
DISPERSION AND DAMPING OF. . . 1S41

26, 674 (1969).
4W. J. L. Buyers, R. A. Cowley, and G. L. Paul, J.

Phys. Soc. Japan Suppl. ~28 242 (1970).
G. Shirane, V, J. Minkiewicz. and A. Linz. Solid

State Commun. 8, 1941 (1970).
W. Cochran and A. Zia, Phys. Status Solidi 25, 273

(1968).
O. Beckman and K. Knox, Phys. Rev. 121, 376 (1961).
V. J. Minkiewicz. Y. Fujii, and Y. Yamada, J. Phys.

Soc. Japan 28 443 (1970).
M. Furukawa, Y. Fujimori, and K. Hirakawa, J.

Phys. Soc. Japan 29, 1528 {1970).
In the following, we use the group-theoretical notation

introduced in Ref. 18.
"M. J. Cooper and R. Nathans, Acta Cryst. 23, 357

(1967).
~2R. Comes, F. Denoyer, L. Deschamps, and M.

Lambert, Phys. Letters 34A, 65 {1971).
'~G. Burns and B. A. Scott, Phys. Rev. Letters ~25

167 (1970).
I K. I'ani. Phys. Letters 25A, 400 (1967).
I5E. Pytte. Phys. Rev. 8 1, 924 (1970).

K. A. Muller and W. Berlinger (unpublished).
~'M. Born and K. Huang, Dynamical Theory of Crystal

Lattices (Oxford U. P. , New York, 1956).
8R A, Cowley, Phys. Rev. 134, A981 (1964).

PHYSICA L REVIEW B VOLUME 5, NUMBER 5

Interacting Magnons in the Linear Chain

1 MARCH 1972

Hans C. Fogedby~
Department of Physics, harvard University, Cambridge, Massachusetts 02138

(Received 8 June 1971),

The magnon bound-state spectrum recently observed in the anisotropic magnetic salt
CoC12 ~ 2H&O is investigated by means of response functions. A perturbation scheme is set up
for the response functions and the transverse and longitudinal susceptibilities are evaluated to
second order in the transverse anisotropy. The effects of the Heisenberg part of the exchange
interaction are included to second order by solving a two-magnon and a three-magnon scatter-
ing problem. In the zero-field limit we evaluate under certain simplifying assumptions the
transverse susceptibility to all orders in the transverse anisotropy.

I. INTRODUCTION S S —S =2t (i. 4)

The recent observations by Torrance and Tink-
ham' of a magnon bound-state spectrum in the
magnetic crystal CoCl& 2H&O have stimulated re-
newed theoretical interest in the dynamical prop-
erties of the linear anisotropic magnetic chain. The
authors showed that their helium temperature
measurements of the absorption spectra could be
interpreted in terms of the spin-& Hamiltonian

N

2Z [ 2g» B+OS'+ j'S»S»+1+ 2j (S»S» 1+ H'c )
)=i

+ —,
' j '(s', s,'„+H.c. )], (l. 1)

[S» Sa] =+S»&*2 (& 2)

Is;,s,'] = -2s',.a»2,

where we have chosen units such that h= 1. Fur-
thermore, in the spin--,' case we obtain the length
condition

which describes a single cluster of exchange-cou-
pled Co" ions. We have included a Zeeman term
arising from an applied magnetic field in the z di-
rection. The spin operators satisfy the usual com-
mutation relations

and the minimum equations

S', S', = S,. S,. = 0 and S',. S',. = 4 .

The longitudinal and transverse anisotropy of the
exchange Hamiltonian (1. 1) is characterized by the
nearest-neighbor exchange constants j, j, and
j' [where j =~&(j "+j') and j'=~&(j"-j2)], and by
the spectroscopic splitting factors g', g", and g'.
The dimensioniess anisotropy parameters o = j /j'
and n = j '/j ' assume the values 0. 2 and 0. 08, re-
spectively, in the case of CoClz. 2HzO.

Owing to the strong longitudinal anisotropy and

to the fact that j' is of order 17'K for CoClz 2H&O

the measurements by Torrance and Tinkham probe
only the zero temperature properties of the system.
Any temperature dependence of the excitation spec-
trum will be exponentially small, i. e. , of order
e . Consequently, we shall in the present paper
confine our attention to zero temperature.

The strong longitudinal anisotropy of the exchange
Hamiltonian (l. 1) suggests treating the linear chain
as a one-dimensional Ising model in the lowest ap-
proximation. Such an approach was in fact carried
out by Torrance and Tinkham, ' who constructed
Bloch functions for the localized Ising spin devia-
tions and computed numerically the eiiects on the
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excitation spectrum due to j ' and j' by means of
ordinary perturbation theory.

The excitation spectrum of the Ising model (i. e. ,

j =j' = 0) is conveniently discussed in terms of
clusters of adjacent spin reversals with respect to
the aligned ferromagnetic ground state. The low-
est-lying states correspond to a single cluster of
one or more adjacent spin deviations and have the
excitation energies &0"'=2 j'+&@HO, w'here n is the
number of spin reversals and y= p.~g'. In a plot
of energy vs field the states are depicted as a fan
of straight lines converging at the point 2j' in the
limit of zero field. The higher-lying states consist
of two or more clusters of adjacent spin deviations
and are displayed as fans of straight lines converg-
ing at the points 4j ', 6j ', etc,

The spin clusters of adjacent spin reversals can
in a certain sense be thought of as the simplest kind
of bound states encountered in magnetic systems,
albeit bound states without spatial motion and in the
absence of a band of continuum states.

The transverse mean exchange j' gives rise to a
spatial dispersion and transforms the localized spin
clusters into the well-known multimagnon bound
states and bands of the anisotropic Heisenberg mag-
net. The dispersion law for the single-magnon
mode is the familiar result

~"&(y)=(u,"' —2j'gcosua for —m/a-0-w/a,

where a is the nearest-neighbor distance and 4
ranges over the first Bri.llouin zone. The two-
magnon bound state has the energy

a result which was first obtained by Bethe' in the
isotropic ca.se (i. e. , o= 1). Later, Orbach' ob-
tained the two-magnon dispersion law in the case
of general anisotropy. Recently Wortis and Hanus'
treated the two-magnon bound-state problem in two
and three dimensions. The dispersion laws for the
higher multimagnon bound states are not known ex-
plicitly for general values of 0. Torrance and
Tinkham, ' however, found the dispersion laws
~(ft) ~(fl) 2 ' g for g ((

Whereas the Heisenberg part j' of the exchange
interaction does not change the qualitative charac-
ter of the excitation spectrum, the transverse an-
isotropy exercises a strong influence on the energy
levels. The last term in the Hamiltonian (1. 1)
breaks the rotational invariance about the axis of
magnetization and gives rise to transitions between
the multimagnon bound states. The odd multimag-
non bound states are admixed into the single-mag-
non mode. Similarly, the aligned ground state is
broken up, owing to the admixture of even multi-
magnon bound states. Inaplot of energy vs field
the converging bound states repel one another and
assume a downward curvature in the limit of low

Xi
(1)8 —(d

8 —(d
(3)

(5)

(5)8 —(JO

X)i

2 (2)8 —(d

S (2)

(4)—Ct)

(6)

(1 7)(6)

We have here represented X, and X)) as continued
fractions, disregarding for clarity the cut structure
which arises from the magnon bands. e"' are the
energies of the even and odd multimagnon bound
states of the anisotropic Heisenberg chain. The
strengths s"' of the successive admixture of higher
bound states are all of order (j') .

In Sec. III, we set up an approximation scheme

field.
From an experimental point of view the presence

of even a weak transverse anisotropy is of crucial
importance. The transverse anisotropy relaxes the
selection rules on the transition probabilities and
makes it feasible to observe the multimagnon bound-
state spectrum in a ferromagnetic resonance ex-
periment.

The admixture of the odd magnon bound states
into the single-magnon mode will manifest itself in
the transverse frequency-dependent magnetic sus-
ceptibility, which will show a set of resonance lines
at the positions of the bound states. In a similar
fashion, the mixing of the even bound states into the
aligned ferromagnetic ground state will be dis-
played by the longitudinal susceptibility, which will
exhibit a set of absorption lines corresponding to
the even bound states.

