfim 2mf2m &

!
2

)m, pml ~1m 1m Pm, Pm

(35a)

(35b)

[A calculation of these terms in the random-phase
approximation indicates

(33)
where rz(m), the unrenormalized decay rate, is
equal to T2 2, and X, is the adiabatic order-
parameter susceptibility, which is related to X~
by

2
Xr Xs (V 1) (V 1) T (+p)

X
HXr

(34)
To obtain the first-order expression for the A&

the nonlinear terms in Eq. (28) are evaluated using
A1 and A2 . The relaxation function which results
from continuing the iteration gives rise to a linear
dynamic order-parameter susceptibility X(q, p))
which has the following characteristics. The func-
tion X"(q, p))/p) has a narrow central peak of
width r~(1)1), a broader peak of width I"„(m), and
a very broad background arising from the coupling
to the A. z with P&2. The relative weights of the
I'„ and I"~ peaks are
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y 2
Tsm, tm

Q 2
Tam, am

eg+g/8+0'. /2 2 (r & T )

=0 (r&r,),
so that (35) may hold very close to T, . ] Assuming
the applicability of (35) the zeroth-order expression
for R, (S) has the form

equal to the zeroth-order decay rate when the fluc-
tuations making up A~„all have wave vectors close
to 0, . The equation that results from making this
approximation takes the form

1

S+ Ugg Tg

R, (s)'=1/[s+Z„(m)], (36)
1

(40)~+ Ui~ Ti, ~

where h„(m) is a renormalized decay rate which
is given by

For ferromagnets U» T» /1 ~ approaches zero
in the small-q limit so that

(37) Rg (S)- 1

S+0»T, (41)

with &„(m) = T&, . This result is to be compared
with the corresponding expression obtained from
Eqs. (10) and (11):

R,.(S)'=1/[S+ n, „(m)] . (38)

R,„(s)'= 1
~+ &~~ Tim, ~m

T1m. 1m

S+UuT

UgB( ) 81 -S g +Sg(t)
Q im) 8 g (0)

n 0

(39)

For the purposes of a qualitative analysis ~~„(f)'
can be approximated by A8„(0) e r~', where 1"~ is
an effective decay rate which is approximately

Comparing (38) with (36) and (37) it is apparent
that, just as in the antiferromagnetic case, the
nonlinear couplings have renormalized the decay
rates of the N; . In addition, they contribute high-
frequency components to the power spectrum.
There is, however, an important difference in the
behavior of ferromagnets as opposed to antiferro-
magnets. For fixed temperature the central peak
in e 'x (the absorptive part of the dynamic order-
parameter susceptibility of the ferromagnet) has
a width which goes to zero in the long-wavelength
limit (apart from dipolar and spin-lattice effects).
On the other hand, the nonlinear background, which
arises primarily from couplings to products of
fluctuations with wavelengths on the order of 0,',
does not shrink in width appreciably in this limit.
The relative weight of the background does vanish
as q, however. If the same limit is taken for
antiferromagnets, the width of the thermal part of
the spectrum also vanishes as q, but the width of
the spin part and the width and relative weight of
the nonlinear background change only slightly.

Most of these effects can be seen in the first-
order approximation to R, (S) above T, :

as q-0. In the case of antiferromagnets the ratio
U» T, , /I'~ remains finite in this limit, so that
the second term in Eq. (40) can not in general be
ignored.

IV. SUMMARY

Approximate kinetic equations have been derived
for the critical dynamical variables of easy-axis
ferro- and antiferromagnets. Particular attention
has been paid to nonlinear couplings and their in-
fluence on the dynamics of the long-wavelength
fluctuations of the order parameter. As shown in
Eqs. (21), (25), and (26), the nonlinear nature of
the problem is reflected in the inverse reduced-
susceptibility matrix U. When only the linear sus-
ceptibilities are retained the equations reduce to
those of Schwabl and Michel. ' Including both the
linear and the nonlinear susceptibilities gives rise
to a number of new effects. Among these are the
renormalization of the decay rates [Eqs. (30) and

(37)], a change below T, in the relative weight of
the two central peaks in the linear dynamical sus-
ceptibility for the antiferromagnetic order param-
eter [Eq. (32)], and the introduction of a high-fre-
quency background in the order-parameter power
spectrum. Provided the thermodynamic scaling
laws are obeyed, U is independent of temperature
near T, (apart from logarithmic terms), so that
these effects are essentially temperature indepen-
dent in the critical region. As for their magnitude,
little can be said without detailed information about
the free energy.

In spite of its generality the theory does make
a number of predictions which, in principle, are
capable of being checked. The one most accessible
to experiment pertains to the ratio of the decay
rates of the order-parameter fluctuations in ferro-
magnets at corresponding temperatures above and

below T,.
Provided Eq. (35) is satisfied" we may define the
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following ratio:

[expt width y
" (T = T, —) ]y~(T, —)

[expt width y" (T= T,+)]gr (T,+)

where "expt width g"" refers to the experimental
width of + &&(imaginary part of the dynamic order-
parameter susceptibility), which could be measured
in an inelastic neutron-scattering experiment and

T, += T, + 6 T. If nonlinear effects are unimportant,
8'= 1, whereas if they do play an important role,
W 41. The difference arises because the reduced-

susceptibility matrix has entries (U ')~„(U ')„,
etc. , which are identically equal to zero above I',
and which in general differ from zero below. Cal-
culations carried out using estimates of the lowest-
order nonlinear susceptibilities for the three-di-
mensional Ising model suggest W&1. However,
this result should be taken with some caution, since
it is not clear whether (i) a model devoid of dy-
namics is capable of characterizing nonlinear dy-
namical effects, and (ii) an estimate of U based on
only a few entries in t) ' is adequate.
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Using an analytic dispersion relation we have computed density-of-states spectra on an fcc
lattice. The transition from the spectrum of the nearest-neighbor fcc case has been studied
in detail as the strength of second-neighbor interactions increases and eventually produces the
spectrum of the nearest-neighbor sc case. Graphical results for the magnitude of the group
velocity have been used to improve the resolution of the singularities of the spectra enabling
the changes in number, order, and degeneracies of these singularities to be followed as the
second-neighbor interaction is varied. A simple algebraic analysis of the critical points of the
dispersion relation gives a complete explanation of all features found in the spectra and reveals
a singularity not previously found in three-dimensional spectra. The results can be applied to
spin waves in ferromagnetic insulators as well as to electronic-energy bands in the tight-binding
approximation and have relevance to a large number of phenomena in solid-state physics.

INTRODUCTION

Considerations of density-of-states spectra arise
frequently in solid-state physics. They have been
observed experimentally through electron spectros-
copy for chemical analysis, ' superconducting tun-
neling, 2 and incoherent neutron scattering; may be
computed fram theoretical models (often in har-
monic approximations) whose force canstants are
sometimes obtained from inela. stic neutron scatter-
ing data for the dispersion; and are used to eval-

uate thermodynamic functions, ' Debye temperatures,
Fermi levels, etc.

The general features of such spectra include
singularities which have been discussed and classi-
fied in a formal manner by van Hove and Phillips
who include the effect of branch-crossover degen-
eracies. Despite this activity relatively little ap-
pears to be known about the density-of-states spec-
tra for basic single-branch three-dimensional
cases. One reason may be the problem of comput-
ing the spectra which has resulted in a concentra-


