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We solve exactly for the thermodynamic properties of a linear chain of classical spins with
near-neighbor bilinear and biquadratic isotropic exchange interactions. At zero temperature
the system can be either ordered or disordered, depending on the relative magnitudes and
signs of the bilinear and biquadratic exchange. In addition, it is found that at finite tempera-
tures “disorder points” occur, at which the correlation functions change in character from
monotonic decreasing functions of distance to oscillatory functions. The disorder points found
here are of interest because they occur even though the interactions are restricted to nearest

neighbors.

I. INTRODUCTION

We study the statistical mechanics of a linear
chain of classical spins interacting with the Hamil-
tonian

3C=J121§1 . §M+Jin(§i - 802, 1)

Here §¢ is a unit vector at the ith site in the chain
with components S, S}, Si. It is well known that
such one-dimensional nearest-neighbor systems
cannot exhibit long-range order at nonzero tem-
peratures and as such they are of limited interest.
Long-range order may appear at 7'=0, however,
and in some sense a phase transition may be said

to occur there. The Hamiltonian (1) is of interest
in this case because for a range of positive values
of J, the system does not order even at 7=0, and

a study of this regime illustrates the mathematical
mechanism of the phase transition, The statistical-
mechanical properties of (1) with J,= 0 were first
studied by Fisher.! Later, Joyce? derived these
properties by using the transfer-matrix method.

A straightforward application of this method enables
us to solve for the properties of (1), and this is
done in the following sections.

Hamiltonians of the form of (1) arise in magne-
tism. The biquadratic term J, is ordinarily small
in systems where the orbital motion is quenched,
but can be large in systems where the orbital mo-
tion is important and where a pseudospin for-
malism is used to describe the energy levels. 3 Also,

a treatment of orientational transitions in molecular
crystals? has been based on a three-dimensional
form of Eq. (1), and, with J;=0, Eq. (1) may be

used to describe the interaction between atoms in
liquid crystals. In studying (1) it is necessary to
consider, besides the usual “magnetic” order
parameter M=(S%, the “quadrupolar” order
parameter @= 3(3(S%?-1), since the biquadratic
term can cause order of this type while it does not
directly produce magnetic order.® The interplay
of these two order parameters can be seen even in
the simple one-dimensional model treated here.

Another point of interest of this model is that it
exhibits a disorder point of the second kind, as de-
fined (following Widom and Fisher) by Stephenson,®
for a range of positive values of J, [when the two
terms in (1) “compete”]. The disorder point is,
in this case, a temperature 7, at which the quad-
rupole-quadrupole near-neighbor correlation func-
tion changes sign. Below T,, the correlations de-
crease monotonically with distance, while above
this temperature they have an oscillatory behavior
with a temperature-independent wavelength equal to
twice the nearest-neighbor separation. Thedisorder
points occur whether or not the system orders at
T=0, and, for a small range of parameters J; and
Jy, two disorder points are found.

Stephenson® has given several examples of dis-
order points in Ising models with competing near-
est-neighbor and next-nearest-neighbor interac-
tions. The system considered here differs from
those discussed by Stephenson in that the interac-
tions here are between nearest neighbors only and
the spins have a continuous range of variation. We
conclude, however, that the presence of the dis-
order points is, in all cases, a consequence of
competition between two “kinematically coupled”
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order parameters, i.,e., two order parameters one
of which cannot be varied arbitrarily without af-
fecting the other. The cases considered by Ste-
phenson are the magnetization and the sublattice mag-~
netization, while in our model the order parameters
are those mentioned above, i.e., the magnetiza-
tion (dipolar order) and the quadrupolar order.

In the following sections we calculate the free-
energy and the correlation functions, We then dis-
cuss the ground-state properties and, finally, the
thermal properties and disorder points.

