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In order to investigate the thermal properties (specific heat, magnetic susceptibility, entropy,
internal energy, and some correlation functions) of the one-dimensional half-filled-band
Hubbard model, we have studied linear chains and rings containing two to six atoms, by per-

forming machine calculations.

Supplementing the low-temperature behavior obtained from the

exact solution for the infinite chain by Lieb and Wu, our results should be suggestive of the

properties of the infinite system throughout the entire temperature domain.

It is shown that

when the ratio of the correlation energy U to the total width A of the band of single-particle

excitations is larger than 1, the specific heat has two peaks.

The high~temperature peak arises

from the gradual metal-insulator transition (or the gradual formation of local moments), while
the low-temperature peak is associated with the antiferromagnetic short-range ordering.

When U/A becomes small, the two peaks merge into one.
other thermal properties, including correlation functions.

This picture is consistent with all
The high-temperature properties

are compared with the results predicted by Hubbard’s approximate theory based on the trunca-
tion of the equations of motion of the Green’s functions.

I. INTRODUCTION

There has been considerable work on the Hubbard
Hamiltonian, which is a simple model for studying
the origin of metallic magnetism and also the metal-
insulator transition (Mott transition). The Hubbard
Hamiltonian in its simplest form consists of two
terms®:
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The first term, annihilating an electron with spin
o at the jth site and then creating it at the ith site,
describes the hopping motion of electrons. It is
usually assumed that the band is single and that the
transfer is allowed only between nearest-neighbor
sites. The correlation between electrons is repre-
sented by the second term, which shows that, if
two electrons with opposite spin are on the same
site, the energy increases by the amount U. Al-
though this model looks very simple, the solution
is not trivial. On the contrary, there are few firm
results.

The investigation of this system began when the
effect of correlation on the conditions for ferromag-
netism was examined by Hubbard,! Gutzwiller,? and
Kanamori® from different viewpoints. Hubbard is
the first to have noticed the possibility of a metal-
insulator transition in the system described by Eq.
(1.1). He employed a Green’s-function truncation
scheme to show that, when the electron-to-atom
ratio is one (i.e., half-filled system) and U> U,
the system is an insulator at 0 °K. He also showed
that, if U> U, , the system is metallic. U,, is de-
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termined by the transfer integral and is, in general,
the order of magnitude of the unperturbed bandwidth.

It is well known, in this connection, that in the
half-filled system with fairly large value of U each
atom is occupied by one electron, and the degen-
eracy of the 2V states (N is the total number of
atoms) is lifted by the transfer of electrons, which
results in an antiferromagnetic ground state. Also,
if we confine ourselves within a small region, where
the electron-~to-atom ratio is very close to unity
and also U is quite large, Nagaoka®* has proved some
exact results for the ground state.

Hubbard’s work has stimulated active discussions
on this model, and many papers have appeared since
then. Parallel to theoretical studies much experi-
mental investigation on the metal-nonmetal transi-
tion has been reported,®® and this has recently been
one of the most actively pursued fields. But we
must emphasize again that, in spite of these works,
we unfortunately still have few well-founded theoret-
ical results for this model. In this situation, any
exact results on the Hubbard model are very help-
ful, even if the system is rather special.

Therefore it is quite interesting that Lieb and
Wu® succeeded in obtaining the exact ground state
of the one-dimensional Hubbard model with arbi-
trary values of U. This theory proves that in the
half-filled case the ground state is always insulat-
ing, if Uis finite. Following this work, the lowest
excited states (spin-wave spectrum)*® and magnetic
susceptibility at absolute-zero temperature!! were
determined. But unfortunately there are no exact
finite-temperature results, although they are high-
ly desirable. This is one of the motivations for
this paper.

One-dimensional (or more generally low~dimen-
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sional) many-body systems are fascinating, not only
because of their mathematical tractability, but also
because the underlying physics is different from that
in higher-dimensional systems. Here the short-
range ordering plays a more important role than in
higher-dimensional systems. Many investigations
of one-dimensional localized-spin systems have
been carried out, both experimentally and theoret-
ically, from this viewpoint. The study of the one-
dimensional antiferromagnetic Heisenberg model
with spin 3 is especially worthy of attention, since
it is intimately connected with the one-dimensional
half-filled-band Hubbard model which we discuss.

It is well known that for this system, the beautiful
exact solution of the ground state,'®!? the spin-
wave spectrum,* and the susceptibility at zero tem-
perature!® have been obtained. As for the thermo-
dynamic properties, Bonner and Fisher!® gave an
extensive analysis, which has been very useful for
understanding the experimental results on one-di-
mensional antiferromagnets such as

Cu(NH,),S0, - H,0,'" KCuF,,®and Cu(CzH;CO0),.
3H,0.!° Comparing the situation in the one-dimen-
sional Hubbard model (a model of an itinerant-
electron system) with that in the localized-spin sys-
tem which we briefly surveyed above, one easily
notices that the study of finite-temperature prop-
erties of the one-dimensional half-filled -band
Hubbard model is desirable, but lacking. This pa-
per is devoted to this study.

