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Substitutional impurity pairs are studied as useful probes of the properties of magnetic in-
sulators. The scattering of photons and thermal neutrons from the local magnons associated
with such pairs and with isolated impurities is investigated. The simple-cubic ferromagnet
with nearest-neighbor exchange is treated explicitly. For magnetic ions with strong spin-
orbit coupling the Raman scattering should be readily observable at impurity concentrations
of a few atomic percent. Lack of resolution makes the inelastic neutron experiments currently
unfeas ible.

I. INTRODUCTION

As is true in other many-body systems, impur-
ities can be used conveniently to probe properties
of magnetic insulators. The analysis of microscop-
ic behavior (magnon spectrum, local thermodynam-
ics) has been restricted largely to isolated impur-
ities (see, e. g. , Refs. 1-3 for reviews), and bulk
effects have also been studied ' only to first order
in the impurity concentration. Further understand-
ing of the validity of the approximations of the theo-
ry, of the superexchange mechanisms in these ma-
terials, and of the nucleation of magnetic order can
be obtained by studying the behavior of neighboring
impurity pairs, which will exist in substantial num-
bers at concentrations of the order of several per-
cent.

As with an isolated impurity there may be mag-
nons localized in the neighborhood of an impurity
pair, if there are eigenexcitations whose frequen-
cies lie outside the bands within which magnon prop-
agation occurs in the pure crystal. Here we con-
sider the Raman scattering of light and inelastic
neutron scattering due to those local modes asso-
ciated with impurity pairs. Local-mode effects
have been observed directly both with optical tech-
niques ' and with neutron scattering. Resolution
of the structure is a serious problem with current
neutron techniques, but the Raman scattering ex-
periments appear to be feasible. For algebraic
simplicity we have chosen to look at an impure
simple-cubic Heisenberg ferromagnet. To the ex-
tent that point symmetry plays an essential role -e.g. ,
the precise number and types of local modes pos-
sible and the polarization of scattered light-
the results cannot be directly applied to known fer-
romagnetic insulators, but we are concerned here
primarily with the type of information which can
be obtained and with the size of experimental effects

to be anticipated. With this in mind we have further
simplified the model to include only isotropic near-
est-neighbor exchange, both for host spins and for
impurities. The parameters are restricted to give
a ground state with all spins parallel. In making
numerical estimates of the Raman cross section we
have primarily considered rare-earth ions, keep-
ing in mind possible eventual study of the divalent
Eu salts EuO, Eus, and Euse, for example (which
are cubic, if not simple cubic, but may have more
complex impurity exchange interactions, as well
as important host exchange beyond near neighbors).
High absorption precludes neutron studies of these
materials. We would anticipate very interesting
impurity effects in more anisotropic ferromagnets,
such as CrBr3 and lower-dimensional spin systems,
but these must be examined independently.

The spin dynamics are most conveniently studied
through two-time spin Green's functions. Because
the usual independent-spin-wave approximations
[such as the random-phase approximation (RPA) j
are expected' to be particularly bad for dealing
with local-mode behavior at elevated temperatures,
we restrict ourselves here to the low-temperature
limit, or effectively to a simple spin-wave approxi-
mation.

Because of the short spatial range of the local
excitations we need to consider only neighboring
pairs of impurities in studying scattering by local
modes to the order of the square of the impurity
concentration. It has been shown (e. g. , Refs.
11, 12) that the influence of an impurity is extremely
small beyond those spins with which it has appre-
ciable exchange interactions (nearest neighbors in
our model), so we consider only pairs which are
either nearest neighbors or which share at least one
common nearest neighbor. The effects on local-
magnon energies due to more distant impurities
have been found explicitly to be very small. Then
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to this order we need to treat only crystals contain-
ing a single such pair (or a single isolated impur-
ity). The "cluster" of spins containing the pair and
its neighbors constitute a local (but not necessarily
weak) perturbation on a pure crystal, and as such
can be treated by standard techniques. In Sec. II
we consider the Green's functions and local modes
associated with a single cluster of each distinct
type (relative orientation of impurities). Section
III deals with the neutron scattering, and Sec. IV
with the Raman scattering from the local modes.
The results are summarized in Sec. V.

G;, (t) = —is(t) ([S;(t), S,(0)]), (2. 2)

where 0(t) is the unit step function and the brackets
indicate the thermodynamic equilibrium average of

the Heisenberg operators. We retain the finite-
temperature notation, but we restrict ourselves to
the simple spin-wave approximation, neglecting the

anharmonicity of the spin operation; the results
are then applicable only at low temperatures
(T«T,). Within this approximation the pure ferro-
magnet is described by a set of independent magnon
excitations of energies

E, /(2JSe)=—+, =1 —(1/e) Z e"' +h, (2 2)

where h =gpaH/2JSz is the Zeeman energy, a is the

number of nearest neighbors to a given spin, at
locations ~ relative to that spin, and the final sum
is over 4. We have chosen the natural energy units
2JSz. Then the pure-crystal Green's functions take
the simple form

