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Thermodynamic Properties of the One-Dimensional Half-Filled-Band Hubbard Model
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In order to investigate the thermal properties (specific heat, magnetic susceptibility, entropy,
internal energy, and some correlation functions} of the one-dimensional half-filled-band
Hubbard model, we have studied linear chains and rings containing two to six atoms. by per-
forming machine calculations. Supplementing the low-temperature behavior obtained from the
exact, solution for the infinite chain by Lieb and Wu, our results should be suggestive of the
properties of the infinite system throughout the entire temperature domain. It is shown that
when the ratio of the correlation energy U to the total width 4 of the band of single-particle
excitations is larger than 1, the specific heat has two peaks. The high-temperature peak arises
from the gradual metal-insulator transition (or the gradual formation of local moments), while
the low-temperature peak is associated with the antiferromagnetic short-range ordering.
When U/6 becomes small, the two peaks merge into one. This picture is consistent with all
other thermal properties, including correlation functions. The high-temperature properties
are compared with the results predicted by Hubbard's approximate theory based on the trunca-
tion of the equations of motion of the Green's functions.

I. INTRODUCTION
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The first term, annihilating an electron with spin
o. at the jth site and then creating it at the ith site,
describes the hopping motion of electrons. It is
usually assumed that the band is single and that the
transfer is allowed only between nearest-neighbor
sites. The correlation between electrons is repre-
sented by the second term, which shows that, if
two electrons with opposite spin are on the same
site, the energy increases by the amount U. Al-
though this model looks very simple, the solution
is not trivial. On the contrary, there are few firm
results.

The investigation of this system began when the
effect of correlation on the conditions for ferromag-
netism was examined by Hubbard, ' Gutzwiller, and
Kanamori from different viewpoints. Hubbard is
the first to have noticed the possibility of a metal-
insulator transition in the system described by Eq.
(l. 1). He employed a Green' s-function truncation
scheme to show that, when the electron-to-atom
ratio is one (i. e. , half-filled system) and U& U

the system is an insulator at 0 K. He also showed
that, if U& U„, the system is metallic. U„ is de-

There has been considerable work on the Hubbard
Hamiltonian, which is a simple model for studying
the origin of metallic magnetism and also the metal-
insulator transition (Mott transition). The Hubbard
Hamiltonian in its simplest form consists of two
terms':

termined by the transfer integral and is, in general,
the order of magnitude of the unperturbed bandwidth.

It is well known, in this connection, that in the
half-filled system with fairly large value of U each
atom is occupied by one electron, and the degen-
eracy of the 2" states (N is the total number of
atoms) is lifted by the transfer of electrons, which
results in an antiferromagnetic ground state. Also,
if we confine ourselves within a small region, where
the electron-to-atom ratio is very close to unity
and also U is quite large, Nagaoka has proved some
exact results for the ground state.

Hubbard's work has stimulated active discussions
on this model, and many papers have appeared since
then. Parallel to theoretical studies much experi-
mental investigation on the metal-nonmetal transi-
tion has been reported, ' and this has recently been
one of the most actively pursued fields. But we
must emphasize again that, in spite of these works,
we unfortunately still have few well-founded theoret-
ical results for this model. In this situation, any
exact results on the Hubbard model are very help-
ful, even if the system is rather special.

Therefore it is quite interesting that I.ieb and
Wu succeeded in obtaining the exact ground state
of the one-dimensional Hubbard model with arbi-
trary values of U. This theory proves that in the
half-filled case the ground state is always insulat-
ing, if Uis finite. Following this work, the lowest
excited states (spin-wave spectrum)' and magnetic
susceptibility at absolute-zero temperature" were
determined. But unfortunately there are no exact
finite-temperature results, although they are high-
ly desirable. This is one of the motivations for
this paper.

One-dimensional (or more generally low-dimen-
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sional) many-body systems are fascinating, not only
because of their mathematical tractability, but also
because the underlying physics is different from that
in higher-dimensional systems. Here the short-
range ordering plays a more important role than in
higher-dimensional systems. Many investigations
of one-dimensional localized-spin systems have
been carried out, both experimentally and theoret-
ically, from this viewpoint. The study of the one-
dimensional antiferromagnetic Heisenberg model
with spin —, is especially worthy of attention, since
it is intimately connected with the one-dimensional
half-filled-band Hubbard model which we discuss.
It is well known that for this system, the beautiful
exact solution of the ground state, ' '' the spin-
wave spectrum, ' and the susceptibility at zero tem-
perature" have been obtained. As for the thermo-
dynamic properties, Bonner and Fisher' gave an
extensive analysis, which has been very useful for
understanding the experimental results on one-di-
mensional antiferromagnets such as
Cu(NH3)4SO, HzO,

' KCuF~, "and Cu(CBH, COO)z.
3H30. ' Comparing the situation in the one-dimen-
sional Hubbard model (a model of an itinerant-
electron system) with that in the localized-spin sys-
tem which we briefly surveyed above, one easily
notices that the study of finite-temperature prop-
erties of the one-dimensional half-filled-band
Hubbard model is desirable, but lacking. This pa-
per is devoted to this study.