The experimental search for one-dimensional
itinerant-electron systems which realize to some
extent the Hubbard model is interesting, but at
present there is only an attempt by Epstein ef a
who try to interpret their experimental results of
specific heat, etc., on the organic charge-transfer
salt N-methylphenazinium tetracyanoquinodimethane
(TCNQ) in terms of the one-dimensional Hubbard
model. Much work is still necessary to clarify this
situation, but this again motivates us to study the
thermal properties of the Hubbard model. In a real
system, needless to say, thermal excitations of
molecular motions complicate the situation at finite
temperatures. On the theoretical side, we feel it
necessary to clarify, first of all, the thermody-
namic properties of the one-dimensional Hubbard
model, in which the lattice is assumed for simplic-
ity to be rigid.

In this paper we study such properties as mag-
netic susceptibility, specific heat, entropy, internal
energy, and correlation functions in the one-dimen-
sional half-filled-band Hubbard model as a function
of temperature. Our approach to this problem is
the same as that of Bonner and Fisher. In other
words, we perform exact machine calculations for
finite systems, and extrapolate to the properties of
the infinite system by increasing the number of
atoms of the system. It should be noted, in this
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connection, that Mattheiss® performed a calculation
for a benzene ring consisting of six hydrogen atoms.
This was done to investigate the effect of configura-
tion interaction and to justify the use of the Heisen-
berg exchange operator, but no study was made of
thermodynamic properties. An important lesson
learned from Bonner and Fisher is that in one-di-
mensional systems, strongly interacting through

a short-range force such as a Heisenberg model
with nearest-neighbor interactions, the thermody-
namic behavior is mainly determined by the short-
range ordering, and therefore the properties of the
infinite system can be determined from those of
finite systems. In fact, they calculated finite-tem-
perature properties of the one-dimensional Heisen-
berg chain with two to eleven spins and skillfully
extrapolated them to the infinite chain. Since the
one-dimensional half-filled-band Hubbard model
with extremely large values of U is equivalent to
the one-dimensional antiferromagnetic Heisenberg
model as far as low-temperature properties are
concerned, it is quite natural to follow this meth-
od. But, as is easily noticed, the Hilbert space we
have to handle is larger than the localized-spin sys-
tem. Thus we only actually treated a finite system
consisting of two to six atoms. Supplementing the
properties at zero temperature, which is difficult
to find from our calculations, by the exact solution,
we can nevertheless construct the behavior of vari-
ous quantities of the infinite chain throughout the
entire temperature domain. We can determine the
dependence of the thermodynamic behavior of the
one-dimensional half-filled-band Hubbard model

on the relative magnitude of U to the total band-
width A. The problem of convergence is delicate
and it depends on the quantity calculated as well as
on the magnitude of the parameters.

An outline of this paper is as follows: Numerical
calculations of specific heat, magnetic susceptibil-
ity, entropy, and internal energy of finite systems
are given in Sec. II, and here a picture of thermal
properties of the infinite one-dimensional half-
filled-band Hubbard model is obtained. That pic-
ture is examined by the calculation of some rele-
vant correlation functions, and the results are pre-
sented in Sec. III. Section IV is devoted to a com-
parison of our results with the predictions, based
on Hubbard’s approximate theory.! The latter is
expected to give good results when U/ A is large
and the temperature is high enough to ignore the
coupling of single-particle excitations with collec-
tive spin-wave excitations. In Sec. V other sub-
jects, which may have an intimate connection with
our study, are briefly discussed.

II. SPECIFIC HEAT, SUSCEPTIBILITY, ENTROPY, AND

INTERNAL ENERGY OF ONE-DIMENSIONAL FINITE
SYSTEMS

We assume that in the one-dimensional Hubbard
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model which we discuss, the hopping of an electron
occurs only between nearest-neighbor atoms. In
other words, the transfer integral in Eq. (1.1) has
the form

ti;=t (>0) for |i-j|=1

=0 otherwise . (2.1)

Thus the unperturbed (i.e., U=0) one-particle en-
ergy spectrum is given by

E,= - 2tcoska, (2.2)

with the wave number % and the lattice constant a.
The density of states of the infinite system diverges
at the band edges in the way characteristic of one
dimensionality as

1

p(f):ff! [(%A)Z_ €2]1. 2 for ’6[ é%A

(2.3)

where N is the number of atoms and A is the total
width of the band, i.e., A=4¢

The principle of the calculation of thermodynamic
properties of a finite system is very simple. If we
obtain all energy eigenvalues and eigenfunctions of
the system, elementary statistical mechanics for
the canonical ensemble can be used to calculate all
the required quantities. Figenvalues and eigen-
functions are obtained directly from diagonalizing
the eigenvalue matrix. The maximum number of
atoms of the system that we can handle is deter-
mined in principle by the upper limit of the size of
the matrix that can be diagonalized by machine.
The total number of eigenvalues of the half-filled
system is given by (2N)!/(N!)%, which is equal to
924 for N=6. In the localized-spin system with
spin % the total number of eigenvalues is 2%, Thus,
as far as the total number of eigenvalues is con-
cerned, the half-filled-band Hubbard model con-
sisting of six atoms is almost equivalent to a
localized-spin system with ten spins. In our sys-
tem each atom can be doubly occupied or vacant.
Therefore, the Hilbert space is larger than in the
Bonner and Fisher case with the same number of
atoms.