The aim of the present paper is to extend the
theory developed by Torrance and Tinkham' to
include other aspects of the dynamical behavior of
the linear chain.

In Sec. II, we introduce the magnetic response
function which affords a comoact description of the
absorption spectrum obtained in a resonance experi-
ment. In the absence of transverse anisotropy, the
longitudinal response vanishes identically whereas
the transverse response has a pole term corre-
sponding to the excitation of a single-magnon mode,
i. e. , y„=0 and y, - (z —~"') ', This result is in
accordance with the familiar selection rules govern-
ing magnetic dipole transitions. The admixture of
the higher magnon bound states and bands caused,
by the transverse anisotropy gives rise to a com-
plicated analytic structure of the transverse and
longitudinal responses, i. e. ,



for the transverse and longitudinal response func-
tions and expand y, ' and y~ to second oxder in j '.
From the continued fractions (l. 6) and (1. 'f) we
conclude that an expansion to second order is equiv-
aleQt to tel minating the continued frRctions Rfter
a single admixture of an even magnon bound state
into the ground state in the case of y„,and of an
odd magnon bound state canto the single-magnon
mode ill the cRse of Xg) 1. 6, y

(8)

Xu 2 {P) (l. 8)

g) j a P~—
X»(P*&= »o --a

) «~ 2 &~ & ) .
(do 8 —(t)0

{1.10)
The corresponding absorptive response is given by

~ Q 2j aP+
X(( (Ph&) = &(

-
((& i

,dO

&([5(h& h&o ) f&(h&+(00 )] (1 11)

To second order in j'/yHo we derive the trans-
verse response

~ g

x.(p~)= —2+ 2
-„-o&

c
2(J )

Q)0 (y )
0

4[j '(d(o'&/((u', "-j *)]' cos'p(&
8 + (&t)()

4[j ' j '/((Jo" —j*)]'cos'pa
(3& . (l. 12I)

8 —{do

I
&(J. (1& (3&/( (8&)

Furthermore, we notice that terminating the con-
tinued fractions in the above fashion will in general
underestimate the position of the highest bound state
involved by a shift of leading order (j') /&Ho. The
intensities of the bound states, however, are cor-
rectly given to the ordex in j' considered. We also
notice that since the distance between two unper-
turbed energy levels is of order yHo (disregarding
for the moment the effects due to j'), the effective
dimensionless expansion parameter is j'/yHo. A

pex'turbation expansion in powers of j' thus becomes
in effect a high-field expansion in powers of 1/yHo.

For the longitudinal response in the absence ofj' we obtain to second order in j'/& Ho

g

2 ""
(y) . g cos pg,

(l. 14)

tP'(&&={-&-
) R{-: t(& . ,)

«s'pa,

fo {p) (1& ~ N cos p+ '
{ss) l j

0 -j
Tox rance and Tinkham diagonalized numerically

a 40x 40 matrix in order to evaluate the effects of
j' and j' on the Ising excitation spectrum. Further-
more, they only considered the lowest series of
single Ising clusters as their unperturbed states.

The present calculation goes beyond the results
due to Torrance and Tinkham in providing a sys-
tematic expansion of the parallel and perpendicular
magnetic susceptibility to second order in j /yHo.
We thereby obtain both the positions and the inten-
sities of the lowest three resonance lines.

The inclusion of the transverse mean exchange
j gives rise to a spatial dispersion, and the evalua-
tion of the longitudinal and transverse responses
reqUlres RQ explicit solution of the two-mRgnoQ RQd

three-magnon scattering problems. In Sec. K, we
discuss the structure of the solutions to the two-
body and three-body problems. In Sec. V, we
evaluate and discuss the effects of the Heisenberg
interaction j on the transverse and longitudinal
responses. The expressions for X, and X~ in the
presence of j' are rather lengthy and we shall not
give them hexe.

As mentioned above, the approximation scheme
for the response functions in powers of j' consti-
tutes essentially a high-field expansion. In Sec.
Vt, we discuss the zero-field limit. Under certain
simpbfying assumptions it is feasible to evaluate
the infinite continued fraction for the response func-
tion y, . In the limit of zero field the perturbed en-
ergy levels form a band with an extension deter-
mined by j'. The intensity spectx'um is symmetri-
cally shaped around the degeneracy point in contrast
to the high-field result, where the intensities fall
off rapidly for the higher resonance lines.

At zero field and in the absence of j'and for p=0
we obtain the transverse response to all orders in

The absorptive response is

X"(p~) = »o"'(p) ~(~ —~o"(p))

+»o" (P)(& ((d —h& o"' (P))

+»o"' (p) (&(h& —~o"' (p)), (1 13)

where the respective intensities are given by

The absorptive response is given by
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II. MAGNETIC RESPONSE FUNCTION

x m, (f), —~ ~ m,'(I')k„'(t')
y=1

(2. 1)
where m,. is the n component of the magnetization
at the sitei, m; =g p.~S,.. ; g is the corresponding
spectroscopic splitting factor, and h~ is the mag-
netic field component which couples to the magne-
tization at the site 0 by the usual dipole coupling.

The absorptive pa, rt X„(tt')of the magnetic re-
sponse function is defined as the average value of
the commutator [m; (f), m~(t')] in an equilibrium
ensemble:

)&,,8 (ft') = —.
'

( [m, (t), ))i,'(I') ] ) . (2. 2)

The invariance of the equilibrium system under
time translations and the invariance under transla-
tions through a nearest-neighbor distance a allow us
to introduce the Fourier transform

We shall discuss the dynamical properties of the
linear chain in terms of the so-called magnetic
response function or susceptibility p which express-
es the linear response of the magnetization to a
varying external magnetic field. The change in-
duced in the average magnetization at the site j is
given by the expression

t
()(m((f))=-i

~OO

values of ~ in the upper half-plane. The relation-
ship between X ~(kw) and X

~ (k&) is displayed by
the Kramers-Konig relation

~()( )
/k' X (kb))

jr
(2. 8)

which provides a spectral representation of y
~ in

both half -planes.
From Eqs. (2. 1), (2. 2), and (2. 7) we conclude

that for a. monochromatic plane-wave field k,.'(t)
= -, [k e ' '"' ~"() + c. c. ] the mean rate of change of

energy per site is given by the following expres-
sion:

*X ('"(k(d)k
dt 2 ~g

(2. 9)

N
Xil (k )

& / [ df eihl&t )-((ll(x(-x), )-
g=i

In the derivation of (2. 9) we have made use of the

symmetry properties of x~ (k(&)).

The expression (2. 9) shows that the form of the
observed absorption spectrum is directly related
to the absorptive part of the response function.
As a.corollary we conclude that for a stable system
k"*X (k~)k &0, from which follows that

(k&u) is a positive definite matrix.
The ensuing discussion is facilitated by intro-

ducing the two-spin correlation functions

X" (k~, B) = -X" (k —~, - B) (2. 5)

x" (k~)=x" (-»), (2 6)

where B= Ho —g( ( (mi) is the total magnetic field.
Furthermore, we conclude that the only nonvanish-
ing components of the matrix y

'"
a.re X"", X""',

, and X'"
The causal character of the response is taken

into account by introducing the complex response
function

x„'(tt')= 2i)I(t —t') x(,' (tf'), (2 7)

where )I(t) is the step function. Owing to the pres-
ence of the step function, the Fourier transform
of X,"„canbe analytically continued to complex

'(')(
~k) ~ df iek(x x(&) cia(t t') Xu8''(-ft )

)el
(2. 3)

Since X('~~ (tt') is a commutator of Hermitian
operators, we deduce the symmetry properties

x""(k~)= —x" ( —k —~) = [x" (») ]"
(2 4)

From time-reversal invariance and rotational in-
variance follow

)(-,'([$, (t), $,'(t') ]) (2. 10)

and

x., o (k~) = d(d X~' „(k+)
7T CO —8 (2, 12)

In anticipation of the perturbation expansions
that we shall derive for the transverse and longi-
tudinal responses, we introduce alternative spec-
tral r epresentations for X, and y „

in terms of the
mass operators y, and y„. From the positive
definiteness of &y„,„weconclude that y,', )

is ana-
lytic in both half-planes with a branch cut along
the real axis. Inserting the leading terms in the

x (k ) / df itlt i)-()!(x~ -x), ) (-( [$ (f) $ (I ) ] )
f'=1

(2. 11)
The response functions y", and y"