G, &(&o) = (2NJSe) Z e"'" '
/(&u —v, +i0')

-= (2JSz) ' I,((u), (2 &)

where in the last equality we have defined the di-
mensionless pure-crystal Green's function I' . By
definition of G(t) the poles of G(~) are the single-
spin-flip excitation energies of the system; this ap-
pears in an obvious way for this independent-excita-

II. SINGLE-CLUSTER CRYSTAL GREEN'S FUNCTIONS

We consider a very simple Hamiltonian, including
isotropic (Heisenberg) exchange between near-
est-neighbor spins and a Zeeman term due, in gen-
eral, to an external field plus a temperature-de-
pendent effective single-ion anisotropy field:

H= —p&Zg;H;S;-5~ J;&S; S, . (2. 1)

The exchange constants J;& vanish except when lat-
tice sites i and j are nearest neighbors, where

J;, = J for host spins on both sites, J' for one host
and one impurity spin, and J" for i and j both im-
purities.

The spin dynamics of the system are conveniently
studied through the usual retarded two-time Green's
functions'

tion approximation.
Within the simple spin-wave approximation the

equation of motion of G;, (t) [i.e. , the time deriva-
tive of Eq. (2. 2)] relates G;, linearly to various
other G„,. For the pure crystal, spatial and tem-
poral Fourier transformation of the equation gives
Eq (2. . 4) directly. In the impure crystal there
appear in the equation of motion additional nontrans-
lationally invariant terms in the commutator of S';

with H associated with the difference between J',
J" and J, S' and S, and g&H& and gH for impurity
sites j. Spatial Fourier transformation is no longer
useful, but the equation of motion can usefully be
written in the intuitively obvious form

G;, ((o) = G';, ((u)+Z G'; ((u) V „((u)G„,((u), (2. 5)

where the matrix V describes the perturbations in
H associated with the impurities.

We are interested here in the spin dynamics as-
sociated with excitations localized about an isolated
impurity or about a neighboring pair of impurities.
These are characteristic of a small cluster of spins
around these impurities; localization implies very
little communication with distant impurities. Phys-
ically, we can deal with scattering from local modes
in terms of incoherent contributions from separate
impurity clusters. Thus we need to treat only a
crystal with a single cluster (containing either one
or a pair of impurities, to second order in impurity
concentration).

The solution of (2. 5) is greatly simplified" by the
finite size of V. Then only a finite number of
Green's functions G„, enter the summation on the
right-hand side. Once these are found Eq. (2. 5)
gives all other G;, explicitly. We therefore con-
sider first the set of Eqs. (2. 5) only for those val-
ues of i such tha. t V;40 for some m. This finite
set of linear equations can be written

G;, =5 (1 —G V), ' G, =(M 'G );, (i in cluster),
(2. 6)

where the matrix M has the same (finite) rank as
V. In fact, these are the only G;, of importance for
the local-mode dynamics.

It is convenient, as usual, to make a unitary
transformation from the individual lattice-site rep-
resentation used above to one based on the point
symmetry of the impurity cluster under considera-
tion (the "point" being the midpoint of the impur-
ities in the single-pair clusters of particular inter-
est to us). The transformations are generated by
matrices U whose columns are orthonormalized
basis vectors of the point group. Explicit forms of
U are given in Appendix A. This automatically fac-
torizes the problem; M—= (1 —G V) becomes block
diagonal, with blocks labeled by the irreducible
representations of the point group. Local-mode
frequencies are singularities of G not common to
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mode, with z the interimpurity axis. It is the only
one that involves the impurity-impurity exchange-
coupling constant J".

The type-4 cluster, where the two impurities are
next-nearest neighbors, contains 12 spins. .The
six possible orientations correspond to the six [110]
directions for the interimpurity axis. The 12 pos-
sible local modes include four of s symmetry, six
of p symmetry, and two of d symmetry.
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FIG. 1. Four impurity-cluster types studied in this

paper. The conventions used for labeling the impurities
(open circles) and their neighbors are indicated.

those of G; from Eq. (2. 6) these are singularities
of M ' or zeros of detM. In the block-diagonal sym-
metry-based representation of M we have immedi-
ately

detM = II „detM(p. ), (2. 7)

where p, labels the irreducible representations, and

the zeros of detM(p) are the frequencies of local
modes of symmetry p. We follow the convention of

labeling p, by angular momentum symbols, s, P, d,

f, according to which spherical harmonics trans-
form according to the given representation of the

point group of the cluster.
Although the single isolated impurity has been

previously discussed in detail (see, e. g. , Ref. 16),
we include this case explicitly for completeness
and comparison. We denote the corresponding im-

purity cluster as type 1; it contains the impurity
and its six nearest neighbors. There are seven
possible characteristic local modes; two of s sym-

metry, three of p symmetry, and two of d symme-
try.