The size of the eigenvalue matrix can of course
be reduced by maximum use of the symmetry, which
depends on the boundary condition imposed. We
actually considered the two kinds of boundary con-
ditions: (a) chain—a finite system with open ends,
(b) ring—a finite system with cyclic boundary condi-
tions.

All eigenvalues were calculated for chains con-
sisting of two to five atoms, while for rings calcu-
lations were made for N=3-6.2 As our Hamilto-
nian [Eq. (1.1)] is isotropic in spin space, the
total spin S and its z component S, are good quan-
tum numbers. The geometry of the system further

=0 otherwise ,
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FIG. 1. Specific heat C/Nkg of chains containing two
to five atoms vs temperature for three typical values of
U/t: (a) U/t=0.5, (b) U/t=4.0, and (c) U/t=8.0.

reduces the size of the matrix. For instance, in
the case of the N=6 ring, the symmetry is Cg,.
Therefore, we can use the irreducible representa-
tions of this group to reduce the size of the eigen-
value matrix. In this way we actually calculated
all eigenvalues and, if necessary, eigenfunctions,
for the finite systems mentioned above, and then,
using these results, computed the thermodynamic
quantities. The programs were checked with the
U=0 results.

The numerical results for the temperature depen-
dence of specific heat, magnetic susceptibility,
entropy, and internal energy can now be presented
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and discussed.

A. Specific Heat

Figures 1(a)-1(c) show the temperature depen-
dence of the specific heat of chains at typical val-
ues of U/t. Comparing these figures with each
other, one can easily notice how the features of the
specific heat vs temperature change with the rela-
tive magnitude of U to . The specific heat has a
peak at slightly lower temperature than #/k; when
U is small compared with A, while when the mag-
nitude of U is increased beyond A, the peak splits
into two. This characteristic change of the specific
heat clearly suggests the rearrangement of energy
levels. We believe the low-temperature peak arises
from the antiferromagnetic short-range ordering
and the high-temperature peak comes from the
gradual metal-insulator transition (or gradual
formation of local moments). This conclusion is
supported by the calculations of other thermal prop-
erties and correlation functions (Sec. III), as well
as by an approximate calculation for the high-tem-
perature region (Sec. IV).

It is not easy to unambiguously extrapolate these
results for finite systems to the infinite system.
But some facts known for the infinite chain are help-
ful in guessing the specific heat of the infinite chain
from Figs. 1(a)-1(c). In the case U=0 (i.e., one-
dimensional noninteracting electrons), the specific
heat of the infinite chain can be calculated easily.
The result (Fig. 2) shows the initial linear increase
of the specific heat, a peak at 257/¢=~0.65, and the
gradual decrease at high temperatures. In our cal-
culations for finite systems the specific heat falls
exponentially at low temperature, of course, be-
cause of the discreteness of energy levels. Since
the spin-wave frequency is linearly proportional
to the wave number in the small-wave-number re-

gion, irrespective of the magnitude of U, and since
Bonner and Fisher also predict the linear increase
of the specific heat, we believe that in our system
the specific heat at low temperature is linear and
the coefficient increases with U/A. Comparing
Figs. 1(a)-1(c) with Fig. 2 we reach the following
conclusions on the effect of correlation: In the re-
gion U/A <1 the correlation makes the peak slightly
lower and enhances the specific heat at high tem-
perature (kzT/t>1). In the region U/aZ21 (or U/t

2 4) the specific heat consists of two peaks. The
low-temperature peak in the case of U/¢=8, the
origin of which we believe is the antiferromagnetic
short-range ordering, is consistent with Bonner
and Fisher’s result. In fact, according to these
authors, the specific heat C/Nkp of the infinite anti-
ferromagnetic Heisenberg chain has a peak at
kgT/1Jl~1, the height of which is ~0.35. Apply-
ing a simple perturbation theory to the half-filled-
band Hubbard model with extremely large U, we find
that the effective antiferromagnetic exchange |J|

is given by 2t2/U=0. 25¢ for U/t=8. (Weuse Bonner
and Fisher’s definition of the exchange integral.)
Therefore the low-temperature peak in Fig. 1(c) is
consistent with that of Bonner and Fisher.

For the high-temperature peak in Figs. 1(b) and
1(c), the convergence is so slow that it is not easy
to predict the behavior of the infinite chain precise-
ly. We believe this peak arises from single-parti-
cle excitations which create holes and doubly oc-
cupied states in our system. Such excitations
clearly change the magnitude of the local moment
at each site. Furthermore, once a hole or double-
occupied state is formed, it moves rather freely
with a kinetic energy of the order of £. For these
reasons we ascribe the second peak in the specific
heat to the gradual formation of local moments (or
gradual metal-insulator transition). In fact, we
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FIG. 3. Variation of specific heat
C/Nkg with temperature for rings with
three to six atoms. The ratio U/t is
taken as 8.0,
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will study the nature of this peak by calculating the
temperature dependence of the magnitude of local
moment at each site (Sec. III), as well as by Hub-
bard’s approximate truncation of the equations of
motion of Green’s functions as applied to the pres-
ent case (Sec. IV). According to the latter the high-
temperature broad peak is located at a temperature
slightly lower than U/4kj.

