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A model cxystal exhibiting a ferroelectric transition from a NaC1-structure phase to a dis-
torted C» phase is examined within the context of the lowest-order self-consistent phonon ap-
proximation. The difficulties associated with the usual harmonic approximation are avoided
by solving a set of nonlinear integral equations for the renormalized phonon spectrum. The
paraelectric phase admits a single self-consistent solution, whexeas the ordered phase yields
two solutions —one stable and one unstable. From the properties of these solutions several
important results are obtained. In particular, for the crystal stabilized by quartic anharmon-
icity alone the frequency of the soft zone-center TO mode of the paraelectric phase does not
vanish at the transition. Indeed, the transition from the ordered to the disoxdered phase takes
place with a discontinuous change in the optic-mode order parameter, so that the resulting
transition is distinctly first order. The implications of these results with respect to previous
mieroseopic derivations of the Devonshire free-energy expansion are discussed.

I. INTRODUCTION

The single most useful approach to the treat-
ment of phase transitions in ferroelectric crystals
of the displacive type has been to employ a Landau
free-energy expansion in powers of the macroseopie
polarizations and strains of the ordered phase.
From a practical point of view, the expansion is
usually introduced as a phenomenological expres-
sion with coefficients to be determined from the ex-
perimental properties of the crystal. ' Qn the other

hand, such a free-energy expression can, in prin-
cipal, be derived from a microscopic basis em-
ploying anharmonic lattice dynamics. ' Kwok and
Miller' have shown that by starting with a complete
set of order parameters associated with each nor-
mal mode a free-energy functional may be derived
which formally reduces to the phenomenological
expression in the special ease where the paraelec-
tric phase may be characterized by a single soft
optical branch. A primary drawback of the usual
microscopic derivation, however, is the fact that
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it rests on the validity of a perturbation expansion
about a harmonic basis —a basis which, in general,
represents an unstable state of equilibrium for the
crystal. Since the frequencies associated with the
unstable modes are imaginary, those frequencies
must be excluded from all normal-mode sums.
When this is done the meaning of the coefficients
in the microscopic free-energy expansion becomes
obscure.

A more realistic approach to the problem is that
which was employed in a previous work (hence-
forth referred to as I), where a self-consistent cal-
culation of the frequency spectrum of a model para-
electric was carried out employing a renormalized
phonon basis which represented a stable state of
equilibrium for the crystal. The problem was
formulated variationally, yielding a set of non-
linear integral equations which were solved itera-
tively. The present work extends the model of I to
a treatment of a hypothetical ordered ferroelectric
phase. We consider the case of a NaC1-structure
crystal undergoing a distortion to a rhombohedral
ordered phase of C3„symmetry. As in I, we
assume a model of anions and cations of unequal
masses interacting via long-range Coulomb forces
plus an anharmonic short-range interaction ex-
tending to nearest neighbors. The treatment of the
ordered phase is accomplished through the intro-
duction of an order parameter g associated with the
optic modes at zone center. This order parameter
is then determined self-consistently within the con-
text of the approximation.

Section II introduces the model Hamiltonian from
which the crystal free energy is derived. We then
proceed to the derivation of the self-consistent
equations for the frequency spectrum. As in I, we
confine ourselves to the case of the crystal being
stabilized by quartic anharmonicity alone. If we
limit ourselves to ordered phases whose point
groups are subgroups of 0„, then the NaCl struc-
ture may t;ransform continuously into either a
rhombohedral structure of C3„symmetry or a C4„
tetragonal structure. We further specialize to
the case where only the longitudinal component of
the quartic interaction is nonzero. Choosing this
component to be positive then favors a rhombo-
hedral distortion. The solutions for both ordered
and disordered phases are displayed graphically.
It is found that in a temperature interval 0 & T To
there exist two solutions for the ordered phase-
one stable and one unstable. For T& To, no
physical solutions exist for the ordered phase. On

the other hand, the paraelectric phase yields one
physical solution at all temperatures and this so-
lution can be shown to always represent at least
a local minimum of the free energy. The free-
energy functional which we derive resembles a
conventional Devonshire expansion in its explicit

dependence on p. However, the self-consistency
conditions impose an additional implicit dependence
on g which does not permit an expansion about
g= 0. In general, the free-energy curves for the
ordered and disordered phases cross at a temper-
ature T, & To, so that the temperature interval T,
& T & To represents a region of metastability for
the ordered phase.