The experimental search for one-dimensional
itinerant-electron systems which realize to some
extent the Hubbard model is interesting, but at
present there is only an attempt by Epstein et al. ,
who try to interpret their experimental results of
specific heat, etc. , on the organic charge-transfer
salt N-methylphenazinium tetr acyanoquinodimethane
(TCNQ) in terms of the one-dimensional Hubbard
model. Much work is still necessary to clarify this
situation, but this again motivates us to study the
thermal properties of the Hubbard model. In a real
system, needless to say, thermal excitations of
molecular motions complicate the situation at finite
temperatures. On the theoretical side, we feel it
necessary to clarify, first of all, the thermody-
namic properties of the one-dimensional Hubbard
model, in which the lattice is assumed for simplic-
ity to be rigid.

In this paper we study such properties as mag-
netic susceptibility, specific heat, entropy, internal
energy, and correlation functions in the one-dimen-
sional half-filled-band Hubbard model as a function
of temperature. Our approach to this problem is
the same as that of Bonner and Fisher. In other
words, we perform exact machine calculations for
finite systems, and extrapolate to the properties of
the infinite system by increasing the number of
atoms of the system. It should be noted, in this

connection, that Mattheiss" performed a calculation
for a benzene ring consisting of six hydrogen atoms.
This was done to investigate the effect of configura-
tion interaction and to justify the use of the Heisen-
berg exchange operator, but no study was made of
thermodynamic properties. An important lesson
learned from Bonner and Fisher is that in one-di-
mensional systems, strongly interacting through
a short-range force such as a Heisenberg model
with nearest-neighbor interactions, the thermody-
namic behavior is mainly determined by the short-
range ordering, and therefore the properties of the
infinite system can be determined from those of
finite systems. In fact, they calculated finite-tem-
perature properties of the one-dimensional Heisen-
berg chain with two to eleven spins and skillfully
extrapolated them to the infinite chain. Since the
one-dimensional half-filled-band Hubbard model
with extremely large values of U is equivalent to
the one-dimensional antiferromagnetic Heisenberg
model as far as low-temperature properties are
concerned, it is quite natural to follow this meth-
od. But, as is easily noticed, the Hilbert space we

have to handle is larger than the localized-spin sys-
tem. Thus we only actually treated a finite system
consisting of two to six atoms. Supplementing the
properties at zero temperature, which is difficult
to find from our calculations, by the exact solution,
we can nevertheless construct the behavior of vari-
ous quantities of the infinite chain throughout the
entire temperature domain. We can determine the
dependence of the thermodynamic behavior of the
one-dimensional half-filled-band Hubbard model
on the relative magnitude of U to the total band-
width D. The problem of convergence is delicate
and it depends on the quantity calculated as well as
on the magnitude of the parameters.

An outline of this payer is as follows: Numerical
calculations of specific heat, magnetic susceptibil-
ity, entropy, and internal energy of finite systems
are given in Sec. II, and here a picture of thermal
properties of the infinite one-dimensional half-
filled-band Hubbard model is obtained. That pic-
ture is examined by the calculation of some rele-
vant correlation functions, and the results are pre-
sented in Sec. III. Section IV is devoted to a com-
parison of our results with the predictions, based
on Hubbard's approximate theory. ' The latter is
expected to give good results when U/h is large
and the temperature is high enough to ignore the

coupling of single-particle excitations with collec-
tive spin-wave excitations. In Sec. V other sub-
jects, which may have an intimate connection with
our study, are briefly discussed.

II. SPECIFIC HEAT, SUSCEPTIBILITY, ENTROPY, AND
INTERNAL ENERGY OF ONE-DIMENSIONAL FINITE

SYSTEMS

We assume that in the one-dimensional Hubbard
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model which we discuss, the hopping of an electron
occurs only between nearest-neighbor atoms. In
other words, the transfer integral in Eq. (1.1) has
the form

t, =t (&0) for /i-j =1

0.6

0.4—

Z

=0 otherwise . (2. 1)

Thus the unperturbed (i. e. , U=0) one-particle en-
ergy spectrum is given by

0.2-

Ep = —2t coskQ ) (2. 2)

with the wave number 0 and the lattice constant a.
The density of states of the infinite system diverges
at the band edges in the way characteristic of one
dimensionality as

N 1 I&&P(~) 2 2 1/2v [(-', a) —~ ]

0.6—

m 0.4—

2.0 3.0 4.0

(b)

=0 otherw ise, (2. 2)

where N is the number of atoms and b is the total
width of the band, i. e. , 6 =4t.

