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We solve exactly for the thermodynamic properties of a linear chain of classical spins with
near-neighbor bilinear and biquadrat;ic isotropic exchange interactions. At zero temperature
the system can be either ordered or disordered, depending on the relative magnitudes and
signs of the bilinear and biquadratic exchange. In addition, it is found that at finite tempera-
tures "disorder points" occur, at which the correlation functions change in character from
monotonic decreasing functions of distance to oscillatory functions. The disorder points found
here are of interest because they occur even though the interactions are restricted to nearest
neighbor s.

I. INTRODUCTION

We study the statistical mechanics of a linear
chain of classical spins interacting with the Hamil-
tonian

K= J,Q;S( ~ S(„+J2+;(S; ~ 5;,q)

Here S, is a unit vector at the ith site in the chain
with components S", , $', , $', . It is well known that
such one-dimensional nearest-neighbor systems
cannot exhibit long-range order at nonzero tem-
peratures and as such they are of limited interest.
Long-range order may appear at T=0, however,
and in some sense a phase transition may be said
to occur there. The Hamiltonian (1) is of interest
in this case because for a range of positive values
of Jz the system does not order even at T= 0, and
a study of this regime illustrates the mathematical
mechanism of the phase tr ansition. The statistical-
mechanical properties of (1) with J2= 0 were first
studied by Fisher. ' Later, Joyce derived these
properties by using the transfer-matrix method.
A straightforward application of this method enables
us to solve for the properties of (1), and this is
done in the following sections.

Hamiltonians of the form of (1) arise in magne-
tism. The biquadratic term Jz is ordinarily small
in systems where the orbital motion is quenched,
but can be large in systems where the orbital mo-
tion is important and where a pseudospin for-
malism is used to describe the energy levels. 3 Also,
a treatment of orientational transitions in molecular
crystals has been based on a three-dimensional
form of Eq. (1), and, with Z, =O, Eq. (1) may be

used to describe the interaction between atoms in
liquid crystals. In studying (1) it is necessary to
consider, besides the usual "magnetic" order
parameter M = (S',), the "quadrupolar" order
parameter Q= —,'(3(Sf) —1), since the biquadratic
term can cause order of this type while it does not
directly produce magnetic order. ' The interplay
of these two order parameters can be seen even in
the simple one-dimensional model treated here.

Another point of interest of this model is that it
exhibits a disorder point of the second kind, as de-
fined (following Widom and Fisher) by Stephenson, e

for a range of positive values of J~ [when the two
terms in (1) "compete" ]. The disorder point is,
in this case, a temperature T~ at which the quad-
rupole-quadrupole near-neighbor correlation func-
tion changes sign. Below T~, the correlations de-
crease monotonically with distance, while above
this temperature they have an oscillatory behavior
with a temperature- independent wavelength equal to
twice the nearest-neighbor separation. The disorder
points occur whether or not the system orders at
T=O, and, for a small. range of parameters J, and

Jz, two disorder points are found.
Stephenson has given several examples of dis-

order points in Ising models with competing near-
est-neighbor and next-nearest-neighbor interac-
tions. The system considered here differs from
those discussed by Stephenson in that the interac-
tions here are between nearest neighbors only and
the spins have a continuous range of variation. We
conclude, however, that the presence of the dis-
order points is, in all cases, a consequence of
competition between two "kinematically coupled"



order parameters, i.e. , two order parameter s one
of which cannot be varied arbitrarily without af-
fecting the other. The eases considered by Ste-
phenson are the magnetization and the sublattice mag-
netization, while in our model the order parameters
are those mentioned above, i.e. , the magnetiza-
tion (dlpolar order) Rnd 'the quadrupolar order.

ID the following sections we calculate the free-
energy and the eorre]. ation functions. %e then dis-
cuss the ground-state properties and, finally, the
thermal properties and disorder points.

II. FREE-ENERGY AND CORRELATION FUNCTIONS

A. PRl'tltlon FUnCtlon

All thermodynamic quantities ean be obtained
from the partition function, which is most directly
evaluated in terms of the eigenvalues of the transfer
kernel. As shown by Domb, v the partition function
for a chain of N spine is given by

(2)

where the quantity A.„ is the nth eigenvalue of the
integral equation

~„I))„(8,}= —' e-'")a g„{8,),

cal harmonics we verify that the X, of Eq. (5) are
also the eigenvalues of (3), and the eigenfunctions
are the spherical harmonics F, (8,). The largest
eigenvalue clearly occurs for l = 0, and can be ex-
pressed in terms of the error functione:

I/P.

e ) ~ ~ erf (pJ' )'~~ I + -- '—
ps,

(pJ ))/3 I 1 ~ {8)
2~a-

Note that the partition function and hence the free
energy is a function of J,. The operation J,--J,
is equivalent to letting 8, -- S; at every other site
along the chain. It is a unitary operation in the
classical-spin case and therefore allowable; this
ls not. true for quantum splns, of course.