Several sets of pa, rameters from the cases treated
in I are employed and the character of the transi-
tion between the paraelectric and ferroelectric
phases is examined by calculating self-consistent-
ly the free-energy difference between the two

phases. It was suggested in I that a transition be-
tween ordered and disordered phases must be first
order in a model which includes quartic anharmo-
nicity self-consistently. This conjecture is verified
in the present work by demonstrating explicitly
that a transition occurs discontinuously from a
state with g=0 to a state with q4 0. The frequency
of the soft zone-center TO mode is plotted as a
function of temperature for both the ordered and
disordered phases and the discontinuous change in
this frequency at the transition is displayed.

In Sec. III we discuss the implications of our
results, the limitations of the model, and the
possibility of improvements on the theory.

II. SELF-CONSISTENT EQUATIONS OF ORDERED PHASE

The properties of the ordered ferroelectric phase
are most easily treated within the context of the
self -consistent phonon approximation by introducing
a complete set of microscopic order parameters
representing deviations of the mean positions of the
ions from their equilibrium positions in the sym-
metric (paraelectric) phase. The true crystal
Hamiltonian has the form

where the instantaneous positions of the ions are
given by

r(la) = R(lo) + q(la) + u(lo)

R(lo) is the equilibrium position of an ion of type
o in unit cell / of the symmetric phase, while q(lo)
is the order parameter representing the displace-
ment which that ion undergoes in the transition to
the ordered phase. Finally, u(lcr) is the dynamic
displacement of ion (la) from the mean position
R(la)+ q (fo). Although we have not allowed for the

. possibility of a homogeneous deformation, such
distortions may be treated by introducing the six
independent strain components as an additional set
of order parameters. The effect of including the
strain parameters will not be considered here, al-
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though we will return to discuss this point briefly
in Sec. III.

%e follow essentially the ax'guments of I. Thus
we postulate that for each value of the mean ionic
position R(lo) +fj(lo) the dynamics of the phonon ex-
citations will be well described by a trial harmonic
Hamiltonian of the form

u (lo) C",'(ll')u, (I'o')
ll', (ye', e8

u, (lo) q "3(ll')u3(l'o') . (2)

As in I, C'„'3(ll') represents the Coulomb contri-
bution to the dynamical matrix, to be treated har-
monically, and q&,"~'(ll') represents the trial force
constant matrix, which for cubic symmetry and in

the nearest-neighbor appx'oximation has only longi-
tudinal and transverse components cp~ and q~. Both

qI and the order parameters I)(lo) are to be de-
termined vR11RtlonRlly from R IMnlmization of the
trial free energy

F, = Tr[p, (X+I 'lnp, )],
where p, is the canonical density matrix based on
the HRIIlil'tolliR11 (2). We eIIlploy tile Rppl'ox1II1Rtloils
of I, i.e. , the Coulomb forces are tobe treated
harmonically while the nearest-neighbor short-
range part of the interaction potential in (1) is to
include anhax'monicity through a quartic contribu-
tion only. Furthermore, we will introduce only a
single order parameter q, independent of the cell
indices l and o., representing the relative displace-
ment of sublattices A. and 8 from their positions
in the symmetric phase. As such, g may be iden-
tified as the order parameter corresponding to the
optic modes at zone center.