The three types of pair clusters of interest to us
are shown in Fig. 1. In the type-2 cluster the two

impurities share a single nearest neighbor at their
midpoint. The cluster has three possible orienta-
tions; the interimpurity axis may be any of the three
crystal axes. Although orientation has no effect on

the local-mode frequencies, it will affect scatter-
ing. The type-2 cluster contains 13 spins, and the

13 possible local modes include four with s, five
with P, three with d, and one with f symmetry.

The pair cluster about two impurities that are
themselves near neighbors, which will be called

type 3, also has three possible orientations, and it
contains 12 spins. The classification of modes is
similar to that of type 2, but there is one fewer of

s symmetry. Of particular importance is the P,

III. INELASTIC NEUTRON SCATTERING BY
LOCAL MAGNONS

The unique value of thermal neutrons as a scat-
tering probe is connected with the detailed momen-
tum as well as energy-transfer information they
provide. In the case of scattering by local mag-
nons, we can expect direct information on the spa-
tial distribution of the excitations. We therefore
consider briefly scattering from the local pair
modes discussed above, although current experi-
mental limitations on resolution preclude observa-
tion of the effects at this time.

We follow closely the approach taken by Izyumov
to discuss inelastic neutron scattering from impure
ferromagnets. Our purpose here is to extend that
work to impurity pair effects. We make use of the
standard van Hove' expression for the inelastic
neutron differential cross section for magnetic
scattering in first-order perturbation theory (the
usual assumptions include unpolarized incident neu-

trons, no electronic orbital excitations by the slow
neutrons, and negligible spin-phonon interactions):

-~'"" = —-,'(&on)' —Z &„(q)F (q)cosq (n —m)

x [1+ (q ~ z) jfmG„((u), (3. 1)

where xo is the classical radius of the electron, g
is the neutron magnetic moment, k and k' are the
initial and final neutron wave vectors, q =k-k' is
the momentum transfer, &u = (0 —0' )/2M„ is the

energy transfer, and E„(q) is the magnetic form
factor of the atom at n. The Green's functions G„
are just those discussed in Sec. II. We have in-
cluded only magnon creation and have neglected the
Bose factor n(&u), which is very small at low tem-
peratures, particularly at the relatively large
local-mode frequencies v.

As we pointed out in Sec. II, the localization of
the excitations (and the assumed random distribu-
tion of the impurities) leads to independent in-
coherent contributions to the scattering from the
various impurity clusters. We find the total ex-
pected scattering as the sum of results from crys-
tals with single impurity clusters, weighted accord-
ing to the relative concentrations of each type: c
for each orientation of each pair cluster and
c —24c for an isolated impurity, to second order
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in the concentration c.
If we define for each cluster type j (where j= 1,

2, 3, 4, was defined in Sec. II) the quantity

T;(q, &o) -=Z F„(q) F„(q)cos[q. (n —m)]G„„''(&o),
(3. 2)

then the cross section can be written to order c as

nants I/detM(y, ), whose zeros occur at local-mode
frequencies, multiplied by pure-crystal Green's
functions, perturbation parameters from V, and
phase factors. Explicit forms for isolated impuri-
ties will be found in Ref. 4 and for pair clusters
in Ref. 18. Secondly, we need sums of the type,
e. g. ,

GQ 4(d 2
'"" = ——() o)&)' —[1+(q z)']Im[(c —24c')T,

+ c (T2+ To+ T4)], (3. 3)

where Ã is the number of spins and G'i'(&o) is a
Green's function for a crystal containing one im-
purity cluster of type j. A sum over cluster orien-
tations is implied for T~, T3, and 74. For local-
ized magnon scattering, the principal contributions
to the summation over sites in ImT~ will come
from Imc„'~', with both n and m in the cluster.
However, it is possible to do the full sum explicitly
if we assume that the form factor F„(q) depends
only on the type of atom found at the site n:

F, for host spin at n

E,' for impurity at n . (3 4)

G=G +G V(1 —G V) G (3. 7)

The required sums are of two types. First we re-
quire

~-1 '5 e-ia (n-m) G(i) Go(q) + Go(q)
Opm

x g [V&)&(1 —Go V'') ] ' '" f&Go( )
lk

=- G'(q)+G'(q)IV"'(q)G'(q), (3 6)

where the new function W" '(q) involves only a sum
over sites l and k within the cluster of type j, where
V" '4 0, and can be found explicitly in each case.
Clearly, W(q) contains the characteristic determi-

Then for an isolated impurity at the site n = 1, we
write

T)= (F,' F,)' GI,"+F—,'&~cos[q (n —m)]G„"'

+F,(F,' F,) Zcos[q-(n —1)][G„)'+G,'„'], (3. 5)

and for a pair cluster (j=2, 3, or 4), with impuri-
ties located at (equivalent) sites n= 1 and m= 2, we

write

T.= 2(F,' —E,) (GI', '+cos[q (1 —2)]GIo )
+F,Z cos [q ~ (n —m)]G„' ' +F, (E', —F,)

xZ(cos[q (n -1)][G„",'+G)'„']

+ cos[q ~ (n —2)7 [G„'io'+G2o'7]. (3 6)

In each case the 1.attice sum can be done explicitly.
This is most easily seen from Eq. (2. 5) rewritten
in the form

= e "'G (q) + G (q)5 e '~'
V& G„i,

(3.9)
which requires knowledge only of G

&
for nz in the

impurity cluster, as obtained directly from Eq.
(2. 6). Again, explicit expressions can be found in
Refs. 4 and 18.