, express the
transverse and longitudinal susceptibilities of the
linear chain and are convenient for a description
of the dynamical properties.
In the same way as before we introduce the com-
plex response functions y, and p„by means of the
spectral representations
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asymptotic expansions of g, and x, we can introduce
the mass operators or self-energies y, and y, in
the following manner:

(s') ——,'+ (s's-)
~ —r.(k~) ~ —r,(k~)

(2. 13)

X (k~)=
—8 j (S',. S,,& ) sin 2 ka -4j'[(S' S,'g)+ c.c] cos 2ka

~' —r„(kz) (2. 14)

The mass operators y, and yl have the spectral
representations G„(k(u)= &

'r k. n (k(t&)
(2. is) x —. ((S",. (t') S,. (t) S,'(t")S,(t') ) ) . (3. 2)

1

Xi (k&u)= —(S') =z' —(S'S ),
7T

(2. 16)

From the high-frequency expansions of X, and
y„we derive the sum rules

G,(k~) = —2X, (k(d+ tc sgn&u) (3. 3)

The Green's functions G, and G, l
are related to the

response functions X., and y, by the simple algo-
rithms

X'„'(k(d)= 0,
71'

(2. IV)
G„(k(u)= —X„(k(u+te sgn(u) . (3. 4)

In order to establish a perturbation expansion
of G~ and GH in powers of j ' we express them in
the interaction representation, i. e. ,

+ 4g [(St Sq+() + H. C. ]cos (2. 18)
(o I(Us;. (t)s;(t')) lo)

i (0 I (U), I 0) (3. s)

The analytic structure of the continued fractions
(1.6) and (1.V) satisfies the spectral forms (2. 13)
and (2. 14); consequently, we conclude that the in-
tensity spectrum obtained by terminating the con-
tinued fractions at a certain order in j will auto-
matically exhaust the sum rules to the same order
in j'.
III. PERTURBATION THEORY TO SECOND ORDER IN j'

In this section we set up perturbation theory for
the response functions y, and X„to second order
in j'. From the qualitative discussion in Sec. I
and from the spectral representations (2. 13) and
(2. 14) follow that in the case of X, such an approxi-
mation is obtained by expanding y, to second order
in j', i. e. , by expanding the mass operator y, and
thereby including the admixture of the three-mag-
non bound state and bands into the single-magnon
mode. Since y„vanishes in the absence of trans-
verse anisotropy the second order correction is
obtained by a direct expansion of yl .

Following the well-known procedure we intro-
duce the two time-ordered Green's functions

N

G (k~) + dt t u(t t'& tk(kt-kk&--
i=1

(3. 1)

N

H = Q [&uo 'S,'. S,. —j'(S,'St,&+ H. c. )

—2 j'S,'S;S,',ps;,(] . (3. t)

In (3.7) we have made use of the length condition
(1.4) in order to eliminate S' from the Hamiltonian
(1. 1). The state I 0) is the aligned ferromagnetic
ground state of H . All effects of the perturbation
B

N

H' = L, ( -j ') (St S,',(+ H. c. ),
i=1

are contained in the S matrix U:

U= exp [ —i f dt H'(t) ] .

(3. 8)

(3. 8)

Using the abbreviation (i, t) = (1) and the repeated
index summation convention we can write the per-
turbation expansions of G,' and G in the form

G (12)= [G (i2) ]...+ .'.. . j'(34)

(o I ( Us; (t') s, (t) s; (t' ) s, (t') ) I o )
i (Ol(U), lo)

(3. 6)

In this representation the spin operators develop
in time according to the anisotropic Heisenberg
Hamiltonian
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1 5 G, (12)
~;(34) ~'(88)

(3. 10)

spin system. The last property is taken into ac-
count by expressing G„k... in terms of an antisym-
metric unit operator

G (») =
I

G (»)]J -0+ —.." — j'(34)5G„(12)
,eg' 34

kak'a' n~ (~k»' aa' 8»a'~a»')

Introducing the projection operator

(3. 15)

1 5 G„(12)'2 8j'(34)'~, (58)

where

j '(12) = ji„,& (ti —t2)

(3. 11)

Qkq ~kq+1 + ~kq-1 (3. 16)

with the eigenvalues 0 and 1 corresponding, re-
spectively, to two nonadjacent and two adjacent
spin deviations, we get for the Green's function

Gkak a'(~)

1
Gk k' '(+) 2 }» +» k' ' ! 'k'

Let us first consider the longitudinal response.
From symmetry arguments it follows that

[Ga(12)];a 0 and [5G„(12)/5j '(34)]&a 0 vanish iden-
tically. By means of the decomposition of the unit
operator

1=
i

0&&0
i

+ —,g, S,'. i
0&&0 iS;

N

11 1=1

N

+ —, Q S,'S,'
i
0) (Oi S, S,+' ' '

2

(3. 12)

and by introducing the two-magnon equal-time
Green's function

Gk,„.. ((o) = (0. S»S, (&a —H +is) 'S» Sa'
l

0.) ~

(3. 13)
we obtain the following result for the second-order
correction to G)):

G kk (~) = &) 'k» Gkk k, (0) GP.P, (~)

x Gk. a.„„.(0)j '„„,+~jt». G»», k.a (0)

x Gk. , k, ( —(u) Gk,„„,(0)j '„„.. (3. 14)

The Green's function G»».k, (0), which multiplies

jkk. , is independent of energy and is essentially a
field-dependent vertex correction to the coupling
strength j'; the pair of adjacent spin deviations
created in t~e vacuum interact by means of the
Ising interaction j '.

The admixture of the two-magnon bound state
and band into the aligned ground state is described
by the energy-dependent two-magnon Green's func-
tion G~k;. (u&) which has a pole at the position of the
two-magnon bound state &' ' and a branch cut cor-
responding to the two-magnon band.

In the absence of the Heisenberg interaction,
i. e. , j'= 0, it is an easy task to evaluate the longi-
tudina, l response. The Green's function G„,,, (~)
is symmetric in each pair of indices, but vanishes
when 0 = q or 0' = q'. This is a reflection of the
fact that S';S,'= 0 and is a specific feature of the

X„(pz)=( „, com'—
Np 2

(2) ~ 3. 18

The absorptive response is given by
~ Q 2

e, '(a-)= (,!, .)
-*—';

(8p
—jf

x [8(~ —vo'k') —&(&u+ ~o ') ] ~ (3. 19)

y"
, has an observable resonance line at cop ',

i. e. , the excitation energy of two adjacent spin de-
viations. The intensity of the line is proportional
to [j'/(~0' ' -j') ] cos —,'pa; in accordance with our
discussion in Sec. I, this result, however, is only
valid in the high-field limit, i. e. , j «yHp. In

this limit the two-magnon line carries all the in-
tensity and (3. 19) exhausts the sum rule (2. 18).
As the field decreases the total intensity is shared
by all the converging bound states. The fact that
(3. 19) continues to exhaust the sum rule is another
indication that (3. 19) is inadequate at low fields.
As discussed in Sec. I the position of the line is

a2underestimated by a shift of leading order j' /yHO;
this is exactly the shift which gives rise to a down-
wa, rd curvature at low field of the two-magnon
bound state in a plot of energy vs field.