In analogy to Eq. (3) of I, the short-range part
of the interaction potential may be written in the

present case as

I'3 a(n ) = -' ~& iqII (~+ ni)'+ q r [(y + I)3)'+ (~+ I)3)']] + &~ (4'II(~+ I)I)'+ 4'33[(y + n3)'+ (~+ II3)']

+ 413(~+@i)'[(y+1)3)'+ (~+ I)3)']+ 4 (33y+ @3)'(~+I)3)g . (&)

The notation is identical to that which was employed in I, the summation being over all unit cells Rnd near-
est neighbors, while x, y, and z denote the corresponding Cartesian components of the relative displace-
ment between nearest-neighbor A and 8 ion pairs. The evaluation of the free energy per unit cell i.s
straightforward, yielding

E = F3+ 3(qadi,
—

qadi, )FII + 6(qIr —qIr)F33 + 6[34 11F,I+ (64 33+ 4 33)F33+ 24,3FIi F33]

+ [q i+ 2q r (»/Su)(2'—)'+ &(34 II + 4'13)F,I
+ 4(6@33+4'13+ 4'33)F33](&i+&3+ I)3 )

+ 2(eii + 24 33)(III + I)3 + I)3) + 2(4 33 + 24 13)(I)I I)3 + III rj3 + I)3 I)3 ) (6)

In the above, g* is the zone-center effective charge,
a is the nearest-neighbor distance in a.u. , and

E„and E2~ are the longitudinal Rnd transverse
components of the nearest-neighbor displacement-
displacement correlation function Rs defined in I.
The resulting free energy is in Ry.

Since the second-order terms in (6) are indepen-
dent of the d1rectlon of 'g, the dllectlon of the
order parameter is determined by the condition
that the fourth-order terms be a minimum for a
g1ven Rbsolute vRlue of 'g. This gives x'1se to two

possibilities: q directed along one of the Cartesian
axes if C«+2@32& 4&2+-,'C&3, or q directed along a
cube diagonal if the opposite inequality holds. %e
restrict ourselves to the case where the only non-
zero component of the quartic interaction 1s 4 «,
so that the condition 4«&O favors a rhombohedral

!

distortion. With j= (I/O 3) (II, II, I)) the free energy
then takes the form~

F = Fo+ 3(q'I, —q'1)F 11+164'IIFII

+ [cpi, + 2q r —(2II/Sa)(Z")3+ 124 „F„]I)3+—41, II4

(6)
Mlnlmlsation of (6) %1th 1'espect to (Pi, Rlld II yields
the two coupled equations

0'I = Pl. + &24'1&+«+44'« ~

I)3= —(3/44 „)[qI~+ 2qIr - (2II/Sa)(Z")3+124 „F»] .
Renormalized frequencies and eigenvec tors

e(qX) and e'(qX) are determined from a diagonaliza-
tion of the trial Hamiltonian (2). This permits an
implicit equation for E&& in terms of q~ to be ob-
tained through the normal-mode decomposition

Fii = ~ K — — coth — — [eI(jy)]3
1 1 P(u(qX) 1

2N „&u qk
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FIG. 1. Graphical solution of the coupled Eqs. (7) and (8). The curved lines represent plots of Eq. (8) at the four
temperatures 0, 56, 84, and 112 K. The set of linear plots (a)-(c) and the set (a')-(c') represent plots of Eqs. (10a)
and (10b). respectively, for different values of 4'&~ and tI()1. For the various cases the relevant values of @&& are (a) and
(a'), 30; (b) and (b'), 15; (c) and (c'), 5. The parameter pi is chosen such that the zero-temperature paraelectric
phase solution remains unchanged in cases (a)-(c).