The principle of the calculation of thermodynamic
properties of a finite system is very simple. If we
obtain all energy eigenvalues and eigenfunctions of
the system, elementary statistical mechanics for
the canonical ensemble can be used to calculate all
the required quantities. Figenvalues and eigen-
functions are obtained directly from diagonalizing
the eigenvalue matrix. The maximum number of
atoms of the system that we can handle is deter-
mined in principle by the upper limit of the size of
the matrix that can be diagonalized by machine.
The total number of eigenvalues of the half-filled
system is given by (2N)!/(N!), which is equal to
924 for N=6. In the localized-spin system with
spin —,

' the total number of eigenvalues is 2". Thus,
as far as the total number of eigenvalues is con-
cerned, the half-filled-band Hubbard model con-
sisting of six atoms is almost equivalent to a
localized-spin system with ten spins. In our sys-
tem each atom can be doubly occupied or vacant.
Therefore, the Hilbert space is larger than in the
Bonner and Fisher case with the same number of
atoms.

The size of the eigenvalue matrix can of course
be reduced by maximum use of the symmetry, which
depends on the boundary condition imposed. We
actually considered the two kinds of boundary con-
ditions: (a) chain —a, finite system with open ends,
(b) ring —a finite system with cyclic boundary condi-
tions.

All eigenvalues were calculated for chains con-
sisting of two to five atoms, while for rings calcu-
lations were made for N= 3-6. As our Hamilto-
nian [Eq. (1.1)] is isotropic in spin space, the
total spin S and its z component S, are good quan-
tum numbers. The geometry of the system further

0.2-
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4.0

0.6—
(c)

m 0.4—

O
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2.0
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FIG. 1. Specific heat C/Nkz of chains containing two
to five atoms vs temperature for three typical values of
U/f;: (a) U/)=0. 5, (b) U/t=4. 0, and (c) U/t=8. 0.

reduces the size of the matrix. For instance, in
the case of the N= 6 ring, the symmetry is C~.
Therefore, we can use the irreducible representa-
tions of this group to reduce the size of the eigen-
value matrix. In this way we actually calculated
all eigenvalues and, if necessary, eigenfunctions,
for the finite systems mentioned above, and then,
using these results, computed the thermodynamic
quantities. The programs were checked with the
U= 0 results.

The numerical results for the temperature depen-
dence of specific heat, magnetic susceptibility,
entropy, and internal energy can now be presented
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FIG. 3. Variation of specific heat
C/Nk~ with temperature for rings with
three to six atoms. The ratio Ujt is
taken as 8.0.

0,2

I.O 2.0 3.0 4.0 5.0

will study the nature of this peak by calculating the
temperature dependence of the magnitude of local
moment at each site (Sec. III), as well as by Hub-
bard's approximate truncation of the equations of
motion of Green's functions as applied to the pres-
ent case (Sec. IV). According to the latter the high-
temperature broad peak is located at a temperature
slightly lower than U/4k~.

Figure 3 shows the specific heat of rings for U/t
=8. As is easily noticed, its essential features are
the same as in the case of chains. But if we com-
pare our low-temperature peaks in Fig. 3 with
Bonner and Fisher's results, we find that our peak
for N = 6 is higher than that for N= 4, in contrast to
theirs. In order to clarify this, we examined the
case of an extremely large U, U/t=20, and found
that for this case the peak for N= 6 is lower than
that for N=4, and that the heights of these peaks
are the same as Bonner and Fisher's. In this sense
the case of U/f=8 (i.e. , U/~=2) is not a, large-U
limit.