II. FREE-ENERGY AND CORRELATION FUNCTIONS
A. Partition Function

All thermodynamic quantities can be obtained
from the partition function, which is most directly
evaluated in terms of the eigenvalues of the transfer
kernel. As shown by Domb,’ the partition function
for a chain of N spins is given by

z=23, @)

n=0
where the quantity X, is the nth eigenvalue of the
integral equation

ninBa= [ B ooy, )

with, in our case, Hyy=J,5, - §,+J,(5, - §,)% In the
thermodynamic limit N~ «, we need only the larg-
est eigenvalue X, and Z~)Y,

It is easily seen that the eigenfunctions of (3) are
the spherical harmonics® as long as Hy, is a func-
tion only of the scalar product § Sz This is, of
course, the case for the Hamiltonian (1). Setting
5. S2~ cos@la we have

exp(— BJ; cosfy, — BJ, c08%6,,)

= 35 @21+ 1)\, P, (cosby,), (&)
1=0

where A; are the coefficients obtained by expanding
in terms of Legendre polynomials, They are given
by

=4 [T e ¥ by () dx, (®)
Using the addition theorem we have

Pl(coselz)‘ Z Yo (5) Y5 (8, 6)

where §1 and Sz are referred to arbitrary axes, we
see that

ez = 4r 3, Y8 YE(S). Q)

Inserting (7) into the eigenvalue equation (3) and
using the orthonormality properties of the spheri-
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cal harmonics we verify that the X, of Eq. (5) are

also the eigenvalues of (3), and the eigenfunctions

are the spherical harmonics ¥, (S;). The largest
eigenvalue clearly occurs for [ =0, and can be ex-
pressed in terms of the error function®:

No= 1 (632 )1/2 B"l/uz{erf[(ﬁef )1/2(14- A )]
+ erf[(ﬁJz)”z< 1- 2%};.)]} . (8)

Note that the partition function and hence the free
energy is a function of Jz The operation J; =~ - J,
is equivalent to letting Si -— S at every other site
along the chain, It is a unitary operation in the
classical-spin case and therefore allowable; this
is not true for quantum spins, of course,

It is worth observing that a more general isotro-
pic Hamxltoman like (1), but containing additional
terms (3, - 5,,,)", would also have eigenfunctions
Y,.(S,) but different eigenvalues 2.

B. Correlation Functions

The thermal average of two quantities @; and
ozm, which are functions of the spin vectors at ¢
and ¢+ 7, can also be expressed in terms of the
eigenvalues A, of the transfer matrix. We have

<a anr>— f fd(iiﬂ)N i

-BH ! -BH
ce i oy g e PINL
©)

Using the expansions (4) and (5) and the orthogonality
of the spherical harmonics we have in the limit

N = oo
Y = = >
(a2 (3 (f o5 va) arn @)

X <fd§i+r Yl,“m(§l+r)a;+r Y00(§i+7‘)> . (10)
Of particular interest in the present case are

<§i . §i+r> = O‘l/ho)r ’ (11)

X e'Ble .

(38, 8,07 = D=0/ (12)

Both the correlation functions (11) and (12) have
the property that they vanish at infinite tempera-
ture and become equal to +1 if the ground state

is ordered. It is easy to see from (5) and (11)

that the nearest—nelghbor dipolar correlation func-
tion (Sf $,.1) always has the sign of ~J,, i.e.
J1{8;+ §;+ 1) <0 and so there can be no dipolar d1s-
order point. This is not the case for the quadru-
polar correlation function (12) since (A,/X;) may
change sign as a function of temperature and quad-
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FIG. 1. Solidlines lJ,/J11=0.5 for positive J,divide the
ordered and disordered regimes at T=0, whichlieon the
left- and right-hand sides of the diagram, respectively. The
lightly shaded region, which coversbothkinds of 7'=0 regimes,
has ond disorder point in the quadrupolar correlation func-
tion. Theheavily shaded region, whichlies entirely inthe
disordered T'=0 regime, has twodisorder points in the qua-
drupolar correlation function and lies in the wedges defined by
0,87 < |Jy/Jy| <0.92 for positive Jj.

rupolar disorder points do exist. It is useful to
define a dipolar correlation length R, and a quad-
rupolar correlation length Rq by