~'o(I")= 8(y + 2V —
—,
' +12C'gg&gg+ « tgt)'), (9)

where we have employed units such that Z* and the

reduced mass do not appear explicitly.
We recall from I that the stability of the para-

electric phase required that y~ be eliminated in
terms of the Coulomb energy per particle Isee Eq.
(9) of I]. Thus it is clear that once the parameters
M, , Ma, and Z* are specified, Eq. (8) provides a
single-valued equation for E«as a function of yl
at each temperature. In Fig. 1 we have plotted

E,1 as a function of y~ at four temperatures. It
is clear that E» is a monotonically decreasing func-
tion of yl, , so that (dF»/dye) & 0 over the interval

& E«& 0, for which y, „&y~ & 0. y, „ is defined
as the value of P~ for which (d To(I') vanishes; i. e. ,

m, „=6
—2gz = 0. 259378

The self-consistent solutions may be obtained from
the iterative solution of Eqs. (7) and (8). For the

case where 4» is the only nonzero quartic corn-
ponent, however, the qualitative features of these
solutions are most easily displayed graphically.
Equation (7) expresses qr~ as a linear function of

E«, in the paraelectric phase we have

('f(t)&)I' —
M I isa(~)(q&)ii'(t)&)lcoaq, )2 2

(8)
Self-consistent solutions for E,1 follow from the

simultaneous solution of (7) and (8). The squared
frequency of the renormalized zone-center TO
mode is then given simply as

V~ = ~1.+124'11~11

whereas in the ordered phase we have

9 L 29 I + 39 min 24@11+11

(10a)

(10b)

Thus the allowable self-consistent solutions will
be given by the intersections of the straight lines
(10a) and (10b) with the temperature-parametrized
curves of E» vs Pz, obtained from (8). We have
illustrated these solutions in Fig. 1 for three cases
which were considered in I. ' In cases (a), (b), and

(c), C «and pl, are varied in such a way that the
zero-temperature value of varo(1') for the para-
electric phase solution remains constant at the
value 1.822&& 10, Focusing attention first on the
paraelectric phase solutions, it is clear from Fig.
1 that one feature which is independent of the par-
ticular examples considered here is that the effect
of varying C» and ql. is merely to change the inter-
section and slope of the line (10a) with respect to
the Cartesian axes. The solution ('aTo(I') = 0 cor-
responds at any temperature to an intersection at
infinity and hence can only be achieved in the limit
4» —0 or yl. ——~. This was pointed out in I. We
can also verify that the paraelectric solution rep-
resents a minimum of the free energy at all tem-
peratures. Indeed, we have

(O'I"/&P z ) = —3(8E„/t)Pi)+ 38C „(8E„/8pz)' ) 0

for positive 4». The paraelectric solution may or
may not, however, represent an absolute minimum
of the free energy with respect to the ordered so-
lution. This point will be examined in what follows.
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as functions of temperature for the three cases
illustrated in Fig. 1. The corresponding transition
temperatures T, for the three cases are approxi-
mately 20, 36, and 97 K. Plotted in Fig. 3 are the
self-consistent values of g over the entire tem-
perature range for which the ordered solutions
exist. The dotted portions of the curves represent
the extrapolation of the g solutions into the region
of metastability. We see that p~ increases rapidly
below the transition and then levels off as one ap-
proaches zero temperature. It is clear from the
plots of Fig. 3 that the transition to an ordered
phase is distinctly first order. The first-order
character of the transition is further emphasized
in Fig. 4 where the frequency of the renormalized
zone-center TO mode is plotted as a function of
temperature. In each case the solid line repre-
sents the value of the TQ mode frequency for the
absolutely stable phase, with the dashed line de-
noting the extrapolation into the metastable region.
The qualitative features of Figs. 1-4 clearly in-
dicate that as the magnitude of the quartic an-
harmonicity decreases, the transition temperature

-4 00o
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FIG. 2. Plots of the free energy as a function of tem-
perature for the ordered phase solutions and disordered
phase solutions of Fig. 1. The plots (a)-(c) refer to the
paraelectric phase solutions of Fig. 1. These solutions
exist at all temperatures. The plots (a')-(c') refer to
the stable ordered phase solutions and terminate at To.
The inner scale on the abscissa is in reduced tempera-
ture units.