Figure 3 shows the specific heat of rings for U/¢
=8. As is easily noticed, its essential features are
the same as in the case of chains. But if we com-
pare our low-temperature peaks in Fig. 3 with
Bonner and Fisher’s results, we find that our peak
for N=6 is higher than that for N=4, in contrast to
theirs. In order to clarify this, we examined the
case of an extremely large U, U/t=20, and found
that for this case the peak for N=6 is lower than
that for N=4, and that the heights of these peaks
are the same as Bonner and Fisher’s. In this sense
the case of U/t=8 (i.e., U/Aa=2)is not a large-U
limit.

B. Magnetic Susceptibility

The picture we presented in connection with two
peaks found in the specific heat is confirmed
further by calculating the magnetic susceptibility.
The magnetic susceptibility of chains with two to
five atoms and rings with five and six atoms is
shown in Figs. 4(a)-4(c), where the even-odd ef-
fect is clear in the very low-temperature region.
The susceptibility of the infinite chain at zero tem-
perature!! derived from the exact solution by Lieb
and Wu is shown in the same figures. By using this
exact result we can describe the temperature de-
pendence of the susceptibility of the infinite chain
throughout the entire temperature domain. Again,
the result for noninteracting electrons (U/¢=0)

30

given in Fig. 5 is helpful in understanding the ef-
fect of correlation. The susceptibility of noninter-
acting electrons has a bump at k5 7/¢~0. 65 because
of the van Hove singularity at the band edges [see
Eq. (2.3)]. When U/t is increased, the susceptibil-
ity is enhanced and at the same time the position of
maximum shifts toward lower temperature. In the
case of very large U/t the position of maximum is
found around ky T =~ |J| (~2¢%/U), consistent with
Bonner and Fisher’s calculation. The low-temper-
ature peak in the specific heat observed in U/A>1
corresponds to the maximum of the susceptibility.
In the region kg T~ U/4, where we found the second
peak in the specific heat, there is no trace of anom-
aly except for a gradual change of the Curie con-
stant.

C. Entropy

Figures 6(a)-6(c) show the temperature depen-
dence of entropy for the same values of U/t as be-
fore. We believe that, in the infinite chain, the
entropy increases linearly at low temperature,
judging from the behavior of entropy of noninter-
acting electrons and pure Heisenberg antiferromag-
nets.'® Notice that in the case of U/{=8 (U/a=2),
roughly speaking, the entropy can be separated into
two parts, i.e., the region below k5 7/f~1 and the
region above that. The former, having essentially
the same temperature dependence as in the Heisen-
berg antiferromagnet, arises from collective spin-
wave excitations, while the rapid increase in the
latter is due to single-particle excitations which
create holes and doubly occupied states. Apparent-
ly, Fig. 6(b) with U/t=4 (U/a=1) corresponds to
just the critical case, in which the entropies due to
collective spin-wave excitations and single-parti-
cle excitations are strongly mixed with one another.
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D. Internal Energy

An example of the temperature dependence of
the internal energy of rings with three to six atoms
is shown in Fig. 7. Here the exact solution of the
ground-state energy for the infinite chain is in-
cluded. The sharp increase of the internal energy,
which starts from .z T/#~1, is related to the high-
temperature peak in the specific heat [Fig. 1(c)]
and the second step of the increase of entropy [Fig.
6(c)], and it arises again from single-particle exci-
tations, which cost additional energy of the order
of U.

Summing up the numerical calculations for the
thermodynamic properties of finite systems, we
find that when U/AZ1 the temperature dependence
of specific heat, entropy, and internal energy can
be separated into two nearly independent regions.
The low-temperature part comes from the antifer-
romagnetic short-range ordering,? and the high-
temperature part reflects excitations which form
holes and double-occupied states, or, conversely,
it reflects the local moment formation or the grad-

8.0, respectively. The cross at T=0°K shows the
value givenby the exact solution for the infinite chain.

ual metal-nonmetal transition. When U/A is de-
creased beyondthe critical regionlocated around
U/ A~ 1, the essential feature of thermal properties
can be described by a slight modification of the be-
havior of a noninteracting electron system, i.e.,
enhancement of the magnetic susceptibility, etc.

[II. TEMPERATURE DEPENDENCE OF CORRELATION
FUNCTIONS

In the previous section a feeling for the thermal
properties of the one-dimensional half-filled-band
Hubbard model was drawn from the calculation of
various thermodynamic quantities of finite systems.
Although the results are consistent with our picture,
the interpretation may seem indirect. In order to
obtain detailed information we determine the tem-
perature dependence of some correlation functions
relevant to the study of the nature of the system.

The correlation function considered is

LG(T)=(1/N)21 <§j'§j+6>7 (3.1)

where §,is the spin operator at the jth site:
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and the symbol () denotes the average over the
canonical ensemble. The meaning of the quantity
Ly (T) is clear. First of all, Ly(T) shows the mag-
nitude of spin at each site (or the degree of local-
ization of electrons). For a completely localized
electron system, in which each site is occupied by
a single electron, L, is equal to 2, while for a non-
interacting electron system we have LO:%. There-
fore the temperature dependence of L, gives in-
formation on the degree of localization of electrons.
On the other hand, L;(7T) (56+#0) is the spin correla-
tion on different sites as a function of temperature.

We now present numerical results for Ly, L,
and L, for a six-atom ring, which is the largest
system considered in the present work and has a
good symmetry for calculating L;.