B. Magnetic Susceptibility

The picture we presented in connection with two
peaks found in the specific heat is confirmed
further by calculating the magnetic susceptibility.
The magnetic susceptibility of chains with two to
five atoms and rings with five and six atoms is
shown in Figs. 4(a)-4(c), where the even-odd ef-
fect is clear in the very low-temperature region.
The susceptibility of the infinite chain at zero tem-
perature" derived from the exact solution by I ieb
and Wu is shown in the same figures. By using this
exact result we can describe the temperature de-
pendence of the susceptibility of the infinite chain
throughout the entire temperature domain. Again,
the result for noninteracting electrons (U/f = 0)

given in Fig. 5 is helpful in understanding the ef-
fect of correlation. The susceptibility of noninter-
acting electrons has a bump at ks T/t = 0. 65 because
of the van Hove singularity at the band edges Isee
Eq. (2. 3)]. When U/t is increased, the susceptibil-
ity is enhanced and at the same time the position of
maximum shifts toward lower temperature. In the
case of very large U/t the position of maximum is
found around k~T =

I Jl (=2t~/U), consistent with
Bonner and Fisher's calculation. The low-temper-
ature peak in the specific heat observed in U/b, & 1

corresponds to the maximum of the susceptibility.
In the region k~ T- U/4, where we found the second
peak in the specific heat, there is no trace of anom-
aly except for a gradual change of the Curie con-
stant.

C. Entropy

Figures 6(a)-6(c) show the temperature depen-
dence of entropy for the same values of U/f as be-
fore. We believe that, in the infinite chain, the
entropy increases linearly at low temperature,
judging from the behavior of entropy of noninter-
acting electrons and pure Heisenberg antiferromag-
nets. Notice that in the case of U/t=8 (U/b, = 2),
roughly speaking, the entropy can be separated into
two parts, i. e. , the region below k~ T/f - I and the
region above that. The former, having essentially
the same temperature dependence as in the Heisen-
berg antiferromagnet, arises from collective spin-
wave excitations, while the rapid increase in the
latter is due to single-particle excitations which
create holes and doubly occupied states. Apparent-
ly, Fig. 6(b) with U/t=4 (U/6=1) corresponds to
just the critical case, in which the entropies due to
collective spin-wave excitations and single-parti-
cle excitations are strongly mixed with one another.
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FIG. 5. Temperature dependence of the
susceptibility of the infinite chain for U/t
=0.

0.2

1.0 2.0 5.0 4,0

(3.2)

and the symbol () denotes the average over the
canonical ensemble. The meaning of the quantity
L, (T) is clear. First of all, Lo(T) shows the mag-
nitude of spin at each site (or the degree of local-
ization of electrons). For a completely localized
electron system, in which each site is occupied by
a single electron, Lo is equal to —,', while for a non-
interacting electron system we have Lo= —,'. There-
fore the temperature dependence of Lo gives in-
formation on the degree of localization of electrons.
On the other hand, L, (T) (5 WO) is the spin correla-
tion on different sites as a function of temperature.

We now present numerical results for Lo, L, ,
and L~ for a six-atom ring, which is the largest
system considered in the present work and has a
good symmetry for calculating L, .

1. Magnitude of Local Moments

The temperature dependence of Lo for some
typical values of U/t is shown in Fig. 8. From this
figure we are able to draw the following conclusions:

(i) As the temperature is increased, Lo gradual-
ly decreases at high temperature, i. e. , electrons
gradually delocalize. This "transition" is gradual,
and, roughly speaking, the characteristic tempera-
ture of the "transition" coincides with the position
of the high-temperature peak of the specific heat.
Thus we conclude that the high-temperature peak in
the specific heat is associated with thegradual lo-
calization of electrons (or gradual metal-insulator
transition).

(ii) The behavior at low temperature, for instance,
the region .98 T/t & 1 in the case of U/t= 8, deserves
special attention. This result tells us that the de-
gree of localization is the largest, not in the ground

Lo- 8 2N/(2N —1), (3.3)

with the fixed total number N of atoms. The right-
hand side is a slowly converging function of N, and
in the present case with N=6 this formula gives

—'„, which is shown as the arrow in Fig. 8.
(iv) As mentioned above, Lo(T = 0 'K) for the in-

finite chain can be obtained from the exact solution
for the ground-state energy. The average of
N 'p, n, ,n, , in the ground state is related to the
ground-state energy E(U) in a simple way:

(3. 4)

Therefore Lo(T = 0 'K) is given by

state, but at some intermediate temperature! We
believe that this occurs for the following reason:
The ground state is antiferromagnetic. The anti-
ferromagnetic coupling arises from virtual hopping
of electrons, which is clear from the formula for
the effective exchange energy, I Jl = 2t / U, in the
extremely strong U case. This virtual transfer
makes the degree of localization smaller. On the
other hand, in the ferromagnetic state, no virtual
hoppings can occur. Therefore this state has a
completely localized wave function and Lo= -', . So
the degree of localization of the ground state is
smaller than in one of the excited states. Inciden-
tally, Lo(T=O'K) can be calculated by using the ex-
act solution. The cross in Fig. 8 is the point ob-
tained in this way for the case of U/t = 8, which is
very close to our result of N=6 ring.