6.0—

The self-consistent ordered phase solutions de-
picted in Fig. 1 exhibit several interesting features.
For given values of the parameters yL, and C~~

there will, in general, be a limiting temperature
Tp below which two distinct ordered solutions
exist; above Tp no such solutions can be found.
Qf the two ordered solutions obtained below Tp,
one solution corresponds to a minimum of the free
energy with p decreasing with increasing temper-
ature; this is the physical solution. For the re-
maining solution the opposite is found to be true,
i.e. , g increases with increasing temperature and

the free energy exhibits a maximum. ' ' If we

denote by T, the temperature at which the free-en-
ergy curves for the paraelectric and ferroelectric
solutions cross, then in general T, & Tp and the
temperature interval T, & T & Tp will represent a
region of metastability for the ordered phase.
Figure 2 displays the free energies of the two phases

0
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I I
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1IG. 3. Plots of the order parameter squared as a
function of temperature. The labeling of the plots corre-
sponds to the different cases of Fig. 1.
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FIG. 4. Plots of the frequency of the zone-center TO
mode as a function of temperature. The labeling of the
curves refers to the solutions in Fig, 1.

decreases with the transition itself becoming more
second order in character. It is equally clear,
however, that the transition will become truly
second order only in the asymptotic limit 4»-0.

We summarize in Fig. 5 the properties of the
ordered and disordered solutions discussed above

by plotting the qualitative behavior of the free en-

ergy [Eq. (6)] as a function of the order parameter
At all temperatures the paraelectric solution (q = 0)
represents at least a local minimum of the free
energy. In the temperature interval 0& T & Tp the
stable and unstable ordered solutions are repre-
sented by a local minimum and a local maximum
of the free energy at finite g. At T = Tp the un-
stable and stable ordered solutions merge to form
a point of inflection in the free-energy curve.
These general features can be compared with what
one would predict on the basis of a conventional
Landau expansion of the free energy to fourth order
in g. '4 Within the context of Landau theory the free
energy would exhibit for T & T, a local maximum at
q= 0 and an absolute minimum at finite g. At
T= T, the two extremal points would merge to

form a single absolute minimum at g= 0 and the
transition from the ordered to the disordered
phase would be second order.

III. DISCUSSION

Section D examined the qualitative features of
the phase transition exhibited by a model ferro-
electric crystal. The particular structural tran-
sition considered was that of an NaCl-structure
crystal undergoing a deformation to a rhombo-
hedral ordered phase of C35„symmetry. The fun-
damental assumption of the model was that the
low-lying excitation spectrum of the crystal was
dominated by collective behavior which was pho-
nonlike in character. This assumption permitted
the use of a trial harmonic Hamiltonian for the
description of the dynamics of the renormalized
phonon spectrum. Since the spectrum was treated
self-consistently, the difficulties associated with
imaginary frequencies in the harmonic approxi-
mation were avoided. Anharmonicity was re-
stricted to quartic interactions only. This yielded
an expression for the free energy which, in terms
of the explicit dependence on the optic-mode order
parameter, resembled a Devonshire expansion.
However, it was pointed out that in addition to the
explicit dependence on the order parameter there
was an implicit dependence resulting from the
self-consistency conditions. This had the impor-
tant consequence that the transition from the para-
electric to the ferroelectric phase was distinctly
first order and remained so for any choice of
parameters. Thus, when treated self-consistently,
the model ferroelectric crystal stabilized by quar-
tic anharmonicity alone does not exhibit a vanish-
ing zone-center optic mode and the transition from
ordered to disordered phases takes place with a
discontinuous change in the optic-mode order param-
eter. The effects of strain deformations and their
coupling to the optic-mode order parameter were
not included in the present treatment. It is ex-
pected, however, that the inclusion of a strain de-
formation will not alter the qualitative conclusions
of the model. Indeed, coupling to the strains
should in fact increase the first-order character
of the transition.