It is worth observing that a more general isotro-
pic Hamiltonian like (1), but containing additional.
terms g,.(R, ~ 8;„)",would also have eigenfunctions
F, (8;) but different eigenvalues 1).,

B. Conelation Functions

The thermal Rve1'Rge of two quantltles Q and
a„„,which are functions of the spin vectors at i
and j+ r, can also be expressed in terms of the
eigenvalues X, of the transfer matrix. %'e have

3with, in our case, H,2= J', 8, 82+ Jz(8, Sz) . In the
thermodynamic limit N- ~, we need only the larg-
est eigenvalue ).0, and Z - 1(g.

It is easily seen that the eigenfunctions of (3) are
the spherical harmonics' as long as 8» is a func-
tion only of the scalar product 8, ~ Sz. This is, of
course the cR86 for the Hamiltonian (I). Setting
31 ~ Sp= cos813 we hRve

6XP(- P Jg Cosa)g —PeT2 Cos Hg)e)

= Z(21+ I) ~,S, (cose„), (4)

where X& Rre the coeffleieDts obtaiDed by expRDding
in terms of I.egendre polynomials. They are given
by

Using the addition theorem we have

P, (cosegg) = —— Q F, (8,) F,~ (S~),2/+1

where 8& RDd 82 Rl'e referred to albltrRry Rxes, we
see that

6-'"» = 4~+ ~,F,.(S,) F,*.(8,) .

Inserting (7) into the eigenvalue equation (2) and
using the orthonormality properties of the spheri-

ds' ~ d S~
z (4 )

)))

y e-~H». . . e-I'0&-j. , f n,. ~ ~ ~ O. ,„.~ ~ e ~»,
(9)

Using the expansions (4) and (5) and the orthogonality
of the spherical harmonies we have in the limit

(e, el. .)= Z(—,')(f~S, F,",(i) e, ),.(e,))

dst+. ~i*m S~«~+r ~oo 8~«

Qf particular 1nterest 1D the preseDt CRse Rre

(5, ~ 5,.„)= (X,/1(,)",

(-:(8, ~ 8...)'- —,'& = (~,/~.)".

Both the correlation functions (ll) Rnd (12) ha«
the property that they vanish at infinite tempera-
tu1 e Rnd become equal to k 1 1f the ground stRte
is ordered. It is easy to see from (5) and (II)
that the nearest-neighbor dipolar corr elation func-
tion (8, ~ 8;„)always has the sign of —J;, i. e. ,
Jg(5( 5(+ g) «0 Rnd 80 there can be no dipolar dis-
order point. This is not the ease for the quadru-
polar correlation function (12}since (Az/Xo) may
change sign as a function of temperature Rnd quad-
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III. GROUND-STATE PROPERTIES
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FIG. 4. Nearest-neighbor quadrupolar correlation
function (2(S&' S&,&)

—y} plotted as a function of tempera-
ture 1/PJ& for positive J& and J&/J&=0. 3, 0.6, 0.9, 1.2,
1.5. The curves cross the x axis at the disorder points,
either 0; 1, 2 times for J&/J~ ——1.5, 1.2, 0.9, 0. 6, 0.3,
respectively.

The reason no long-range order can exist is well
illustrated by the case J, =O where 0= —,'m or 3m.

Clearly, there are many ways of arranging a linear
chain of spins so that the angle between neighbors
is —,'m or —', 71 and spins far apart will only be weakly
correlated. This "packing problem" is similar to
that which occurs in the two-dimensional triangular-
net Ising model' which orders when the interac-
tions are ferromagnetic but has a finite entropy at
T = 0 when the interactions are antiferromagnetic.
In this region, the other eigenvalues are given by
A, = P, (- J,/2J2) and I A. ,XO I

& 1, so that there is no

eigenvalue degeneracy in the disordered region.

IV. THERMAL PROPERTIES

As was sta.ted in Sec. III, the dipolar correla-
tion function (3,. S;„)does not change sign as a.
function of temperature. It goes from its zero-
temperature value to zero to high temperatures.
The dipolar correlation length RD has a finite value
at T = 0 in the disordered region and is infinite at
T= 0 in the ordered region: In both cases it goes
to zero as the temperature goes to infinity. The
behavior associated with the dipolar correlation
function is therefore rather uninteresting and we
shall not pursue it further.