(iii) In the infinite chain L0 must go to —, at in-
finite temperature. In our ring with six atoms,
however, this is not the case. This difference is
due to a size effect. In fact, it is easy to show that,
at extremely high temperature k~ T» U, we have
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e e ective exchange interaction l Jl thin e strong

I

1.0 2.0
8

40

(
.

)
3 3 1 BE(U)
4 2N BU

(8. 5)

By using this formula we calculated L (T =

the infinite ch '
e 0 =O'K) for

chain as a function of U/t. The
is shown in Fi . 9.

e result
ig. . This gives the degree of lo-

calization of electrons ' thin e ground state.

2. SPin Coaxh' oxrelatton on Differ'ent Settee L, and L, and Lz

Knowledge about the spin orderin c
5 cO . Figure 10 shows the temperature

gives I/I/t =0.25 for U/t=8 and I Jl/ =t =0. 5 for

tern

= 4, which is consistent with thi e characteristic
mperature estimated from th f'

( ) Notice that L, has an a recipp
a ig temperatures. In contrast with this

L~ is almost zero in the re io
h thea as the second peak.

region where the specific

(c) In the infi'nite antiferromagnetic Heisenber
chain we can calculate L,(T= 0'K b g

u ion, ' which gives

Li(2'= 0 'K) = —,
' —ln2 . (8. 8)

In Fig. 10 this value is show
fortunatel

shown for comparison. Un-

' ~ ~ ~ ~

ortunately, an exact solution for L (T=O'K
infinite one-dimensional H bb

of the
in ' '

u ard model does not
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I'IG. 7. Internal energy of rings with three to six atoms
as a function of temperature. U/t is chosen as 8.0.

IV. COMPARISON OF HIGH-TEMPERATURE BEHAVIORS
WITH RESULTS PREDICTED BY HUBBARD'S APPROXIMATE

THEORY

In Sec. II weshowedthat, when U/a&1, two types
of excitations —collective spin-wave excitations
and single-particle excitations —contribute to the
thermodynamic quantities almost independently.

In the low-temperature region, where spin-wave
excitations are dominant, Bonner and Fisher's
calculations were useful in understanding our re-
sults. On the other hand, at high temperatures,
the convergence of our results for finite systems
is too slow to accurately extrapolate to the infinite
system. In such a situation even an approximate
theory may be helpful, if it is relevant to this tem-
perature region. In this section we show the re.-
sults which Hubbard's approximate theory' (his
"improved" approximation) predicts, and compare
them with exact calculations for finite systems. It
turns out that his theory semiquantitatively repro-
duces our results for the thermal properties in the
high-temperature region, if U is large compared
with f.

Hubbard proposed an approximate treatment of
the correlation effect in his paper on the Mott
transition. The basic assumption behind his trun-
cation scheme of the Green's functions is that,
when U/t is large, the motion of an electron, say,
with up-spin strongly perturbed by the presence of
electrons with down-spin, is so randomly modulated
that we may apply a theory of disordered alloys,
now famous under the name of the coherent poten-
tial approximation (CPA), 8 to this case by slight-
ly modifying it. Some of the important features of
his theory are as follows:

(i) It gives the exact result for t=0 (sometimes
called the atomic limit) and only approximately
gives the linear term in t.

(ii) Coupling with collective spin-wave excita-
tions, which are important at low temperature, is
neglected.

(iii) When U/t is small, it gives a metallic
ground state. On the other hand, the exa.ct solution

"o

3/4--

7.0,.

5.0

FIG. 8. Temperature dependence of the
correlation function L p, which characterizes
the magnitude of local moments. The total
number of atoms is six, and typical values
of parameter U/t are chosen. The cross at
T = 0 K shows the value which the exact solu-
tion for the infinite chain predicts. The
arrow shows the limiting value of Lp at high
temperature given by the formula (3.3), i. e. ,
(~ H)=o. 4oa.

4.0—
3/8'- I

1.0 2.0 3.0
k T/t
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I
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Lo

3/4--
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FIG. 9. Correlation function Lo at T =O'K
vs U/t for the infinite chain.

5.0

4.0
3/8-

2.0 4.0 6.0
U/t

8.0 I0.0

for the one-dimensional system has an insulating
ground state.

It is well known ' that in one-dimensional disor-
dered systems the CPA is not a good approximation
for the density of states. So one may argue that,
in this sense, Hubbard's theory applied to one-di-
mensional systems is not reliable. But in our dis-
cussions on thermodynamic properties at high tem-
peratures only the gross features of the electronic
structure are important. Thus even his approxi. -
mate theory should be adequate.