The present calculation can be compared with
the treatment employed recently by Kwok and
Miller' in a formal derivation of the Devonshire
free-energy expansion. The formalism employed
by these authors allowed for the possibility of
treating the problem self-consistently. However,
in order to obtain a free-energy expansion which
was formalfy identical to the Devonshire expres-
sion, they found it sufficient to employ a linear
anharmonic approximation in which the phonon
self-energy was renormalized through quartic an-
harmonicity in a non-self-consistent fashion, with
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FIG. 5. Qualitative behavior of the free
energy as a function of the optic-mode or-
der parameter for temperatures 0 ~ T ~ To.
In each plot positive values of the order
parameter extend to the right along the ab-
scissa.

T( T&T
C 0

T=T
0

ORDER PARAMETER

the unstable soft modes being neglected. In the
absence of sixth-order terms and strains, the
Kwok-Miller result for the perovskite structure
would predict a second-order transition and a
vanishing mode frequency. On the other hand, the
central result of the present work indicates that
linear quartic anharmonicity does not contain the
physics necessary for producing a second-order
transition. It should be emphasized that this
latter result is essentially model independent,
i.e. , we would have reached the same conclusion
if we had treated the perovskite structure self-
consistently with a realistic description of the in-
teratomic forces. The implication is that a higher-
order renormalization is needed in order to obtain
a second-order transition. This higher-order re-
normalization may be introduced through an ex-
tension of the Kwok-Miller formalism or by
means of the more recently developed self-con-
sistent techniques. We reserve for a future pub-

lication an investigation of the approximation in
which cubic anharmonicity to second order is
treated self-consistently.

With respect to possible applications to real
materials, the present model is most directly suited
to a treatment of a paraelectric such as SnTe. '
Although we cannot hope to duplicate the detailed
features of the interactions in such a material by
means of the simple rigid-ion model employed
here, some of the qualitative features of the fre-
quency spectrum such as the temperature depen-
dence of the soft mode, mode coupling, etc. , can
be adequately explained. Indeed, we saw in I that
many of the qualitative features of the frequency
spectrum of the paraelectric KTaO3 can be duplicated
in this simple model. As we have already em-
phasized, however, the details of a transition close
to second order such as occurs in Sr TiO3 and Ge Te
are outside the scope of an approximation in which
only linear quartic anharmonicity is included. In
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addition to yieMing only a first-order transition„ this
approximation is essentially a low-temperature
approximation, whereas most real transitions
occur at relatively high temperatures. However,
recent improvements of the self-consistent phonon
approximation' provide some hope of treating an
actual transition realistically. Goldman, Horton,
and Klein'6 have pushed the self-consistent calcu-
lations close to the melting temperature in the
rare-gas solids with good results. In materials
such as Sr Ti03 and Ge Te, where the melting tem-
perature is considerably higher than the transition
temperature, it should be possible to improve on
the present treatment with the more sophisticated
techniques now available —although with a con-
siderable increase in labor.

In summary, it appears that from a microscopic
viewpoint the ferroelectric transition in displacive
crystals is considerably more eornplicated than the
simple Devonshire expression would lead one to

expect. It is known experimentally that the thermo-
dynamic theory introduced by Devonshire appears
to be qualitatively correct as long as the coefficients
in the formal free-energy expansion are treated
phenomenologically. However, when examined
theoretically on a microscopic basis, the extent
to which the coefficients are renormalized by an-
harmonic interactions is not completely clear.
Quartic renormalization treated self-consistently
implies a first-order transition, even in the ab-
sence of strain instabilities. Thus, the achieve-
ment of a vanishing mode frequency and a second-
order transition necessitates the introduction of a
higher-order treatment of the anharmonicity in a
self -consistent fashion.
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