Turning our attention to the transverse response
we notice again that [6G, (12)/5j a(34)]&a 0 vanishes

1 —Q.
CO —('dp + ZE &d —2p + ZE

(2) ~ + (1 ) ~ a

(3. 17)
The sign factor pk, which is + 1 for k & q and —1 for
k & q restores the symmetry properties of G„k... .
VVe notice incidentally that the representation
(3. 17) can only be established for a one-dimensional
system, where the spin operators can be arranged
in a linear sequence. Fourier transforming and
making use of the algorithm (3. 4) we obtain the
longitudinal response
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from symmetry arguments. In order to evaluate
the second-order correction to 6,' we make use of
the identity

' 5G,'(12), 6G, (66)
5 j'(34)„, ' ]"= 6 j'(34)

x[G&'(62)]p (&, (3. 20)

which follows from the definition of the inverse
Green' s function,

G,(13) G (32) = 6 (12) = 6 ..., 6(t, —t, ) . (3.21)

The inverse Green's function [G, (12)]&a p is ob-
tained from the Heisenberg equation of motion ap-
plied to the Hamiltonian (3. 7). The e(luation of
motion can be written in the form

[G, (12)]...S (2)=4j'(13)S'(1)S-(1)S (3)

—4j '(13) S (1)S'(3) S (3),
(3. 22)

where we have introduced the explicit expression for
(Gi')& =p

(o (((&]ps= (( —« (")5(&(&~ 2('02&

(3. 23)

and the notation

j' '(12) =j'...', 6(t, —t,)

The second-order correction to G,' is now evaluated
by applying (G, )~n p to the expectation value of the
six spin operators arising from differentiation with
respect to j'(l2). The time ordering of the spin
operators, however, gives rise to rather lengthy
expressions and we shall, therefore, defer the de-
tails to Appendix A.

It is convenient to analyze the structure of the
expansion of 6, by means of the spectral repre-
sentation (2. 13). There are two distinct contribu-
tions to the mass operator y, . One part, y~,
arises from the structure of the perturbed ground
state and another, y„„containsthe contribution
from the three-magnon bound state and the three-
magnon bands. Splitting off the single-magnon en-
ergy ru

"& (k), we can separate the remaining part
of the ground-state contribution into a momentum-
dependent shift 6„,and a pole term —S„/[(d
+ p»" (k)]. We thus obtain the spectral representa-
tion

G,(k(u) =
1 —2(s'S )

p& —(u "&(k) —S„(k)—S„(k)/[&u+(d "&(k)] —y (k)
(3. aS)

The numerator in the spectral form (3, 25) is de-
termined as the coefficient multiplying the leading
term in the high-frequency expansion of G, and is
given by the expectation value of the equal-time
commutator of S' and S . For an ordinary particle
system, e. g. , a Bose system, this commutator
equals 1, and the leading term in the asymptotic
expansion is I/z. For the spin system, on the
other hand, the commutator is —2S'=1 —S'S, and
its expectation value depends on the structure of
ground state of the system. In the aligned ground
state of HP, (01 S'S

I 0) vanishes and the.numera-
tor assumes the value l. In the perturbed ground
state, however, the value is reduced from 1 be-
cause of virtual pair fluctuations induced by j'.
In site space we obtain the following contribution
to the numerator in (3. 25) [see E(I. (A3)]:

1 —2 (S'S ) = 1 —2F.t.+j», G».p, (0) Gp,„„.(0)j„'„
(3.26)

The abreviation F.t. stands for the Fourier trans-
form. The correction term (S'S ) describes the
virtual creation and subsequent annihilation of a
pair of spin deviations in the perturbed ground
state. We notice again the field-dependent vertex
correction of j' due to the Ising interaction j',

a feature which occurs whenever a pair of spin de-
viations is created or annihilated by j'.

The ground-state shift 6, which is given in Eq.
(A4), arises from vacuum fluctuations in the per-
turbed ground state. ~ consists of a momentum-
independent shift, which can be absorbed by rede-
fining the energy (d, and a momentum-dependent

part, which leads to a renormalization of the single-
magnon mode. The correction of the magnon dis-
persion law due to vacuum fluctuations is quite
similar to the renormalization encountered in the
random-phase approximation (RPA) applied to the
Heisenberg Hamiltonian at finite temperatures. e

The second part of the ground-state contribution
to the mass operator, the pole term S»/[(d
+ pp" &(k)], is evaluated in Eg. (A6). In its evaluation
we have introduced the one-magnon equal-time
Green' s function

G„.(~)=(0
~
s, (~-d'+i~)-'s;,

i
o) . (3. 2v)

The perturbed ground state of the system is strong-
ly correlated, because of virtual pair excitations,
and is quite different in structure from the aligned
unperturbed ground state. The ground-state mode
with energy (p = —p&' ' and strength S„oforder (j ')p

corresponds to the possibility of gaining energy by
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breaking up a pair of spin deviations in the corre-
lated ground state.

The bound-state contribution to the mass operator

y» is evaluated in E(l. (A6) making use of the three
magnon equal-time Green's function

((d) =(0
i
S, S,S ((o —H'+is) Sk S; S'

~ 0) .

(3. 28)
The physical interpretation of y„,is clear. A pair
of adjacent spin deviations excited in the vacuum
because of j' is first renormalized. Subsequently,
it interacts with the incoming spin deviation created
by the photon h~, e '"' via the dipole coupling

I2~, S~. e '"'. The scattering of the three spin de-
viations is described by the three-magnon Green's
function Gk, „k...„.(&d), which has a pole correspond-
ing to the three-magnon bound state and a branch
cut arising from the three-magnon bands.

Because of the simplicity of the Ising chain, the

transverse response can be easily evaluated in the
limit j =0. Similar to our derivation of the two-
magnon Green's function (3. 17), we introduce the
antisymmetric unit operator

~ =(1/3&) I6kk 6- 6 —6kk ~ 6.

+(cyclic) (&),qm, i'o'q'I' ) ] (3. 29)

and the projection operator

Qkqm (6kq+1 6kq-1+ asm+1+ qm-1+ 6mk+1+ 6mk-1)

(3. 30)
with the eigenvalues 0, 1, and 2 corresponding,
respectively, to three nonadjacent, two adjacent,
and three adjacent spin deviations. The Green's
function G„k... ~ can now be written in the form

kqmk'q'm'(~) 6 kq 4m 1mk kqmk'q'm' )m'q' qq'k'7k'm'

(
—;(1—e...)(2 —e...) e...(2 —e...)

(d —3(dp + 2& (d —2(dp —Cdp + 2C

g (&)„„((b)„-1)
+ (3) ~ ~

(d —(dp + 26
(3. 31)

The one-magnon Green's function (3. 27) which we

shall also need in the evaluation of 6, is given by

~kk '
(1)

CO
—

COp

(3. 32)

~ a )
1 —2(S'S )=1 —

&1& . s-j' (s. ss)

2( j')'+ g.(P) = -j (3. 34)

~ a (1)
Sgs(P) 4 &1&,s COS PQ,

p

S„)
ybs(P&d) (g&

4[j 'j '/((d()" —j ')]' cos'p((
(3)

(d —Cdp + ZE
~ (3. 36)

Employing the algorithm (3. 3) we find the trans-
verse response

in the limit j =0.
By means of the explicit expressions (3. 17),

(3. 31), and (3. 32) we can now e:aluate the various
contributions to G„(p&d). We obtain

—z+(S'S )
8 —(O() —n g (p) —Sgs(p)/(&+ (OO ) —Sbs(p)/(g —(OO )

(3. 37)

In accordance with our discussion in Sec. I, we

conclude that the expression (3. 37) is only valid for
j q«yHo. To second order in j'/yHo we obtain the
absorptive response

xi (P&d) = &(I(~)'(p) 5 ((o —&d(~)'(p))

+ &(f(~)"(P) 6((o —(o' '(P))

-(1)(p) (1) Z g p) + ~ (P) bs(P)
+P + g +

2 (I)

~(3)(p) ~(8)+ bs(P)
2yHp

g(gg)(p) ~(1) S (P)/2~ &1)

(3. ss)

(3. 40)

(3. 41)

+ ufo&") (P) 6((o —(d() '(P)) . (3. 36)

where the positions of the single-magnon mode,
the three-magnon bound-state mode, and the ground-
state mode are given, in respective order, by the
expressions

The intensities of the three modes are given by the

following expressions:

f(1)( )
1 (, )

1 S (p) 1 S»(p)
2 (2(d"))' 2 (yH )'

(3. 42)
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I(3&( )
1 Sbq(P)

(& P 2 ( H)8 (3. 43)
0

Gkqmk'q'm'(+) Gkqmk'a'm' ((d)

( &(
1 S„(p)

0 P 2 (2 (1&)k (s. 44)

IV. TWO- AND THREE-MAGNON SCATTERING PROBLEM

X," has two observable resonance lines at Q)0"
and 2o ', i. e. , the single-magnon mode and the
three-magnon bound state. The ground-state mode
at energy 20"' is not accessible to experiments
since it occurs at negative energy. It indirectly
contributes, however, to the intensities and posi-
tions of the observable resonance lines.