The details of the q dependence of the various
T;(q, o)) will give the desired information on the
spatial distribution of the local-spin excitation.
However, the magnitude of the cross section is set
primarily by ImT~ or ImG„at the local-mode fre-
quencies, i.e. , the fraction of spectral weight con-
centrated in the local modes (which weight the 5

functions at these frequencies in ImG„). This is
similar for pair and isolated impurity clusters,
and the pair mode cross sections should be reduced
from those appropriate to the isolated impurity
modes approximately by the extra factor of the con-
centration c. More careful estimates are given in
Sec. V.

IV. ONE-MAGNON LIGHT SCATTERING BY
LOCAL MODES

One of the most promising optical techniques for
studying the local mo'es is one-magnon Raman
scattering. In pure ferromagnetic crystals mo-
mentum conservation restricts one-magnon pro-
cesses to ferromagnetic resonance (in absorption),
scattering by the uniform (q = 0) mode, and Faraday
rotation, and one must go to the two-magnon Raman
spectrum to study magnetic excitations. We are
not, of course, similarly restricted in the non-
translationally symmetric environment of an impur-
ity, and Raman scattering with emission of a single
local magnon is possible.

For the canonical example of rare-earth magnet-
ic ions (e. g. , Eu ' in EuS and Euo) the strong spin-
orbit coupling provides a mechanism for a spin-
dependent polarizability, as first suggested by
Elliott and Loudon. ' Single-ion terms are asso-
ciated with an electric-dipole transition from the
4f ground state to intermediate 5d or 5g states and
then backtothe 4f multipletby a second-order elec-
tric-dipole transition. The corresponding second-or-
der matrix elements of the ion-radiation Hamiltonian
are matrices in spin space and can be represented
by spin-dependent polarizability operators in much
the same way as one constructs an effective-spin
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Hamiltonian. To this (lowest) order in the elec-
tric-dipole interaction we have terms in the polar-
izability which are linear and quadratic in the spin
operators. Clearly, the z component of spin can
change by 0, a1, or a2, with angular momentum
conservation maintained by the two photons in-
volved. Thus, both one- and two-magnon processes
are predicted in this order. The cross section
should be larger than is found for magnetic Raman
scattering in 3d transition-metal compounds, where
one must invoke either the relatively weaker spin-
orbit coupling or off-diagonal exchange in inter-
mediate states to couple to the spin. (The latter
mechanism is of little importance in the rare-earth
compounds, where wave-function overlap is much
smaller. ) The observation ' of this scattering in
rutile antiferromagnets, for example, suggests that
the effects described in the present paper should be
experimentally accessible for reasonable impurity
concentrations (a few percent). The quantitative
estimate given below confirms this.

In the second-order electric-dipole approxima-
tion discussed above the Raman differential scat-
tering cross section is

o(u «~-~ )~

d& dQ 2wc

x(eo o, '"o' (0) ~ (l —ir) ~ o. '"o'(f) ~ eo), (4. l)

where the incident radiation has frequency &0 and

is polarized in the direction eo, (d is the scattered
radiation frequency, and f' is the scattering direc-
tion. We have introduced the spin-dependent polar-
izability tensor n(t) (hereafter we drop the explicit
superscript vo indicating its dependence on the inci-
dent frequency), describing the polarization re-
sponse to the incident electric field: P = Q ~ E. As
described above, n(t) is a spin-space operator
which takes the general form20

O. =~ nI(&dO)+ + II'II(Ido)+' ' '
j&l

where

(4. 2)

Qg=~ Qg Sg +~ Qg Sy Sg+'''p ~ gv g v

ggv

Qpv c& c'v
Q» =~ g~ Sg S~+

PV

(4. 3)

We are interested in the scattering from localized

where p and v are summed over Cartesian indices
x, y, and z, and the latin indices j and E refer to
crystal lattice sites. The polarizability c.(t) evolves
in time according to the effective-spin Hamiltonian

Hs. n(t)=e""' o.e ""3. The scattered radiation is
polarized in the directionof Q ~ eo; thus, the tensor
component Q„„describes scattered radiation polar-
ized along p from incident radiation polarized along

magnons to the leading terms ( first and second
order) in an expansion in impurity concentration c.
Again, as a consequence of localization of the mag-
nons, these terms arise almost entirely from inco-
herent scattering from the various impurity clus-
ters we have enumerated, and we therefore need to
treat only crystals containing a single such cluster.