In this sectionwe assume that the system is para-
magnetic, since we are interested in the high-
temperature region. There are some attempts
to extend Hubbard's theory (his first work on the

1
Gi ((d) =

F (~+vg FI) —&-
(o =+ or —), (4. 1)

where the inverse of the locator F,(~) is related to
the "atomic self-energy" n, (&u) by

correlation effect) to the antiferromagnetic phase.
But at low temperatures, the detailed structure of
the electronic state neglected in his theory may
play an important role.

According to Hubbard, the one-particle Green's
function with wave vector k, energy ~, and spin 0
for the Hamiltonian [Eq. (l. 1)], plus a Zeeman term
due to the uniform magnetic field, can be written
as

1 (u —U(1 —(n .) ) —Q, ((u)

F,((u) [&u —(n .) Q.((u)] [&u —U- (1 —&n .))Q,((u)] —n.'(~) (n .)(1 —(n .)) (4. 2)

The "atomic self-energy" n, (&u), which describes
the scattering processes, consists of three distinct
contributions:

n, (~) = n,' ((u) + n', ((o) —n,'(U- (u), (4. 3)

where the first term of the right-hand side is called
the scattering correction and the second and third
terms are the resonance broadening corrections.
Now the self-energy n,'(&u) is connected with F,(~)
by the self-consistency equation

n.'(~) = F.(~) —[(I/&)&~; &&.(~)] ' . (4. 4)

This is a brief summary of mathematics of Hub-
bard's theory. These four equations [Eqs. (4. 1)-
(4. 4)] form a set of equations in Hubbard's theory.

Since in our case the unperturbed density of states
p(~) given in (2. 3) is simple and symmetric with

respect to its center, and our system is assumed
half filled, these coupled equations can be simpli-
fied to a large extent. In fact, by using (2. 3) we
find that

1 ~g isa( ) [(L~)2 F (~)2]1/2 (4. 6)

+(- [~' - (-.' U)']' —8~'(-,'~)'}= O . (4. 6)

It is easy to find the density of states D(&u),

Thus, choosing the origin of the energy at U/2, we
obtain the following cubic equation for the locator
F(&u) in the case of zero magnetic field:

6(uF'+ (9[(u' —(-', n)'] —(16(u'+ 6[(u' —(—,'D)'] })F'

+{8&v[~'—(—,
'

U) ]+18&v(,'n)'}F—
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Lp
U/t = 8.0

0.2

O. I

-0. I

-0.2

-0.4

FIG. 10. Temperature dependence of the
correlation function L~ (6 = 1, 2), which gives
us the information on the spin correlation on
different sites. The total number N of atoms
is six. The cross shows the value of L~ for the
infinite antiferromagnetic Heisenberg chain ob-
tained from the exact solution (Refs. 12 and 13)
(see the text). The upper part of this figure
shows L2 and the lower part indicates the tem-
perature dependence of L&.
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I

2.0 M)
kgT/t

I
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D(cu) = ——Im —Z G,((u),
1 1

N
(4. 7)

A. Specific Heat

by solving Eq. (4. 6). Figure 11 shows the profile
of D(&u) for two typical values of U//t. The critical
value, at which the energy gap first appears at ~
= 0, is given by

The average of the energy,

&3. )=-Z t„&C,',C„)+UZ (n, ,n, , ), (4. 9)

can be expressed in terms of a one-particle Green's
function in the form"

U.„/n=-,'v6 . (4. 8)

Incidentally, this value is larger than the value
—,'v 3 obtained by Hubbard, ' assuming that p(~) is
elliptic, because in our case the unperturbed den-
sity of states is very large at the band edges.

Once the locator F(~) ' is found from Eq. (4. 6),
it is straightforward to calculate specific heat,
magnetic susceptibility, etc. Here we sketch the
derivation of the formula, s needed to calculate
these quantities and show our numerical results.

d(d ~ —— Im ~+I' + —,UN,
OO

(4. 1O)

where the Fermi distribution function is f(u&). Since
the chemical potential always stays at zero irre-
spective of temperature, we have for the specific
heat

O. lb-

—O, IO-3 /t = 8.0

FIG. 11. Density of states D(u) of one-
particle excitations which Hubbard's approxi-
mate theory predicts for the one-dimensional
half-filled-band Hubbard model. The system
is assumed to be paramagnetic. Two typi-
cal values of U/t are chosen.
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2 cosh

x Im ~+E — . 4. 11
1 1

k

B. Static Uniform Magnetic Susceptibility

In order to determine the expression for the sus-

ceptibility, we must retain all linear terms in the
magnetic field. In Hubbard's formulation the scat-
tering processes included in Q, (&u) are changed by
the magnetic field through the average number of
electrons (n, ). Thus there are extra. contributions
besides the shift of the energy bands due to the mag-
netic field. Carefully retaining 'inear terms in
Eqs. (4. 1)-(4.4), we finally find that

where Z=(1/N)P„G, (~). In the above expression
the numerator comes from the shift of energy band,
while the second term in the denominator arises
from the change of the scattering processes.