In the high-field limit the positions of the three
lines approach the unperturbed Ising values. As
the field decreases, the single-magnon mode at-
tains a negative shift causing a downward deflection
in a plot of energy vs field. The three-magnon
bound state, however, gets a positive shift of the
same magnitude and will bend upwards as the field
is lowered. As discussed in Sec. I, the position
of this line, however, is underestimated by a con-
tribution of leading order (j') /yHO arising from
the admixture of the higher bound states. This
shift will cause the line to assume a downward
curvature as the field decreases.

In the high-field limit, i. e. , @110»j, the single-
magnon mode carries all the intensity and exhausts
the sum rule (2. 16). The intensities of the two
other modes both vanish in the high-field limit. As
the field is lowered the intensity of the three-mag-
non mode increases and at the same time the
ground-state mode gets a negative increasing in-
tensity. We notice that the expressions (3. 42),
(3. 43), and (3.44) for the intensities are correctly
given to second order in j '/yHO and exhaust the sum
rule (2. 16) to that order.

+ p Kk mk- t. m- ((u) Gkkk e „k~,((g))
)(

ql ql ql
(4. 4)

= —(0
l
S, S,S (&u —Ho+ i&) VS,'.S,'. S" ~

l
0) .

(4 8)
In order to make the integral equations more man-
ageable it is convenient to introduce the antisym-
metric Green's functions F„~... and F~, ~... ~ de-
fined in the following manner:

Ek,k q (~)-&kaGk, k. (~)r&a k (4 9)

Ekamk q'm'(+) Ikq !qm qmk Gkqmk'q'm'(+) qm'q' 1q'k' &!k'm'

(4. 10)

By Fourier transforming we obtain for E„„... and

F~, ~... ~ the two linear integral equations

The Green's functionsG, ,~., and G„,, , ~ are de-
fined as follows:

Gk,k...((d) = (0
l Sk S,(m —Ho+ ik) Sk.S;.

l
0),

(4. 6)

Gk, „,, .(&u)=(0
l StS, S„(&u—Ho+i@) Sk.S' S'

~ .
l
0),

(4. 6)
and they describe the propagation of two and three
magnons, respectively, in the absence of the two-
body potential V. The integral kernels K„~., and

E~,~., ~ are defined in the following manner:

I
ffkak a (~)= 2, (0

l
sks, (~-HO+ie)-' vs;, s', , lo)

(4. i)

In order to estimate the effects of the Heisenberg
interaction j ' we need a more detailed evaluation
of the Green's functions G~,~... and G~, „... ~ .

Separating the Hamiltonian (3.7) in kinetic and
potential energy parts, i. e. , H =Ho+ V, where

E(kqk'q'(u) =E'( qkkq'()d

+ ~ K(kqk"q" v) E(k"q"k'q'(d)

(4. 11)

N

H, = g [~('&S,'. S;. -j'(S',. S,,, +H. c. )j (4. 1)
E(kq k'mq' ~m) = E'( kqmkq' m'~)

+ Q ff(kqmk "q"m" (d) E(k"q"m "k'q'm'(d),
y H qtt~tl

(4. 12)
N

V= Q (- 2j ') S( S( S(,g St,g,
g=1

(4. 2)
where

(&, ,
)

—2!&((kqk' q')E kqk q &u = (4. is)
and employing the identity (3. 12), it is easily seen
that G~,~... and Q~, ~... ~ satisfy the integral equa-
tions

kqkq ( )- kqka ( )+L kak"a ~ ( ) k-q-k a ( )
y tl ~ql

(4. 3)

Eo(kqmk'q'm'(d)

kq, k q ), , (4. 14)
(g —(d(k&(k) —(d "&(q) —(u"'(m) + is
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We have introduced the antisymmetric unit opera-
tors in two- and three-particle momentum space

&&(kqk q') = (1/2! ) (5»».5 ~ —5„.5 «. ) (4. 15) xa5„.5„,,„.+ (cyclic)(kqm, k'q'm') . (4. 20)

&g(kqmk'q' m') = (1/3! )[5» 5„—5», 5,«)5

+ (cyclic)(k'q'm')] . (4. 16)

The antisymmetric kernels are given by the ex-
yressions

K(kqk'q'v) = 2j ' Q F (kqk" q"&u) &z(k"q"k'q')
p Nett

(4. 17)

K(kqmk'q'm'~) = z—j ' Q F (kqmk" q"m" v)
I tt~tt~tt

x &»(k"q"m "k'q'm') . (4. 18)

The nearest-neighbor interaction between two and
three magnons is represented by the projection
operators

1 . k —q . (k' —q'
63(kqk'q') = —sin a sin! a 5...«.+,.

(4. 19)

It is easily verified that bz( kqk' q') and &z(kq mk'q'm')

are the Fourier transforms of —,'Q„,6„„... and

&Q„&„,~... ~, respectively, where Q„,and Q„,
are the projection operators (3. 16) and (3. 30).

The two-magnon scattering problem can be solved
easily. Since the kernel (4. 17) is separable in
momentum space we are lead to the linear algebraic
equation

F(kqk'q'&u) = F (kqk'q'cu)+QF (kqk"q" &o)

x sin[»(k" —q")]a n(k+ q, k'q'&u), (4. 21)

where

&(k+ q, k'q'u&) = 2 j'(I/N)+5»

x sin[«(k" —q ).aF(k"q"k'q'&u) . (4. 22)

Solving for e we obtain an exact solution of the
two-magnon scattering problem:

Foik» i 2., ~ (kqk"q"v) &«(k"q"k "q")F (k "q"k'q'+)
(4. 23)

where

D(k+ q&u) = 1 —2jQE (kqk'q'&u) r»t(k'q'kq) .
(4. 24)

In Appendix B we derive a spectral representation
for D-',

A(p 0) dQ
D p&d =1+ 0-4) —gE

where

A(pA) =j'(1 —o cos —,'pa)2m5(Q —e' '(p))

, «([~,"'(p) —&][fl —~"'(p)]]'"
n —(u"'(p)

Here ~ a'(p) = 2&so"' a 4j' cos-,'pa give the upper and
lower edges of the two-magnon band, respectively.
We conclude from (4. 26) that D has a magnon
bound-state pole at &ra'(p) with strength 2j '(1 —o
x cos —,

'
pa) and a branch cut extending from &u.

' ' to
~,' ', corresponding to the two-magnon band.

In contrast to the two-magnon scattering prob-
lem, the scattering of three magnons cannot be
solved exactly. Furthermore, the integral equa-
tion (4. 12) is not of the Fredholm type and cannot

be treated by applying standard techniques. In ad-
dition to describing the simultaneous scattering of
three magnons, (4. 12) also includes processes in
which only two magnons scatter; the third particle
assumes the role of a spectator and does not par-
ticipate in the scattering act. This is reflected in
the kernel (4. 18) which contains a 5 function 5

expressing the separate conservation of momentum
of the third particle. The presence of the 5 function
renders the kernel unbounded, and, therefore, the
integral equation cannot be solved by the Fredholm
method.

The mathematical aspects of the three-body scat-
tering problem were first treated in a satisfactory
manner by Faddeev. We shall employ a formula-
tion due to Weinberg which is more suited for our
purposes.

The difficulties associated with the unbounded
kernel are circumvented by separating the Green's
function F into two parts. The first part, F + T,
included the inhomogeneous term E and describes
alJ. scattering 'processes in which fewer than three
particles participate. The remaining part of F, the
connected part C, describes the simultaneous scat-
tering of three particles. That is,
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E=E + T+C . We obtain the new modified integral equation

I=K —T(E ) (1 —K) . (4. 28)

A little algebra shows that C =IF, where the new
kernel I is defined in the following way:

F=E +T+IF . (4. 29)

The two-particle scattering amplitude T is con-
structed by means of the solution to the two-body
problem obtained previously. We get

[(u —(u")(k) —&u")(q) —((")()m)] D( k+ qm(d) [(() —&u"'(k') —(u"'( ') — "'(m )]
(4. 30)

where

D(k+ qmv)
6a+e ~'+((' &q(k'q'k'q')

—(u"'(k') —(d"'( ') —(u"'(m)

(4. 31)
We have introduced the spectator particle by dis-
placing the energy variable ~ by the amount (d( )(m).