On the other hand, the quadrupolar correlation
function (—,(S; S;„) —-', ) can go through zero at
finite temperatures. As ( 2(S; ~ S;„) —~) is a.

function of J, we only consider positive J,. In
Fig. 2 we show the quadrupolar correlation func-
tion for nearest neighbors plotted against tem-
perature for negative Jz and var ious values of Jz/J, .
The correlation function goes to 1 at zero tempera-
ture, showing from (12) that Az= Ao, and we have
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FIG. 5. Quadrupolar correlation length R@ plotted
agains t t emperatur e 1/P J& for Jo/J ~

= 0.3, 0.6, 0.9, 1.2,
1.5. A@ goes to zero at the disorder points and goes
to ~ if the ground state is ordered and a finite value if
it is disordered.

an ordered ground state. As the temperature is
increased the correlations go smoothly to 0. In
Fig. 3, we show the quadrupolar correlation length
R+ as a function of temperature, calculated from
(14). At low temperature Ro goes to infinity and

as the temperature is increased it goes smoothly
to 0. We see, therefore, that there are no dis-
order points when Jz is negative. This is be-
cause the quadrupolar term in (1) wants to align
the spins parallel or antiparallel and the dipolar
term determines which configuration is stable.
There is therefore no competition between the bvo
terms. This is not the case when J~ is positive
since then the quadrupolar term wants to put the
spins at right angles, whereas the dipolar term
wants to have them either parallel or antiparallel.
This competition can favor one term in one tem-
perature regime and the other in another tempera-
ture regime, thus leading to a disorder point.

In Fig. 4, we plot the quadrupolar correlation
function against temperature for positive Jz and
various values of Jz/J, . We see that the correla-
tion function can indeed go through zero, once for
Ja/J, =O. 3, 0. 6; twice for Jz/J; =0.9; there is no
disorder point for Jz/J, = l. 2, l. 5. Figure 5 shows
the correlation length Rz as a function of tempera-
ture and it can be clearly seen where the correla-
tion length goes to 0 giving a cusplike appearance.
This is very similar to the behavior found by Steph-
enson for a, one-dimensional Ising model with com-
peting nearest- and next-nearest-neighbor inter-
actions. When ( ~(S; ~ S;,~)

—2) = (X2/Xo) is nega-
tive, the quadrupolar correlations (12) decay in
an oscillatory way with distance, changing sign a.t
each site. This corresponds to a wavelength of
twice the nearest-neighbor separation. This de-



so«BLz Moozr. oF rNTzHAc TrNG cr.Assrcxi, qUwDRUpor. zs. . .

l, 2

0.8

0.6

IZq/Z, I. It can be seen that two disorder points
can occur only for a very narrow range of values:
0. SV & l Ja/4, l&0. 92. At temperatures between these
bvo disorder points the correlations decrease
monotonically with distance, whereas at low and
high temperatures they decay in an oscillatory
manner. The information in Fig. 6 is summarized
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V. CONCLUSIONS

FIG. 6. Plot of the disorder temperature kTD jZ~
against J'2/J~ for J2 positive. T„ is defined as the tem-
perature at which R@=0 (excluding infinite temperatures).
For J2/4&I&2W3=0. 87 there is one disorder point, for
0.87& I J'2/4'g I &0.92 there are two disorder points, and
for I J&/J~ I &0.92 there are no disorder points. The
ground state is ordered for I J2/J& I &0.5 and disordered
for I J2/J& I &0.5. In the upper part of the diagram, the
correlations decay in an oscillatory way, whereas in the
part below the locus of disorder temperatures, the corr ela-
tions decay monotonic ally.

fines a temperature-independent wavelength, and
so we have a disorder point of the second kind as
defined by Stephenson. 6 3tephenson also defined
a temperature T~ at which the relevant correla-
tion, in this case (-,'(8; ~ 8„,)3 ——,'), gives zero
contribution to the energy =(H). It is clear in this
simple model that T~ = T~.

In Fig. 6, we show the locus of T~ (defined as
the temperature at which fto=0) as a function of

%'e have shown that a system of classical spins
interacting isotropically with a Heisenberg and
a biquadratic exchange between nearest neighbor s
can be solved exactly in one dimension. This
inter action can lead to an eigenvalue degeneracy
at T=O and hence ordering for some values of the
parameters. For other values of the parameters
there is disorder even at T = 0 because of the
"packing problem. " At finite temperatures, a dis-
order point may occur when the dlpolar and quadru-
polar interactions compete. At this temperature
the character of the quadrupol. ar correlations
changes from monotonically decreasing to oscilla-
tory. For a small range of parameters two dis-
order points occur. It is expected that similar be-
havior may be observed in higher dimensions when
competing interactions are present.

After this work was completed, we received pre-
prints of a similar treatment of this problem by
I iu and Joseph. " They have calculated the eigen-
values of the transition matrix for interactions
which are an arbitrary function of 8; ~ 8;„, but they
have not considered the disorder points.
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