1/Rp=—1n|2 /x| (13)
and

1/Rq=~1n|%/2] , (14)
so that (11) and (12) may be written

|<§i'§i+r>| =e~r/RD, (15)

| (3(8;-8,,)2- )] =e" R, (16)

These definitions of the correlation lengths R, and
Rg allow both for the case when the correlations
decrease monotonically with distance and the case
when they decay in an oscillatory manner. We note
also that the more general interactions mentioned
at the end of Sec. II A could produce dipolar dis-
order points as well,

III. GROUND-STATE PROPERTIES

The ground state is obtained by putting §, « S
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FIG. 2. Nearest-neighbor quadrupolar correlation
function (%(E,'gm)z —3) plotted as a function of temper-
ature 1/8J;=kT/J; for negative J, and J,/J;=—=0.3, —0.86,
-0.9, —=1.2, -1,5,

=cos@ in the Hamiltonian (1) and minimizing the
energy with respect to 6. The result is shown in
Fig. 1. From J,/J;=0.5 moving in a counterclock-
wise direction to J,/J;=0.5, the ground state is
ordered with all the even eigenvalues Xy, X, A4,
etc., being 1 and all the odd eigenvalues Ay, A5,
A;, ete., being -1 if J, is positive, 0 if J; is zero,
and 1 if J, is negative. In this region the spins
align either parallel or antiparallel and long-range
order exists.

The rest of the area in the J;, J, plane in Fig, 1
represents a disordered ground state in which
cosf= —J1/2J2 and there is no long-range order.
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FIG. 3. Quadrupolar correlation length Rq plotted
against temperature 1/8J; for negative J, and J,/J;
=-0.3, —-0.6, —0.9, —1.2, —1.5. Rg goes to « at
zero temperature, corresponding to an ordered ground
state.
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KT7d,

FIG. 4. Nearest-neighbor quadrupolar correlation
function (%(S,‘ SM)2—%) plotted as a function of tempera-
ture 1/BJy for positive J, and J,/J;=0.3, 0.6, 0.9, 1,2,
1.5. The curves cross the x axis at the disorder points,
either 0, 1, 2 times for J,/J;=1.5, 1.2, 0.9, 0.6, 0.3,
respectively.

The reason no long-range order can exist is well
illustrated by the case J; =0 where 6= 47 or 3.
Clearly, there are many ways of arranging a linear
chain of spins so that the angle between neighbors
is 47 or 27 and spins far apart will only be weakly
correlated. This “packing problem” is similar to
thatwhich occurs in the two-dimensional triangular-
net Ising model® which orders when the interac-
tions are ferromagnetic but has a finite entropy at
T'=0 when the interactions are antiferromagnetic.
In this region, the other eigenvalues are given by
X, =P, (=J,/2J,) and |2, 0] <1, so that there is no
eigenvalue degeneracy in the disordered region.

IV. THERMAL PROPERTIES

As was stated in Sec. III, the dipolar correla-
tion function (3; - S,,,) does not change sign as a
function of temperature. It goes from its zero-
temperature value to zero to high temperatures,
The dipolar correlation length R, has a finite value
at 7=0 in the disordered region and is infinite at
T=0 in the ordered region: In both cases it goes
to zero as the temperature goes to infinity, The
behavior associated with the dipolar correlation
function is therefore rather uninteresting and we
shall not pursue it further.

On the other hand, the quadrupolar correlation
function (3(S; - §,,,)%~ %) can go through zero at
finite temperatures. As{3(S;.§,,,)%- L isa
function of J% we only consider positive J;,. In
Fig. 2 we show the quadrupolar correlation func-
tion for nearest neighbors plotted against tem-

perature for negative J, and various values of J,/J;.

The correlation function goes to 1 at zero tempera-
ture, showing from (12) that x,=2,, and we have

o

an ordered ground state. As the temperature is
increased the correlations go smoothly to 0. In
Fig. 3, we show the quadrupolar correlation length
R, as a function of temperature, calculated from
(14). At low temperature R goes to infinity and
as the temperature is increased it goes smoothly
to 0. We see, therefore, that there are no dis-
order points when J, is negative, This is be-
cause the quadrupolar term in (1) wants to align
the spins parallel or antiparallel and the dipolar
term determines which configuration is stable.
There is therefore no competition between the two
terms. This is not the case when J, is positive
since then the quadrupolar term wants to put the
spins at right angles, whereas the dipolar term
wants to have them either parallel or antiparallel.
This competition can favor one term in one tem-
perature regime and the other in another tempera-
ture regime, thus leading to a disorder point.