Introducing A=E + T we can write the formal
Fredholm solution of (4. 29) in the form

E=A+NA/D, (4. 32)

(( )
" A(pQ)

0 —(d —SE
(4. 33)

where N and D are the usual Fredholm numerator
and denominator. The inhomogeneous part A con-
tains the contributions from the three-magnon bands
(i. e. , the band of three single magnons and the
band of a two-magnon bound state plus a single mag-
non). The three-magnon bound state resides in the
Fredholm denominator D. From general analyticity
it follows that D has the spectral representation

t

In analogy to (4. 26) we expect A to have the form

A(pQ) = S (p) ))5(Q —m' '(p))+ b (pQ), (4. 34)

where co
' ' is the position of the three-magnon bound

state and S„its strength. ~„~is the contribution
to A arising from the three-magnon bands.

V. PERTURBATION THEORY TO SECOND ORDER IN j '

As discussed in Sec. I, the isotropic part of the
exchange interaction, the Heisenberg part, does
not have any pronounced effect on the nature of the
excitation spectrum. The Heisenberg interaction
j', however, introduces a spatial dispersion and
the evaluation of G~„,. and G„,~... , requires the
explicit solutions of a two- and three-magnon scat-
tering problem, respectively.

The longitudinal response can be expressed en-
tirely in terms of the two-magnon Green's function

G~, ~... . Having obtained an exact solution in Sec.
IV, it is an easy task to evaluate the longitudinal
response to second order in j '. In Appendix C we
compute y, in detail. We obtain the following re-
sult:

The absorptive response is given by

(p(() )( (1) ~ s cos 1+ 2 (1)
(do COp

2 '4 (1)—+p
40p

4 ~ g (1)
+ ~ (, )

0 cos o [6((() —(()' '(p)) —6(~+ &u' '(p))] . (6. 2)

The effect of the Heisenberg interaction is to move the resonance line to the position of the two-magnon
bound-state energy ~' '(p). To second order in o we obtain the correction factor

j' 2j' —(do" 4j' —~o" p, p1+ 2 g) &y), + + (y) cos

gpss

0'

(do +o (dp

to the intensity of the line.
In order to compute the transverse response we need an explicit solution of the three-magnon scattering

problem defined in Sec. IV. We defer the treatment which is of rather technical nature to Appendix C and
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stRte the x"esults fox' the vRrious contributions to gz I1616.
y~ has again the form

—3+ (S'S )
g —(u "'(p) —a„(p)—s„(p)/[~ + &d "'(p)] —s„(p)/[~—(u'"(p)l (6. 3)

where to second order in o we obtain
~ «3 (1} ~ ¹ ~ ff

3(S S ) l (1) g (1) &1) ~ g (1) ~ g
(do -j (t}o o -j (do

(6. 4)

rlgg (p) &1& g 3j &1& &1& ~ * a cospa +3 &1& g (3&0 j ) &1)
2j .«~ j (l ) ~ ¹ j

Ro —j (do (A}(} o (t}o

~ g (l) ~ Q ~ « ' f))

Sgg(p) = —4 "
(1) . g- cos pa+ 6j &d()

-
(1) . g 0'cospa -4f l. + 2 (1) . g cos pa — (1),g- &),, j (t}o a «(&) ' « j 3

(do ~o -j &o

(6. 6)

Sbg(p) = 4 g& . g cos pa — 6 (1) (&d() —j ) (1) . g cosp(1 0'. j 'I. 8 j (l} ~ ¹
(f}o

(l)~1
+ 4j j . (l)& I (1} ~ «l3 Q) cos P~

y(t}o -j j (do

(6. 6)

We notice that the dispersion law for the three-
magnon bound state is independent of momentum up
to second order in g; this conclusion was also
reached by Torrance and Tinkham. ' The shifts of
the single-magnon line and the three-magnon bound
state lift the degeneracy in the limit of zero field;
this fact, however, has no bearing on our previous
discussion of y, since (5. 3) is only valid for
yIIo && j~

VI. ZERO-FIELD LIMIT

In Secs. I-V we developed an approximation
scheme for the response functions y, and y„to sec-
ond order in j'/@HO. Since the validity of the
scheme depends on j '/WHO being small it is essen-
tially a high-field expansion of y, and y„. In order
to extend the theory to lower values of the field, it
is necessary to include the admixture of more than
a single bound state, i. e. , to terminate the con-
tinued fraction at a higher order in j'/@HO. Such
a scheme, however, rapidly becomes unmanageable
from an analytical point of view, but ean be per-
formed numerically'3 undex' certain simplifying as-

sumptionss.

Tox'rance Rnd Tinkham ' included the admixture
of 40 bound states, disregarding the effects of the
higher bands, and evaluated the energy eigenvalues
by solving numerically the corresponding 40&40
secular determinant. In the zero-field limit, how-
ever, simplifications occur and we can under cer-

tain conditions find a closed expression for the
transverse response y, to all orders in j'.

First of all, we consider fur simplification the
dispersionless case, i. e. , j = 0. Disregarding
the gxound-state shift 6„,the ground-state mode
S~/(g+ &d~")), the vertex correction of j', and the
reduction of (S*)due to correlations in the per-
turbed ground state, the second-order result (3. 3V)
obtained for y, in Sec, III assumes the form

2i

(1& ~ g3 (3)8 —
&d()

—4J /(8 —
(d(&

(6. l)

Despite the drastic Rssumptlons made, the ex-
pression (6. l) ev1dell'tly coll'tallls the basic physics
in the problem. Finding the normal modes in (6. l)
is tantamount to solving the secular determinantal
equRtlOn

which is just the determinant arising from ordinary
tlm6-independent p6x'tux'bRtlon theory Rpplled to R

single admixtuxe. Ne can now establish the con-
nection between the approach of Tox'rance and Tink-
ham ' and the present scheme. These authors
showed that the matrix element of j' between two
bound stRtes is equal to —2j fox' p=0. The in-
finite determinant for the admixture of all the bound
states consequently has the form



I~ TEBAC TING MAGNONS IN THE I, INEAH CHAIN

E —o (&)

—2j

(dp ~ 2 j

(6. 3)

is interesting to notice that, whereas in the high-
field limit the strengths of the higher resonance
lines fall off rapidly in powers of j '/yHo, the in-
tensity gets more evenly shared among the lines
as the field decreases. In the zero-field limit the
converging lines form a band symmetrically shaped
around the degeneracy point 2j',

It is easily seen that the continued fraction

X.(a) =

(3)8 —{do

~ a4 ~ a

g~~~gga{5) (6. 4)

can be expressed in terms of D(a) in the following
manner:

1 D(a-2~H, )
X(a) = —

2 D(, )
(6. 6)

The expression (6. 5) establishes the connection be-
tmeen the two schemes. In particular we notice that
the intensity of the nth line is given by

(g &
1 D((do —2'YHo)

0 2 D& (- (g)) {6.6)

where 2p") is the nth root in the determinantal
equation D(E) = 0.

In the zero-field limit, the unperturbed levels
are degenerate and (d'") = 2j' for all z. In that case
we derive the following equation:

(6. 7)
8 —2j +8j

The equation (6.7) can readily be solved; we ob-
tain

—1
X.(a)-

( 2 . g) [ 2 . g)a (4.g)a]x/a ( )

The absorptive response is given by

al(4j +2j —&)(& —2j +4j ) lXl' ((o) =
6 .,aj C

(6. 9)

X,(a) has a branch cut extending from 2j ' —4j ' to
2j'+4j', i. e. , symmetrically around the degen-
eracy point of the unperturbed levels. The absorp-
tive response has the shape of a semiellipse with
height ((/2 j' and width 8j'. As j' approaches zero,
the ellipse degenerates into a 5 function correspond-
ing to the excitation of a single-magnon mode. It

VII. CONCLUSION

In this paper we have evaluated the transverse
and longitudinal dynamical susceptibilities of the
anisotropic magnetic chain in an applied field to
second order in the transverse anisotropy j' and
to second order in the transverse mean exchange j '.
Furthermore we have, under certain simplifying
assumptions, computed the transverse susceptibil-
ity in the absence of j to all orders in j' in the
limit of zero external field. Because of the nature
of the problem, the true expansion parameter is
j'/@Ho, where Ho is the external field. Conse-
quently, the expressions for the susceptibilities
can only be considered as valid for high fields,
i. e. , yHp&& j

This fact makes a comparison with the experi-
ments on CoC 2 2H20 of Torran
less interesting since me are only able to predict
the initial bending of the three lomest resonance
lines in a plot of energy vs field. Preliminary mea-
surements of Nicoli using a far-infrared cyanide
laser probe into the interesting regime yIIp& j ' and
indicate that the intensities of the higher resonance
lines fall off slowly in accordance with the limiting
behavior of the intensity spectrum in the zero-field
limit as discussed ln Sec. VI.