The number of and relationships between non-
vanishing elements of &;, Q», etc. , are deter-
mined by considerations of the symmetry about the
sites j, l, etc. ; the polarization must transform
like a vector under the local-symmetry operations.
Here "local" refers to the cluster associated with
the sites j, l, etc. ; under the assumption of a high-
ly localized excitation only these spins are involved.
We neglect absorption (this implies choice of &do

below an absorption threshold, since we are inter-
ested in observing the scattering) which requires
n(t) to be Hermitian. Time-reversal symmetry
further implies the Onsager relation n, „(S)
= n„,(- S), where the signs of all spine 3I are to be
reversed.

With the neglect of higher-order effective inter-
actions involving exchange, we have only the single-
ion part of the polarizability Q~. Because the ex-

I

citations of interest are highly localized we require
only sites j within impurity clusters. In particular,
for the simplest case, the isolated impurity Q& for
j= l (impurity site) contains as one-magnon terms

(0 00'I (0 o -f)
Q I (oIle lllaglloll) =

l O O I lIIIISII + O O O lnIISII
0-iO iO 0

001 000
+ 0 0 0 lbII{SIISII)+l 0 0 l lb 1{S'S',), (4. 4)

100) (01 Oj

where {AB)denotes the symmetrized product
-,'(AB+BA). No higher-order terms in the spin
operators are required since by the Wigner-Eckart
theorem the second-order electric-dipole matrix
elements are quadratic in these operators. The
indices on the polarizability elements a&; and b&,

and on the spin operators S&& refer to the jth spin
in a type-f cluster (i= l, . . . 4), where the site label-
ing conventions have been indicated in Fig. 1. The
point symmetry around a neighbor of an isolated
impurity is C4„. The polarizabilities Q&" take pre-
cisely the same form as the term in Eq. (4.4), with

the replacements

a2ISII (j= 2, 3, 6, 7)
a4ISI"I (j = 4, 5),

IIaIS&I (j= 2 3 4 6)
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b31S&1S,
'1(.2 = 2, 3, 4, 5)

11 11 11 b S»S» (j 6 7)

b „S'„S,', - b ' '1S~1 (j= 2, 3, 6, 7)
11 ll 11 b S» S» (j 4 5)

(4. 5)

+ (4A3+ 2A4) Im(G33+ G33)+ 6A3(A + 2A4)

xlmG34+ 2A, (2A3+A4) im(G31+G, 3)],

a;1= b;;= VX&'t /4w Xy. , (4. 6)

where V is the Verdet constant (rotation per unit
path per unit magnetic field), X is the incident light
wavelength, E is the dielectric constant, N is the

density of rare-earth atoms, and X is the suscep-
tibility. The Verdet constant becomes particularly
large near resonance (incident frequency approxi-
mately equal to the 4f-5d electric-dipole transition
frequency). The estimate (4. 6) gives a&;=10 for
Eu ' if X=4140 A or 10 ' if X=4400 A, with reso-
nance at X =4130 A.

Symmetry considerations for the polarizabilities
of spins in pair clusters (types 2, 3, and 4) result
in terms similar to the above examples. The ex-
plicit forms are discussed in Appendix B.

We define n "
5',n;"=, the total polarizability of

a cluster of type s (here s is taken to designate the
orientation of the cluster as well as genera. l type).
With the incident light polarized in the z direction
the expectation value in Eq. (4. 1) becomes

(e3 n'(0) (1 —3r") n"'(t) e3)

= (1 —3') (n'"n"'(t))"'+ (I —&') (n "n"(t))"
(4 7)

The first and second terms describe x- and y-polar-
ized scattered radiation, respectively. The one-
magnon terms of the polarizability discussed above
lead to two-, three-, and four-spin correlation
functions in Eq. (4. 7). If, as before, we make the

simple spin-wave approximation, then these corre-
lation functions are given in the standard way by
the single-cluster Green's function of Sec. II:

(S,'. (t)S,(0) + S', (t)S~(0))

—e '"'Im G» + +G, , ~ 1 —e

(4. 8)

Since Pcs» 1 for temperatures and energies of in-
terest we will replace the last factor by unity. The
one-magnon Raman differential cross section due
to a single isolated impurity for incident light polar-
ized along z becomes

The quantitative details of the cross section are,
of course, contained in the second-order matrix
elements a&, and b&, . As Inoue and Moriya ' have

pointed out, the linear spin-operator terms in n&

(eoeffieient a, ,) are closely related to Faraday rota-
tion, and the a&, can be estimated from Faraday
rotation data:

where
(4. 9)

Al all + (S )bll

A3= a31+ (S —3)b31,

A =,+ (S —,')b—,.
(4. 10)

V. QUANTITATIVE RESULTS

Although we cannot make a direct detailed com-
parison of the prediction of a model as simple as
the one considered here with experiments on a real
material, we can do better than make the rough
numerical estimates of the preceding sections, and
we can compare the scattering from impurity-pair
clusters with that from isolated impurities. For
this purpose we limit consideration to the type-3
pair cluster (impurities are nearest neighbors of
each other), as compared with the single isolated
impurity. We have found, as expected, that the