1. Magnitude of Local Moments

The temperature dependence of L, for some
typical values of U/f is shown in Fig. 8. From this
figure we are able to draw the following conclusions:

(i) As the temperature is increased, L, gradual-
ly decreases at high temperature, i.e., electrons
gradually delocalize. This “transition” is gradual,
and, roughly speaking, the characteristic tempera-
ture of the “transition” coincides with the position
of the high-temperature peak of the specific heat.
Thus we conclude that the high-temperature peak in
the specific heat is associated with the gradual lo-
calization of electrons (or gradual metal-insulator
transition).

(ii) The behavior at low temperature, for instance,
the region %, T/t<1 in the case of U/¢t=8, deserves
special attention. This result tells us that the de-
gree of localization is the largest, not in the ground

state, but at some intermediate temperature! We
believe that this occurs for the following reason:
The ground state is antiferromagnetic. The anti-
ferromagnetic coupling arises from virtual hopping
of electrons, which is clear from the formula for
the effective exchange energy, |J|=2¢2/U, in the
extremely strong U case. This virtual transfer
makes the degree of localization smaller. On the
other hand, in the ferromagnetic state, no virtual
hoppings can occur. Therefore this state has a
completely localized wave function and Ly=%. So
the degree of localization of the ground state is
smaller than in one of the excited states. Inciden-
tally, Lo(T=0°K) can be calculated by using the ex-
act solution. The cross in Fig. 8 is the point ob-
tained in this way for the case of U/¢#=8, which is
very close to our result of N=6 ring.

(iii) In the infinite chain L, must go to 2 at in-
finite temperature. In our ring with six atoms,
however, this is not the case. This difference is
due to a size effect. In fact, it is easy to show that,
at extremely high temperature 237> U, we have

Lo~ % 2N/(2N-1), (8.3)
with the fixed total number N of atoms. The right-
hand side is a slowly converging function of N, and
in the present case with N=6 this formula gives

3 - 1, which is shown as the arrow in Fig. 8.

(iv) As mentioned above, Ly(7=0°K) for the in-
finite chain can be obtained from the exact solution
for the ground-state energy.’® The average of
N-1'3.n;m;, in the ground state is related to the
ground-state energy E(U) in a simple way:

1 8E(D)
N 8U

1
N%} <njvnj1>= (34)

Therefore Ly(7'=0 °K) is given by
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By using this formula we calculated Ly (7 =0 °K) for
the infinite chain as a function of U/¢. The result
is shown in Fig. 9. This gives the degree of lo-
calization of electrons in the ground state.

2. Spin Covrvelation on Diffevent Sites L, and L,

Knowledge about the spin ordering can be obtained
from Ly (T) (6 #0). Figure 10 shows the temperature
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FIG. 6. Entropy vs temperature for chains containing

two to five atoms. The relative magnitude of correlation
to the transfer integral U/t is (a) 0.5, (b) 4.0, and (c)
8.0, respectively.

dependence of the nearest-neighbor spin correla-
tion L, and the next-nearest-neighbor spin correla-
tion L, for N=6 ring. This figure clearly demon-
strates how far the antiferromagnetic ordering per-
sists when the temperature is raised.

(a) The characteristic temperature of the de-
crease of spin correlation, which one might call
“Néel temperature,” can be estimated from this
figure. Using, for simplicity, the expression for
the effective exchange interaction |J| in the strong
U case

|J| ~2¢%/v

gives |J1/t=~0.25 for U/t=8 and |J1/¢t~0.5 for
U/t=4, which is consistent with the characteristic
temperature estimated from the figure.

(b) Notice that L, has an appreciable magnitude
even at high temperatures. In contrast with this,
L, is almost zero in the region where the specific
heat has the second peak.

(c) In the infinite antiferromagnetic Heisenberg
chain we can calculate L,(7=0 °K) by using the ex-
act solution,'®'® which gives

L(T=0°K)=%-1n2. (3.6)

In Fig. 10 this value is shown for comparison. Un-
fortunately, an exact solution for L,(7'=0 °K) of the
infinite one-dimensional Hubbard model does not
exist.
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IV. COMPARISON OF HIGH-TEMPERATURE BEHAVIORS
WITH RESULTS PREDICTED BY HUBBARD’S APPROXIMATE
THEORY

In Sec. II we showed that, when U/A>1, two types
of excitations—collective spin-wave excitations
and single-particle excitations—contribute to the
thermodynamic quantities almost independently.

SHIBA AND P. A. PINCUS
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In the low-temperature region, where spin-wave
excitations are dominant, Bonner and Fisher’s
calculations were useful in understanding our re-
sults. On the other hand, at high temperatures,
the convergence of our results for finite systems
is too slow to accurately extrapolate to the infinite
system. In such a situation even an approximate
theory may be helpful, if it is relevant to this tem-
perature region. In this section we show the re-
sults which Hubbard’s approximate theory! (his
“improved” approximation) predicts, and compare
them with exact calculations for finite systems. It
turns out that his theory semiquantitatively repro-
duces our results for the thermal properties in the
high-temperature region, if U is large compared
with £.