In Fig. 4, we plot the quadrupolar correlation
function against temperature for positive J, and
various values of J,/J;. We see that the correla-
tion function can indeed go through zero, once for
J,/J;=0.3, 0.6; twice for J,/J;=0.9; there is no
disorder point for J,/J;=1.2, 1.5. Figure 5 shows
the correlation length R, as a function of tempera-
ture and it can be clearly seen where the correla-
tion length goes to 0 giving a cusplike appearance.
This is very similar to the behavior found by Steph-
enson® for a one-dimensional Ising model with com-
peting nearest- and next-nearest-neighbor inter-
actions. When ( ¥(S; - S;,1)% = 3)= (A2/2o) is nega-
tive, the quadrupolar correlations (12) decay in
an oscillatory way with distance, changing sign at
each site. This corresponds to a wavelength of
twice the nearest-neighbor separation., This de-

kT/J’

FIG. 5. Quadrupolar correlation length Rg plotted
against temperature 1/8J; for Jo/J;=0.3, 0.6, 0.9, 1.2,
1.5. Rggoes to zero at the disorder points and goes
to = if the ground state is ordered and a finite value if
it is disordered.
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FIG. 6. Plot of the disorder temperature kTp/J;
against J,/J; for J, positive. T, is defined as the tem-
perature at which Rg=0 (excluding infinite temperatures).
For Jo/J1 <3V 3=0.87 there is one disorder point, for
0,87< |Jy/J11<0.92 there are two disorder points, and
for |Jy/Jy1>0.92 there are no disorder points. The
ground state is ovdered for |J,/J;]1 <0.5 and disordered
for |Jy/Jy]1 >0.5, In the upper part of the diagram, the
correlations decay in an oscillatory way, whereas in the
partbelow the locus of disorder temperatures, the correla-
tions decay monotonically.

fines a temperature-independent wavelength, and
so we have a disorder point of the second kind as
defined by Stephenson.® Stephenson also defined
a temperature Ty at which the relevant correla-
tion, in this case ( 3§, §,,,)% - 1), gives zero
contribution to the energy = (H). It is clear in this
simple model that Tz=T,.

In Fig. 6, we show the locus of T, (defined as
the temperature at which Ry=0) as a function of

|J3/J, 1. It can be seen that two disorder points
can occur only for a very narrow range of values:
0.87<|J,/J,1>0.92. At temperatures between these
two disorder points the correlations decrease
monotonically with distance, whereas at low and
high temperatures they decay in an oscillatory
manner. The information in Fig. 6 is summarized
in Fig. 1, where it can be seen that a single dis-
order point can occur either with an ordered or a
disordered ground state, but two disorder points
occur only in the disordered ground-state region.

V. CONCLUSIONS

We have shown that a system of classical spins
interacting isotropically with a Heisenberg and
a biquadratic exchange between nearest neighbors
can be solved exactly in one dimension. This
interaction can lead to an eigenvalue degeneracy
at T=0 and hence ordering for some values of the
parameters. For other values of the parameters
there is disorder even at T =0 because of the
“packing problem.” At finite temperatures, a dis-
order point may occur when the dipolar and quadru-
polar interactions compete. At this temperature
the character of the quadrupolar correlations
changes from monotonically decreasing to oscilla-
tory. For a small range of parameters two dis-
order points occur. It is expected that similar be-
havior may be observed in higher dimensions when
competing interactions are present.

After this work was completed, we received pre-
prints of a similar treatment of this problem by
Liu and Joseph.!! They have calculated the eigen-
values of the transition matrix for interactions
which are an arbitrary function of S; - §m, but they
have not considered the disorder points.
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