The perturbation expansions for the transverse
and longitudinal susceptibilities only work to second
order in j'. We have been unable to establish a
systematic perturbation scheme for the evaluation
of the susceptibilities to orders in j' beyond second
order. From the expressions for the susceptibili-
ties in Sec. I it is clear that such a scheme will
involve the evaluation of "the self-energy of the
self-energy, " etc. Such an attempt is, however,
beyond the scope of the present paper.
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APPENDIX A

By means of the definition (3. 6) of G,{12)and the identity (3.20) we can write the expansion {3.10) in the
fol m
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c (12)= [G-,'(12)]„.,[1-j'{34)(o
I

{s-(3)s-(4) s'(5) s'(6)),
I 0&j'(56)]

—i[c~ (17)]&,oj '(34) (0
I

(S (3) S (4) S (V) S'(8) S'(5)s'(6)),
I 0)j '(56) [G (82)]&~ 0 . (Al)

Using the equation of motion (3.22) and its adjoint we obtain the following lengthy expression for G, :

c,'(») = [1 —2j'(34) &o
I

(S (3)s (4) S'(1') s (1)S'(5) s'(6)). Io&j''(56) ] [G'(»)]J -o

+ [-4ij'(34)(0
I
(s (3)s (4) s'(1) s (6)&. I

0)j'(16)+4j (11)j'(&4)

~ (0
I
&s (~) s (4) s (I) s'(I) s'(5) s'(6)&

I
0»'(56)

—4j '(1 T)j '(34) (0 I
(S (8) S (4) S'(1') S (1) [1 —2S'(1') S (1)]S'(5) S'(E)).

I
0) j '(5 6)] 5(12)

+ [4 j'(12)j'(34) (o I( s {3)s-(4) s'(I') s-(1) [I —2s'(2') s-(2)] s'(5) s"{6».
I
o) j'(56)

—4j '(l2) j '(3 4) & 0
I
(S (3)S (4) S (1)S'(2) S'(5) S (6)) ~ I

0 &j '(5 6) ] [—4j '(32) [G,(3 6) ]& koj (16)

+ 8j '(3 4) ( 0
I
(S (3) S (4) S'(2) S'(2') S (2) S'(6)), I

0)j '(16)j '(22)

—8j '(34 ) & 0
I
{s (3) s (4) s'(2') s (2) s'(2) s (6))

I
0&j '(16)j'(22)

+8 j'(lgi j'(32) &o l(s {3)s'{I')s"(1)s (I)s'{5)s'{6».
I

0&j'Ne)

—8j '(l l)j '(32) ( 0 I( s (3)s (1 ) s (I ) s (I)s (5) s'(6».
I

0&j '(5 6) ]

x [- lei j '(ll) j'(34) (0
I
(s (3) s (4) s'(1') s (1)s (1)s'(2) s'(2') s (2) s'(5) s'(6)).

I
o& j'(56) j'(22)

+ 16 i j '(l I)j '(3 4) ( 0
I
(s (3)s (4) s'(1') s (1)s (T) s'(2') s (2) s'(2) s'(5) s'(6)}.

I

o &j '{56)j '{22)

+ 16i j '(lT) j '(3 4) (0
I ( s (3) s (4) s (1)s'(1') s (I) s'(2) s'(2') s (2) s'(5) s'(6))

I
0

& j '(5 6» {22)

16 ij *(11)j '(3 4) (0
I
{S(3) S (4) S {1)S'{1')S (1)S'(2') S (2) S'(2) S'(5) S'(6)),

I
0)j '(5 6)j '(22)] . (A2)

Inserting intermediate states by means of the decomposition (3. 12), performing the time integrations, and
Fourier transforming, we can express (A2) in terms of the equal-time Green's functions (3. 13), (3. 2V),
and (3.28). We get for the various terms in the spectral representation (3.25)

1 —2 (S' s )= —2 F. t.+j k'k. G kk p,(0) Gp,„„(0)j„'„.,

~ (y)=F. t.[[-4&j„',, „c,„(0)j,', —47j,',j'„,c„,„(o)c„„„.(0)j„'„.
+8+jf„j»G» p,(0) Gp«„.(0)j'„„~+4' p, j„'k,Gkk, p, (0) C «(0)j'„„,]epp,

(A3)

+[ 4Zjkk ck-k p.(0)cp...{0)j:„,j», +4Zjkk, Gkk, „(0)c„„„.(0)j'„„.jp'p.

-8 2 j '
~ Gkk (0) Gop""(0)j:"jop ]] (A4)

=F.t.[4Fj;.G. .( ~)i ';p 8Li-kk c» ~ (-0) G«(-» jp.j:p
(d+ Ql

—epjp j» C„,( —&) Gp» (0)jkk +16Zi pki kk'Gkk'k'p'(0)G k( ) pkk'k( ) jkk'jk'p'

+8&jkk Gkk. kp. (0) Gp „(—(d) jp„jkp'+8+jpkj„p.Gkp( —V) Gpkkk~(0)2 kk'
, Ie+ j,j', G„..., .(0) C ~ ( —z) G„,.(0)j,',.j,'. , —16+j',j,' ~ G ... .(0) G, , ( —&) G „,.(0) j',;j,'.o.

—16+jp, j,', .G»...p. (0) Gp „(—&u)Gp„,,(0)j'„,J,,p, ],
yb, (u~) = T~ [16+j,j„„.G„, (0) Gp p, „.(&u) G,.„.„.(0)j,'; j;p.

(A5)
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—16+j (,„j)',„.G».,„(0)G(„„(,,.„.(&o) G(,.„,„,{0)j'„.j,',(,, —16+j(„j;,.G», ),„(0)G)„„),...„,(z) G,.„„,(0)j',,.j ', ,~.

+ 6~ f,', &,', . G». ,„{o)G„„,, „,(~) G, ,„,„,(0) j',,,j,', 1 . {A6

APPENDIX B

From general analyticity it follows that D has
the spectral representation

X (pic) dn
—h) —i & 7t'

Inserting the explicit expressions (4. 13) and (4. 19)
for Eo and ba in (4. 24) and going to the continuum
limit, we obtain

,26~!"(P) -fl] I& -~"'(P)]}"'
(B6)

fl —(d") (p)

APPENDIX C

In order to make use of the solution (4. 23) of the
two-magnon scattering problem in the evaluation of
)(„weexpress (3. 14) in terms of the Green's func-
tion I'„„.;; we obtain for the Fourier transform

G„(p~)= ——~j'I'(q) F(p+q, —q, p+q', —q', &d) I'(q')j'

sin k . (B2)
~ —2h)p" + 4j'o cos —,

'
p cosk+ i&

Introducing a new integration variable u= cosk, we

get

D(p(d) = 1+ 4j ' dQ

(1 2)l/2

h) —2~p"'+ 4 j'on cos-,' p+ i~

In order to evaluate (83) we consider the function
E(z) given by the integral

&~j'F(q-) E( p+q, -q, p+-q', --q', —~) F(q )j',
(Cl)

where we have introduced the vertex function

( )= ( / ) ( "" ""'
uv))'( ) ( )))'-( — »'+()

(C2)

By means of the solution (4. 23) it is an easy task
to compute the strength of the two-magnon bound-
state mode to second order in o. The bound-state
part of I" is given by

Eb, (kqk'q'&o)

E(~) = du (1 —u )

W R —8
(B4)

$2j'Fo(kqk "q "o)) A~(k "q "k'q') Fo(k'q"k'q'&d)

Db. (k+ q(d)