Hubbard proposed an approximate treatment of
the correlation effect in his paper on the Mott
transition.! The basic assumption behind his trun-
cation scheme of the Green’s functions is that,
when U/t is large, the motion of an electron, say,
with up-spin strongly perturbed by the presence of
electrons with down-spin, is so randomly modulated
that we may apply a theory of disordered alloys,
now famous under the name of the coherent poten-
tial approximation (CPA),2*~2% to this case by slight-
ly modifying it. Some of the important features of
his theory are as follows:

(i) It gives the exact result for £=0 (sometimes
called the atomic limit) and only approximately
gives the linear term in ¢.

(ii) Coupling with collective spin-wave excita-
tions, which are important at low temperature, is
neglected.

(iii) When U/t is small, it gives a metallic
ground state. On the other hand, the exact solution

Lo
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FIG. 8. Temperature dependence of the
correlation function L;, which characterizes
the magnitude of local moments. The total
number of atoms is six, and typical values
of parameter U/t are chosen. The cross at
T =0 °K shows the value which the exact solu-
tion for the infinite chain predicts. The
arrow shows the limiting value of L, at high
temperature given by the formula (3.3), i.e.,
@ #)=0.409.

o

%.

3/8 L
/ 20
kgT/1



o

THERMODYNAMIC PROPERTIES OF THE ONE-DIMENSIONAL. ..

1975

T T T T T T T T

3/44

10r

T

6.0

5.0

4.0

/8. 1 1 I | | | 1 1
/8

T

FIG. 9. Correlation function L, at 7=0°K
7] vs U/t for the infinite chain.
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for the one-dimensional system has an insulating
ground state.

It is well known?’ that in one-dimensional disor-
dered systems the CPA is not a good approximation
for the density of states. So one may argue that,
in this sense, Hubbard’s theory applied to one-di-
mensional systems is not reliable. But in our dis-
cussions on thermodynamic properties at high tem-
peratures only the gross features of the electronic
structure are important. Thus even his approxi-
mate theory should be adequate.

In this sectionwe assume that the system is para-
magnetic, since we are interested in the high-
temperature region. There are some attempts
to extend Hubbard’s theory (his first work on the

29,30

1 w=Ul = (ny))=Qw)

0.0

correlation effect) to the antiferromagnetic phase.
But at low temperatures, the detailed structure of
the electronic state neglected in his theory may
play an important role.

According to Hubbard, the one-particle Green’s
function with wave vector E, energy w, and spin o
for the Hamiltonian [Eq. (1.1)], plus a Zeeman term
due to the uniform magnetic field, can be written
as

1

= = —_ '1
Flw+ougH) - (0=+or-), @.1)

Gyg(w)

where the inverse of the locator F,(w) is related to
the “atomic self-energy” €,(w) by

Fo(w) [(U - <n-u> Qu(w)] [(.U -U- (1 - <n-a >)Qc(w)] - Qg(w)("-o >(1 - <n-o >) ’

The “atomic self-energy” Q,(w), which describes
the scattering processes, consists of three distinct
contributions:

QW)= (W) + Q. (W) -2 (U~-0w), (4.3)

where the first term of the right-hand side is called
the scattering correction and the second and third
terms are the resonance broadening corrections.
Now the self-energy Q.(w) is connected with F,(w)
by the self-consistency equation

Qu(w) = Fy(w) = [(1/N) 20z Ggo(w)]™ . (4.4)

This is a brief summary of mathematics of Hub-
bard’s theory. These four equations [Eqs. (4.1)-
(4.4)] form a set of equations in Hubbard’s theory.
Since in our case the unperturbed density of states
o(w) given in (2. 3) is simple and symmetric with

(4.2)

respect to its center, and our system is assumed
half filled, these coupled equations can be simpli-
fied to a large extent. In fact, by using (2. 3) we
find that

i
[Ga)R- F, (P2

1 2 Gyolw) =

i (4.5)

Thus, choosing the origin of the energy at U/2, we
obtain the following cubic equation for the locator
F(w) in the case of zero magnetic field:

BwF® +(9[w? - (34)%] - {16w? + 6[w? - (U] }) F2
+{8w[w? = (G U] +18w(3 A2} F
{-[w? = QUPE - 902(a)%}=0 .

It is easy to find the density of states D(w),

(4.86)
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FIG. 10. Temperature dependence of the
correlation function L (6=1, 2), which gives
us the information on the spin correlation on
-1 different sites. The total number N of atoms
is six. The cross shows the value of L, for the

infinite antiferromagnetic Heisenberg chain ob-
tained from the exact solution (Refs. 12 and 13)
-1 (see the text). The upper part of this figure

—| shows L, and the lower part indicates the tem-
perature dependence of Lj.

10 20 0 40
kgT/t

D(w)= —% Imzl—\,Z) Gylw),

@.7)
by solving Eq. (4.6). Figure 11 shows the profile
of D(w) for two typical values of U/¢. The critical
value, at which the energy gap first appears at w
=0, is given by

U,./A0=3V6 . (4.8)

Incidentally, this value is larger than the value
+V'3 obtained by Hubbard,! assuming that p(w) is
elliptic, because in our case the unperturbed den-
sity of states is very large at the band edges.
Once the locator F(w)™!is found from Eq. (4. 6),
it is straightforward to calculate specific heat,
magnetic susceptibility, etc. Here we sketch the
derivation of the formulas needed to calculate
these quantities and show our numerical results.