Green's functions G;, are understood to be evaluated
at the frequency (&u3 —&u). We point out that because
of the equivalence of the x and y directions the

strengths of x- and y-polarized scattered light are
equal, apart from the corresponding geometrical
factors (1 —r3) and (1 —3;)

The corresponding expressions for scattering
from impurity-pair clusters are of the same gen-
eral form as Eq. (4. 9) but are algebraically more
complex. They are obtained directly from Eq. (4. 1)
with the expressions for the polarizability tensors
n given in Appendix B. The magnitude of the cross
section will be comparable in all cases, being given

by products of &u3&u'/c, geometrical factors of order
unity from 1-ff', imaginary parts of the Green's
functions, and quadratic terms in the polarizability
coefficients [a&, , b&, , etc. , whose magnitude was
estimated above; see discussion of Eq. (4. 6)].

Symmetry considerations give some immediate
predictions about the scattering for appropriate
choices of incident polarization. For example, we
see that, as for the isolated impurity, incident z-
polarized light will give equal amounts of x- and y-
polarized scattered light for type-2 and type-3 pair
clusters whose interimpurity axis is the e direc-
tion. However, we point out that in these cases
there will, in general, also be a z-polarized com-
ponent to the scattered light, as is clear from the
expression for a in Appendix B. The relatively
larger number of nonvanishing elements of n for
the type-4 cluster is a reflection of the lower sym-
metry of this arrangement.
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FIG. 4. Differential inelastic neutron scattering cross
section due to creation of s-symmetry local magnons at
an isolated impurity. The scattering geometry is that
used for Fig. 3. The curves are labeled by J'/J and the
energy transfer D~:=&~.

h(q —G), = [2M„(E -he~)]' sin&, (5. 3)

where 6 is a reciprocal-lattice vector andq- G
is in the first Brillouin zone. We have chosen a
typical incident neutron energy E= 100 K, and the
cross section has been plotted as a function of 0.

For comparison we consider neutron scattering
from an s-symmetry local magnon associated with
an isolated impurity, again of the same spin magni-
tude as the host (S' =S). The cross section is given
in Ref. 4; it can be written in the form

da h 2k' „„2
d0d(h~) 244 o k

x 5(& —&,) [Go(q)P Z, , (q)
—detM(s)

~ „„d

(5.4)

where we have, as before, set I'"q
p Eq 1 The

factor Z„(q), the appropriate combination of minors
of the determinant of M(s), is

Z„(q) = (7'/8-1) (1 ——,
' Zcosq ~ Z

+ —', [1+—', icos(2q Z) +-.,'Ecosoc (110)]), (5. 5)

where the last sum is over all [110]vectors. The
structure factors express the coherence in scatter-
ing from the various sites in the cluster participat-
ing in the local excitation. In Fig. 4 we have again
plotted the coefficient of the energy 5 function in the
cross section (5. 4) as a function of the scattering
angle 8 for various values of J'/4 (or of &u,). We
see that the magnitude of the cross section per im-

purity cluster is approximately the same as for the
pair mode discussed above; of course the number
of type -3 clusters is smaller by a factor of c in the
random crystals and the relative total cross section
is reduced accordingly.

In Ref. 8 a localized magnon associated with a
single isolated impurity is observed by inelastic
neutron scattering in 5/z Co-doped MnFz. The data
show this mode as a, weak-intensity broad peak as
a function of energy. No structure due to pair ef-
fects is observable even at this upper end of the
concentration range in which we can neglect c and
higher-order terms. Impurity banding may, in
fact, already be important at the 5% concentration
required to get a sufficient signal. Therefore, with
current technology it is unlikely that pair effects
can be resolved in neutron scattering from local
modes.

In contrast, the light scattering effects should be
readily observable. The impurity-pair p mode
discussed above for neutron scattering is Raman
inactive, being of odd symmetry. Therefore, we
consider another algebraically simple set of param-
eters, again for the type-3 pair cluster: we take
J'& J, but J'S'= JS. The simplicity arises essen-
tially because the effective molecular field acting
on neighbors of the impurities is unchanged from
that seen in the host, although the impurities see
an increased effective molecular field. As sug-
gested in the discussion of Eq. (4. 6), all coefficients
in the polarizability tensors, a&, , b&&, etc. , are of
similar magnitude, which we will call b. Then for
the s mode in the type-3 cluster with 8'/J= 2. 5 and
J'S'=PS (local-mode energy is 1.1V times the band
maximum) we find for the integrated cross section
per impurity pair

d2 —d(u=(4&10 ) 5 cm /sr (s mode, type 2).