C. Magnitude of Local Moments

It is not difficult to obtain the formula for the
magnitude of local moments Lo introduced in Sec.
III:

(4. 13)

where the average (n&, (1 —n&, ) ) can be calculated
from the retarded Green's function (((1 —n, , )C&, ,

C, , )) by using the spectral theorem

(n;, (I —n, , ) ) = f d&u f(~) (- 1/w)

x Im (( (1 —n&, ) C&, , Ct, )) . (4. 14)

Here the retarded Green's function ((A; B)) is de-
fined by

((Ay B))=f dfe'"'(-i) ([A(t)y B(0)],) y (4. 15)

where [, ], denotes the anticommutator, and A(t)
is the Heisenberg representation of the operator A..
Since in Hubbard's theory the Green's function
(((1 —n, ,)C, „C&, )) is related to the one-particle
Green s function ((C, , ; C~, )) by a simple expres-
sion, we easily find that

L,(T) = — d&uf((u) —— Im', Z G, ((u) .3 1 —,'U- ~+E
0 4 m' 2U

(4. 16)
Figures 12-14 show the temperature dependence

of the specific heat, susceptibility, and the magni-
tude of local moments, respectively, at a typical
value of U/t. In this theory the contribution to the
specific heat is associated with single-particle ex-
citations across the so-called Hubbard gap. The
susceptibility decreases at low temperature be-
cause of this gap. However, spin-wave contribu-
tions which are neglected in this Hubbard theory are
actually important for the low-temperature behav-
ior of the specific heat as well as the susceptibility.
For the same reason, the decrease of the magni-
tude of local moments clearly observed in Fig. 8
is lacking in Fig. 14. Comparing these figures

0.6—

0,4—

C3

FIG. 12. Temperature dependence of
specific heat according to Hubbard's approxi-
mation. The system is assumed to be para-
magnetic. The parameter U/t is taken as
8.

0.2—

I.O 2.0 kBTit 4.0
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FIG. 13. Variation of the susceptibility
Xj(lVp&2/t) with temperature, which Hubbard's
approximation gives under the assumption
that the system is paramagnetic throughout
the entire temperature domain.

0.4—

1.0 2.0 3.0
kEIT/t

4.0

with the results for finite systems shown in Secs.
II and III, we find that, in the high-temperature
region, say, k~ T & 1.5t, Hubbard's theory gives
fairly good results, when U/t= 8, judging from our
exact calculations. We believe the reason for this
is that at high temperatures most states contribute
with almost equal weight, and therefore the motion
of an electron may be regarded in some sense as
random. In the calculation of the specific heat [see,
for instance, Fig. 1(cj] the convergence is so slow
that it is difficult to extrapolate to the infinite
chain. But with the aid of Hubbard's theory we
guess that the second peak of the specific heat is
located at slightly lower temperature than U/4k~.

V. DISCUSSION

In order to obtain a feeling for the finite-temper-

ature properties of the one-dimensional half-filled-
band Hubbard model, we have calculated various
thermodynamic quantities and correlation functions.
The picture we have obtained is the following: When
U/A~ 1, we can discriminate two temperature re-
gions. In the high-temperature region around
U/4k' the gradual formation of local moments oc-
curs, while in the low-temperature region the
short-range antiferromagnetic ordering is domi-
nant for the thermal behavior. When U/n becomes
small, passing through the intermediate region lo-
cated around 1, the two regions overlap with each
other and the thermal properties of our system are
essentially the same as those of the noninteracting
system, except for some slight modifications such
as the enhancement of the susceptibility, etc.

When U is small compared with ~, we can apply

5/4--

7.0—

6.0—

FIG. 14. Magnitude of local moments I.o vs
temperature according to Hubbard's approxi-
mation for paramagnetic state.
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the molecular-field approximation (or, more gen-
erally, the random-phase approximation) to our
system. Although the molecular-field approxima-
tion predicts long-range antiferromagnetic ordering
at low temperatures, the order parameter is so
small in this region of U that the singularity at the
Neel point is not appreciable. In fact, we find that
for U/b, - —,

' the random-phase approximation gives
semiquantitatively reasonable results.