E{z) has a branch cut from —1 to + 1 with the dis-
continuity

where
(C3)

E((d+ ie) —E((d —ie) = (1 —o)') i' (as) (d —o) (p)+i E
(C4)

across the cut and is easily recognized as the func-
tion

The vertex function I'(k) is given as

F(~) = (&'-1) (B6)
sinka

D(00) o)")(k) ' (Cs)

Alternatively, (B4) can be evaluated by contour in-
tegration along the unit circle by means of the sub-
stitutions t = e" and u = cosk. By substitution and
choosing the right branch we find

To second order in 0' we obtain

I'(k) = I'()(k)+ F((k)o+ I'2(k) 2o'

where

D(p~) =1+
o cos-," pa 4 j'o cos-,' pa

(1& 2 - 1/2
(»)

4j o cos 2pa

Fo(k) =
p

1
F, (k) =

h)p

jc
s in2ka

h)p

(cv)

As is easily verified, D has a pole at wp
' —2 j'o

&cos& pa and a branch cut extending from 2h)p '

—4 j'o cos—,
'
pa to 2h)p '+ 4j'o cos—,

' pa. By means of
Cauchy's theorem we find the spectral function

F),(k) = (i) . (()' 4cos'ko+ &i& ., sinko .
COp —j h)p (dp

In a similar fashion we expand E( oqkk'q' )(dto sec-
ond order in 0:

A(pQ) =j'(1 —o'cos —,'p(() 2)(S (0 —&u( ) (p)) &O +P +P& &P1 2 (CB)
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where

0 +1
p ~ z E~P= —.,~ (coska+ cosqa),

2(NA)oD~ (C16)
D3 e

0

o 2 2 1Fpp- ., ' [(coska+ cosqa) —cos —,pa ] .
(C9) From the definitions (3. 28) and (4. 10) of E we con-

clude that

E1= 3i'Eo&E0
Inserting I", E, and Db1 and collecting terms up to
second order in o we obtain the expression (5. 1) for
Xii(P&).

The numerator 1 —2 (S'S ), the ground-state shift
6„,and the strength S„in the spectral form (3. 25)
can all be expressed in terms of the vertex func-
tion I'(k) and thus easily be found to second order
in o. Using (CG) and (C7) we obtain (5. 4), (5. 5), and

(5. 6).
In order to evaluate the bound-state part of the

mass operator yb„we need an explicit solution of
the three-magnon scattering problem to second or-
der in o. From the formal solution (4. 32) of the
three-magnon problem we obtain

and

E2 —
3j EomEomE0, (C18)

P1 P2
Ep 6 (1) ~ + (1) (2)

o +zE (d —2~0 —xo +za

p(kqmk'q'm ') = &,(kqmk'q'm) [cosk+ cosq+ cosm j .

(C19)

Using (3. 31) and (4. 10) and Fourier transforming
we get

E», = NA/D,

where, using a well-known identity,

D = det(1 —I) = exp Tr ln(1 —I) .

To second order in 0 we get

(C10)

(C11)
where

+ (3), &
C20P3

(d —(dp + zc

2 2 2 4 =2
P1 1 3 2+3 3& P2 3 +2 3 3~ P3 3 3 &

(X4)p+ (NA)q o'+ (NA )p p a
Dp+D1cr+D2 20

(C12)
and

2

N/D = I+ I(N/D ) . (C13)

Expanding both sides of (C13) to second order in v

and solving in succession the resulting separable
integral equations for (N/D)p, (N/D)&, and (N/D)p,
we can find Np, N1, and N2 and thereby obtain an
explicit expression for the bound-state part Eb, to
second order in o.

Such procedure is straightforward and leads to a
simple but very lengthy calculation. There is, how-
ever, a much simpler method which enables us to
make contact with ordinary perturbation theory.

Expanding the solution (4. 32) for a fixed value
of in powers of & we get

(NA)p
0 0+

0
(C14)

By means of (C11) we can find Dp, Dq, and Dp in
terms of traces over products of Io, I„andI» where
Io, I1, and I, are the coefficients in the expansion of
the kernel 1 to second order in 0. In order to eval-
uate Np, N&, and Np we notice that N/D satisfies the
integral equation

[(NA)p+ (NA)g &+ (NA)p 2& ]~=~p Zb»
bs (3)

CO —(00 —Ab~

where

Dp+ D1O+ D2 ~V
1 2

(C21)

(C22)

and

p1, p2, and p3 are the projection operators for the
wave functions of three free magnons (three non-
adjacent spin deviations), two bound magnons plus
a free one (two adjacent spin deviations and one non-
adjacent), and three bound magnons (three adjacent
spin deviations), respectively.

Since m is proportional to the Heisenberg part of
the Hamiltonian, (C17) and (C18) are readily seen
to be the first- and second-order matrix elements
of the Heisenberg part taken between the various
three-magnon Ising states.

Expanding (C12) around the unperturbed pole ~p '

we get

(NA)~ (NA)p
1 1+ D D2 1

0 0
(C15) Z = (Dp+ D~ v+ Dp p g )„„&P& (C23)

(NA)p 2(NA)g Dg+ (NA)pDp
2+

0 0

By means of the Egs. (C14)-(C20), and the iden-
tities p2 mp3= mp3, p1 Tjp3= 0, and p3 7tp3= 0, it is easy
to identify the various terms in E„,. We get
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—6p3 —6(mp, +p, m) o+ [18p, —6(p, wm p, +p, vv p, ) —6(pzvw+ vvp~) —12vp37T] Q(7
bs

0 bs
(C24)

where

~bs= —i &
8 2 (C25)

Inserting (C24) in (A6) and collecting terms to sec-

ond order in o, we obtain (5. 7). The band contribu-
tion to yb, arising from the three-magnon continuum
is in general nonvanishing. A closer inspection,
however, shows that it vanishes to second order in
(X.
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Anomalous Behavior of the Lovv-Teinperature Magnetic Specific Heat of NiC1, 2H, O

L. G. Polgar, * A. Herweijer, and W. J. M. de Jonge
Department of Physics, Eindhoven University of Technology, Eindhoven, Netherlands

(Received 18 October 1971)

The specific heat of NiCl& ~ 2H~O has been measured for 1.2 K&T&24. 5 K. Two peaks are ob-
served, at T«=6. 309 K and at T2 =7.258 K. The former can be described by a power law

C~ cc I T —T«)" ' . The T2 peak is asymmetric and displays power-law behavior with smaller
exponents. Below 4K, C&AT, but the line does not extrapolate to zero at T =0. The con-
ventional explanations for some previously observed double transitions in other substances
do not seem to be applicable to NiCl2 ' 2H20, thus raising intriguing questions as to the origin
of the double C& peaks. Two possible explanations are sketched.

In order to study the competition between single-
ion and exchange effects in Ni" compounds, we have
measured the specific heat of NiCl, 2H20. The
structure is monoclinic and belongs to the space
group I2/m. There are four formula units per
unit cell. Two chlorines form an edge of the
(NiC14 2HzO) octahedron and link adjacent Ni"
ions along the b axis. Although the compounds
MClz 2H20 (M = Fe, Co, Mn) exhibit very similar
features, NiCl& 2H~O is not isomorphic with these.

Our measurements were performed on a 25. 38-g
polycrystalline specimen. Small yellow needles of
the dihydrate were obtained by slow evaporation at- 75 C from an aqueous solution of reagent grade
NiC12 6820. Great care was taken to prevent sam-

pie decomposition during encapsulation. Chemical
analysis of the specimen showed it to be the dihy-
d rate. Powder and single-crystal x- ray studies
on our samples were consistent with the reported'
structure. Details of the vacuum calorimeter, the
phase-sensitive thermometry circuit, and the ex-
perimental procedure are discussed elsewhere. '

Figure 1 shows our C~ data for 1.2 K& T& 24. 5 K.
There are two peaks, at T„=(6. 309+ 0. 001) K a-nd

at Ta, = (7. 258+0. 003) K, the latter being consider-
ably smaller in magnitude. The quoted uncertain-
ties indicate the maximum scatter from different
runs. Below -4 K, C~ ~ T, but the line does not
extrapolate to zero at T= 0. Although double peaks
have been observed in other salts, 4 including those