(5. 6)

Section II gives b-10 '-10 for incident fre-
quencies not too far below the absorption threshold.
Similarly, for the isolated impurity, with J'= 2J
and 8' = —,'S, we find for Raman scattering from the
s-symmetry local magnon (of energy 1.16 times the
band maximum)

d2 -- d&u= 2&&10 5 cm /sr (s mode, type 1),
(5. ~)

and for the corresponding d-symmetry local magnon
(of energy 1.05 times the band maximum) we find

cf
d&u= (2&&10 )b cm /sr (d mode, type 1).

(5. 6)
We found little dependence of these numbers on the
impurity parameters (or, equivalently, on the
local-mode energies), and, as suggested in Sec.
III, the numbers quoted here are all of roughly the
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same order of magnitude.
If we take conservative estimates of b=10, im-

purity-pair density Nc = 10 cm, and an integrated
cross section from above of (5&&10 ') 5 cm /sr we
estimate for the differential extinction coefficient-
the number of scattered photons per sr, per cmpath
length of the incident beam in the sample, and per
incident photon-approximately (10") (5&& 10 ')
(10 '

) = 5&&10 ". Even for a 10-mw source this
gives about 2x10' photons/srsec ', which is easily
measured. By comparison, Moriya estimates a
differential extinction coefficient of 2~10 ' to
2&&10 ' in pure FeF2. We have found scattering
from impurity pairs, i. e. , in a relatively dilute
system, of at least the same order of magnitude,
because we have taken advantage of the favorable
properties of the rare-earth ions as compared with
the Sd transition-metal ions. The coupling to the
electromagnetic field is through the strong spin-
orbit coupl. ing in the former, whereas in the transi-
tion-metal compounds it proceeds through the rela™
tively weaker spin-orbit coupling or off-diagonal ex-
change in intermediate states. The difference in
the polarizability elements (collectively denoted as
"b" above) is one to three orders of magnitude, and
this is squared in the cross section. The electronic
absorption threshold is also somewhat higher in the
rare earths, and use of a higher incident frequency
comes into the cross section as + . Thus, it is not
difficult to overcome the factor of 10 -10 from
the low density of scatterers (~c ). Finally, we

point out that Raman scattering from local modes
has been observed; e. g. , an s mode localized on
an impurity has been seen ln MnFp containing 2%
Fe, and a d mode localized on nearest neighbors
has been observed in 0. 8% Ni-doped RbMnF, .
Raman peaks in 1-2% Ni-doped MnF2 have been
identified as arising from two-magnon excitation
of ad and an s mode. Again this suggests pair ef-
fects should be readily detectable in appropriate
systems.
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APPENDIX A: TRANSFORMATIONS TO SYMMETRY-

BASED REPRESENTATIONS

For each of the four impurity-cluster types (see
Fig. 1) there is a unitary matrix U which describes
the transformation from a lattice-site-based to a
point-symmetry-based representation within the
subspace of the sites within the cluster. The col-
umns of f/ are (orthonormal) basis vectors of the
irreducible representations of the point-symmetry
groups (about the impurity itself for a type-1
cluster, and about the midpoint of the two impur-
ities for types 2, 3, and 4).

For type 1, we have

Ul= 412 0

vF &5

4 -&5
vY 0
vY 0

0
0

0 0
0 0
0 0

WS 0
—v6 0

0 ve
—W6

Ws
—1 vS
—1 -Ws

-vs

where rows are labeled by sites 1-7, as indicated in Fig. 1. We have as successive columns two s-, three
p-, and two d-symmetry vectors.

For type 2, we have

0
0

Ws

0
0

0

0

2
2
0
0
0
0
0
0
0
0
0
0
0

0
0
0
2

0
0
0
0
0
0
0
0

0
0
0
0
0
1
1
1
1
]

—1

—1

0
0
0
0
0
1

—1
—1

1
—1
—1

1

0
0
0
0
0
1
1

1
1

—1
—1

0
0
0
0
0

—1
1

1
—1

1

1

0
0
0
0
0
1
1
]

—1
1
1

0
0
0
0
0
1

—1
—1

1

1
1

—1

0
0
0
0
0
1

—1
1

—1

1
—1

1
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For type 3, U3 is identical to U~ with the second column and third row of the latter removed.
For type 4, we have

I

U'
4 2

v2
W2

0
0
0

0
0
0
0
0

0
0

W2

W2

0

0
0
0
0
0

0
0
0
0
0

1
0
0
1
1
0

0 vY
0
0 0
0 0
1 0
0 0
0 0
1 0
1 0
0 0
0 0
1 0

0
0
0
0
1
0
0
1

—1
0
0

—1

0 0
0 0
o
o
0 0
1 0
1 0
0 0
0 0

—1 0
—1 0

0 0

0
0
0
0
1
0
0
1

0
0
1

0
0
0
0
0
1

—1
0
0
1

—1
0

0
0
0
0
0
1

—1
0
0

—1
1
0

0
0
0
0
1
0
0

—1
1
0
0

—1

APPENDIX B: SPIN-DEPENDENT POLARIZABILITIES
FOR PAIR CLUSTERS

Here we give, in analogy to Eq. (4. 4) the one-
magnon parts of the single-ion polarizabilities for
each site in the three types of pair clusters. The
sites, denoted by the index j in each case, are
labeled in Fig. l.