The behavior of the thermodynamic properties,
including some correlation functions, for U/n-1
is interesting in connection with a controversial
problem of localized-spin-like behaviors in itiner-
ant-electron ferromagnets. Some authors ' have
tried to approach this question by using the func-
tional integral method, but unfortunately this has
not vastly improved the situation. For the itinerant-
electron antiferromagnet there is an attempt '
based on the molecular-field approximation, but it
is also far from convincing. Although our model is
very simple, we hope our results have clarified
some aspects of the complicated intermediate situ-
ation between localized and itinerant magnetism.

As our studies are restricted to the one-dimen-
sional system, we cannot say anything convincing
beyond this, but we conjecture from our results
that in three-dimensional system, when U/n is
large, the formation of local moments in the high-
temperature region will still stay gradual and
broad, while the antiferromagnetic correlation at
low temperature will turn into a long-range order-
ing.

Nofe added t'n proof. In this work we applied
the canonical ensemble method, which is appropriate
to "real" molecules. The results of the applica-
tion of the grand canonical ensemble, which is
more useful for extrapolation to the infinite sys-
tem, will be published in the near future.
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Approximate kinetic equations have been derived for the critical dynamical variables of easy-
axis ferro- and antiferromagnets. Particular attention is paid to nonlinear couplings and their
influence on the dynamics of the long-wavelength fluctuations of the order parameter. The non-
linear nature of the problem is reflected in the inverse reduced-susceptibility matrix. When on-
ly the linear susceptibilities are retained the equations reduce to those of Schwabl and Michel.
Including both linear and nonlinear susceptibilities leads to a number of new effects. Among
these are the renormalization of the decay rates, a change below T, in the relative weights of
the two central peaks in the linear dynamical susceptibility of the antiferromagnetic order
parameter, and the introduction of a high-frequency background in the order-parameter power
spectrum. Provided the thermodynamic scaling laws are obeyed, these effects are essentially
independent of temperature. An experimental test of the theory involving measurements of the
width of the imaginary part of the dynamic susceptibility of the ferromagnetic order parameter
at corresponding temperatures above and below T~ is proposed.

I. INTRODUCTION

According to the current interpretation, insofar
as the critical dynamics is concerned, magnetic
systems undergoing second-order phase transitions
fall into two categories. In the first category are
the so-called conventional systems, which are char-
acterized by the property that, as the critical point
is approached from the high-temperature side, the
fluctuations in the order parameter decay at a rate
which, in the first approximation, is inversely pro-
portional to the corresponding susceptibility. The
unconventional or strong-coupled systems are those
where the decay rate has a weaker temperature de-
pendence. Easy-axis ferro- and antiferromagnets
are in the first category, while isotropic and planar
ferro- and antiferromagnets are in the second.
(In applying these criteria it must be kept in mind
that when the anisotropy is weak, e.g. , MnF2, fully
conventional behavior may be realized only at tem-
peratures very close to T„. at higher temperatures
the dynamics may resemble that of isotropic sys-
tems. )

The purpose of this paper is to examine in detail
the critical dynamics of conventional systems, with
particular emphasis on the nonlinear effects. The
approach will be sufficiently general to encompass
both ferro- and antiferromagnets at temperatures
above and below the critical temperature. The

starting point in the analysis is a set of kinetic equa-
tions for the critical dynamical variables which was
obtained recently by Kawasaki. ' As discussed by
him the critical dynamical variables are those
variables whose long-wavelength fluctuations decay
very slowly near the critical point. Included in this
set are the hydrodynamic variables as well as the
order parameter, if the latter is not conserved. In

addition, in a nonlinear theory one must also include
products of these variables. For easy-axis ferro-
magnets the critical variables are combinations of
the energy density and the magnetic-moment density
along the preferred axis. If the Hamiltonian has
the property of being invariant with respect to spin
rotations about the preferred axis, then the order
parameter is also a hydrodynamic variable. In the
case of easy-axis antiferromagnets the critical
dynamical variables are normally the energy den-
sity, the magnetization density (provided the sys-
tem has the rotational symmetry mentioned above),
and the staggered-moment density along the pre-
ferred axis. Since the uniform field susceptibility
of an antiferromagnet remains finite at the critical
point, the fluctuations in the magnetization do not
behave anomalously. Furthermore, in the absence
of an external field, which we will henceforth as-
sume, there is no linear thermodynamic coupling
between the magnetization and either the staggered
magnetization or the energy. Although nonlinear