A. Specific Heat

The average of the energy,

@6 )= =20 t,; (C1,Cio )+ UL (ny my. ) 4.9)
ijo i

can be expressed in terms of a one-particle Green’s

function in the form®

<R>=§fmdwf(w)(w+ek) (— i) ImG,(w)+3UN

=[: dwf(w) (—%) Im((w +F)§ F_l €)+%UN,
(4.10)

where the Fermi distribution function is f(w). Since
the chemical potential always stays at zero irre-
spective of temperature, we have for the specific
heat

0051

FIG. 11. Density of states D(w) of one-
particle excitations which Hubbard’s approxi-
7| mate theory predicts for the one-dimensional
half-filled-band Hubbard model. The system
is assumed to be paramagnetic. Two typi-
cal values of U/t are chosen.

-20 0.0 2.0 40
w/t
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Io) " dw  w w Y2/ 1 ceptibility, we must retain all linear terms in the
Nkg =/ kgT kgT <2 cosh 2k T) ( 7_{) magnetic field. In Hubbard’'s formulation the scat-
0T tering processes included in ,(w) are changed by
1. 1 the magnetic field through the average number of
X Im((w * F)N :E F- ek> - @1 electrons (n,). Thus there are extra contributions
. . . e besides the shift of the energy bands due to the mag-
B. Static Uniform Magnetic Susceptibility netic field. Carefully retaining linear terms in
In order to determine the expression for the sus- Eqs. (4.1)-(4.4), we finally find that
|
o\ / 1 / / 1 (FUP - (w-F)? 3 )]
= -] [ = 1 -= .
z_dsé_N fdw ( aw) ( n) ImZ [ +U dwf(w)( O larrsa c s £F) 0 @12
I
where Z=(1/N)?,G,(w). In the above expression where [, |, denotes the anticommutator, and A(¢)
the numerator comes from the shift of energy band, is the Heisenberg representation of the operator A.
while the second term in the denominator arises Since in Hubbard’s theory the Green’s function
from the change of the scattering processes. «Qa —n,-.)C,-.; C}, » is related to the one-particle
’ : . T g -
C. Magnitude of Local Moments Qreen s funcf:lon.((cj, ; Cj+)) by a simple expres
sion, we easily find that
It is not difficult to obtain the formula for the 3 w 1 LU wi F
magnitude of local moments L, introduced in Sec. Ly(T) =Z/ dw f(w) (— ;) Imz——l—U———— 20 Gylw) .
IL: - 2 *
(4.186)
T)= 7)2
Ly(T) (3/N)Zf (55 Figures 12-14 show the temperature dependence
=(8/2N)20; (n;(L =n,.) ), (4.13) of the specific heat, susceptibility, and the magni-
tude of local moments, respectively, at a typical
where the average (n,-'(l,- n;,) ) can be calculated value of U/t. In this theory the contribution to the
frfom the retarded Green’s function (((1 -#;,)C;,; specific heat is associated with single-particle ex-
Cj, ) by using the spectral theorem citations across the so-called Hubbard gap. The
© susceptibility decreases at low temperature be-
(g (L =n;.))= f.w dwf(w) (- 1/7) cause of this gap. However, spin-wave contribu-
xIm (1 -#n;,)C),; c’]{' N, (4.14) tions whllch are neglected in this Hubbard theory are
actually important for the low-temperature behav-
Here the retarded Green’s function ((4; B)) is de- ior of the specific heat as well as the susceptibility.
fined by For the same reason, the decrease of the magni-

o ot s tude of local moments clearly observed in Fig. 8
(4; B))= f.w date'** (-14) ((A(5), BO)],), (4.15) is lacking in Fig. 14. Comparing these figures

T T T T

061 -
o FIG. 12. Temperature dependence of
= 04 “| specific heat according to Hubbard’s approxi-
S mation. The system is assumed to be para-

L magnetic. The parameter U/t is taken as
8.
0.2

10 20 o1 30 10
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FIG. 13, Variation of the susceptibility

T x/Npg/t) with temperature, which Hubbard’s
approximation gives under the assumption
that the system is paramagnetic throughout
the entire temperature domain.

10 20 30 )
kgT/t #0

with the results for finite systems shown in Secs.
II and III, we find that, in the high-temperature
region, say, kz7>1.5¢, Hubbard’s theory gives
fairly good results, when U/¢=8, judging from our
exact calculations. We believe the reason for this
is that at high temperatures most states contribute
with almost equal weight, and therefore the motion
of an electron may be regarded in some sense as
random. In the calculation of the specific heat [see,
for instance, Fig. 1(c)] the convergence is so slow
that it is difficult to extrapolate to the infinite
chain. But with the aid of Hubbard’s theory we
guess that the second peak of the specific heat is
located at slightly lower temperature than U/4k;.

V. DISCUSSION

In order to obtain a feeling for the finite-temper-

ature properties of the one-dimensional half-filled-
band Hubbard model, we have calculated various
thermodynamic quantities and correlation functions.
The picture we have obtained is the following: When
v/az 1, we can discriminate two temperature re-
gions. In the high-temperature region around
U/4ky the gradual formation of local moments oc-
curs, while in the low-temperature region the
short-range antiferromagnetic ordering is domi-
nant for the thermal behavior. When U/ A becomes
small, passing through the intermediate region lo-
cated around 1, the two regions overlap with each
other and the thermal properties of our system are
essentially the same as those of the noninteracting
system, except for some slight modifications such
as the enhancement of the susceptibility, etc.

When U is small compared with A, we can apply

3/4

4.0

FIG. 14. Magnitude of local moments L, vs
temperature according to Hubbard’s approxi-
mation for paramagnetic state.

38 ' 2.0 )
keT/t
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the molecular-field approximation (or, more gen-
erally, the random-phase approximation) to our
system. Although the molecular-field approxima-
tion predicts long-range antiferromagnetic ordering
at low temperatures, the order parameter is so
small in this region of U that the singularity at the
Néel point is not appreciable. In fact, we find that
for U/AS 3 the random-phase approximation gives
semiquantitatively reasonable results.*

The behavior of the thermodynamic properties,
including some correlation functions, for U/A21
is interesting in connection with a controversial
problem of localized-spin-like behaviors in itiner-
ant-electron ferromagnets. Some authors®*3 have
tried to approach this question by using the func-
tional integral method, but unfortunately this has
not vastly improved the situation. For the itinerant-
electron antiferromagnet there is an attempt®®
based on the molecular-field approximation, but it
is also far from convincing. Although our model is
very simple, we hope our results have clarified
some aspects of the complicated intermediate situ-
ation between localized and itinerant magnetism.

1979

As our studies are restricted to the one-dimen-
sional system, we cannot say anything convincing
beyond this, but we conjecture from our results
that in three-dimensional system, when U/A is
large, the formation of local moments in the high-
temperature region will still stay gradual and
broad, while the antiferromagnetic correlation at
low temperature will turn into a long-range order-
ing.

Note added in proof. In this work we applied
the canonical ensemble method, whichis appropriate
to “real” molecules. The results of the applica-
tion of the grand canonical ensemble, which is
more useful for extrapolation to the infinite sys-
tem, will be published in the near future.
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Approximate kinetic equations have been derived for the critical dynamical variables of easy-

axis ferro- and antiferromagnets.

influence on the dynamics of the long-wavelength fluctuations of the order parameter.

Particular attention is paid to nonlinear couplings and their

The non-

linear nature of the problem is reflected in the inverse reduced-susceptibility matrix, When on-
ly the linear susceptibilities are retained the equations reduce to those of Schwabl and Michel.

Including both linear and nonlinear susceptibilities leads to a number of new effects.

Among

these are the renormalization of the decay rates, a change below T, in the relative weights of
the two central peaks in the linear dynamical susceptibility of the antiferromagnetic order
parameter, and the introduction of a high-frequency background in the order-parameter power

spectrum.
independent of temperature.

Provided the thermodynamic scaling laws are obeyed, these effects are essentially
An experimental test of the theory involving measurements of the

width of the imaginary part of the dynamic susceptibility of the ferromagnetic order parameter
at corresponding temperatures above and below T, is proposed.

I. INTRODUCTION

According to the current interpretation, ! insofar
as the critical dynamics is concerned, magnetic
systems undergoing second-order phase transitions
fall into two categories. In the first category are
the so-called conventional systems, which are char-
acterized by the property that, as the critical point
is approached from the high-temperature side, the
fluctuations in the order parameter decay at a rate
which, in the first approximation, is inversely pro-
portional to the corresponding susceptibility. The
unconventional or strong-coupled systems are those
where the decay rate has a weaker temperature de-
pendence. Easy-axis ferro- and antiferromagnets
are in the first category, while isotropic and planar
ferro- and antiferromagnets are in the second.

(In applying these criteria it must be kept in mind
that when the anisotropy is weak, e.g., MnF,, fully
conventional behavior may be realized only at tem-
peratures very close to T,; at higher temperatures
the dynamics may resemble that of isotropic sys-
tems. ?

The purpose of this paper is to examine in detail
the critical dynamics of conventional systems, with
particular emphasis on the nonlinear effects. The
approach will be sufficiently general to encompass
both ferro- and antiferromagnets at temperatures
above and below the critical temperature. The

starting point in the analysis is a set of kinetic equa-
tions for the critical dynamical variables which was
obtained recently by Kawasaki.® As discussed by
him the critical dynamical variables are those
variables whose long-wavelength fluctuations decay
very slowly near the critical point. Included in this
set are the hydrodynamic variables as well as the
order parameter, if the latter is not conserved. In
addition, in a nonlinear theory one must also include
products of these variables. For easy-axis ferro-
magnets the critical variables are combinations of
the energy density and the magnetic-moment density
along the preferred axis. If the Hamiltonian has

the property of being invariant with respect to spin
rotations about the preferred axis, then the order
parameter is also a hydrodynamic variable. In the
case of easy-axis antiferromagnets the critical
dynamical variables are normally the energy den-
sity, the magnetization density (provided the sys-
tem has the rotational symmetry mentioned above),
and the staggered-moment density along the pre-
ferred axis. Since the uniform field susceptibility
of an antiferromagnet remains finite at the critical
point, the fluctuations in the magnetization do not
behave anomalously. Furthermore, in the absence
of an external field, which we will henceforth as-
sume, there is no linear thermodynamic coupling
between the magnetization and either the staggered
magnetization or the energy. Although nonlinear