TyPe 2. The z axis (which is the magnetization
axis) is taken as the interimpurity axis r, z. The
results for other orientations of the cluster are im-
mediately obtained by coordinate rotation. For
j= 1, . . . 5 the terms are of the form

t'0 0+1) (0 o o)
0 0 0 b,'., 8",S', + 0 0 1 b,', g~ ~ 81
1 0 0 0 y1 0

where the b,'.2 are real constants and b»= b,'~, b43
= b', 2 by symmetry. For j= 6, 8, 10, 12 the terms
are of the form

0 +bj4 +c)4
o o

I
[s",s'],

(cq4 0 0

gg4 +gg4

+~ 0 k,4+k.. .f„
I

[s', s'], , (B3)
l'. k,4+ k, 4f

where n,'4=@&4 and n34=n44 for n=b, c, g, l, or k.
For j = 6, 7, 10, 11 they are

a&4+ a&4

c,'

+ b,'.4
d~4 6 d)4

e~4

c24
a e,'.4 [S",S'],

for type 3.
TyPe 4. Here the z axis is chosen parallel to the

vector r, 4 connecting sites 1 and 4 (see Fig. 1).
For j= 1, 2, 3, 4 the terms are

a)2+ a~g

0

( +c,'.,

0
d~2+ d~a

0

C)2
o [s",s'],

f;2~f;aj

(@4+8'y4

+ h,'4

( -k,',

+ h,'4

k~4 z k~4

l~4

v h)4

I

[s', s], , (B4)
k;4+ k;4

0 h,'2 0
+ + k&z 0 c&2 [S', S'], , (B2)

0 +c'z 0

where all constants are again real and symmetry
requires ne~=n,'2 2= —n83= —neo 2 with n =a, d, f,
or h. The terms for j=7, 9, 11, 13 are obtained
from these by a 90 rotation about the z axis.

Type 3. Here again we take the interimpurity
axis as coincident with the magnetization, or g

axis. The point symmetry is exactly that found for
type 2. Then the polarizabilities for sites 1-4 in

type 3 are of the form (Bl), with b~3 = b~„b~, = b43.
Sites 6, 8, 10, 12 for type 2 are now labeled as 5,
7, 9, 11, respectively, for type 3; and sites 7, 9,
11, 13, for type 2 are now labeled as 6, 8, 10, 12

fA y4 +Zy4'
+I

o
k, 4+ k,.4 el~4

I
[s', s'], , (85)

l)4 k;4+ k, 4

where n', 4=@84, @94=@~2,4 for n=b, c, g, and k
and, in addition, g84=g94. In all cases the constants
in the 3& 3 matrices are real, and the results for
other orientations of the clusters are given by the
appropriate coordinate rotations.

64 +74 +i04 +1T 4for n=b, c, g, k, and
l and p~=pgg 4= pgp 4= p74 for p=a, d, e, f, and
h. For j= 5, 8, 9, and 12 the terms are

j 0 +b,'4
b,
' 0 0 I[s", s'],

c 4 0 0
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A model cxystal exhibiting a ferroelectric transition from a NaC1-structure phase to a dis-
torted C» phase is examined within the context of the lowest-order self-consistent phonon ap-
proximation. The difficulties associated with the usual harmonic approximation are avoided
by solving a set of nonlinear integral equations for the renormalized phonon spectrum. The
paraelectric phase admits a single self-consistent solution, whexeas the ordered phase yields
two solutions —one stable and one unstable. From the properties of these solutions several
important results are obtained. In particular, for the crystal stabilized by quartic anharmon-
icity alone the frequency of the soft zone-center TO mode of the paraelectric phase does not
vanish at the transition. Indeed, the transition from the ordered to the disoxdered phase takes
place with a discontinuous change in the optic-mode order parameter, so that the resulting
transition is distinctly first order. The implications of these results with respect to previous
mieroseopic derivations of the Devonshire free-energy expansion are discussed.

I. INTRODUCTION

The single most useful approach to the treat-
ment of phase transitions in ferroelectric crystals
of the displacive type has been to employ a Landau
free-energy expansion in powers of the macroseopie
polarizations and strains of the ordered phase.
From a practical point of view, the expansion is
usually introduced as a phenomenological expres-
sion with coefficients to be determined from the ex-
perimental properties of the crystal. ' Qn the other

hand, such a free-energy expression can, in prin-
cipal, be derived from a microscopic basis em-
ploying anharmonic lattice dynamics. ' Kwok and
Miller' have shown that by starting with a complete
set of order parameters associated with each nor-
mal mode a free-energy functional may be derived
which formally reduces to the phenomenological
expression in the special ease where the paraelec-
tric phase may be characterized by a single soft
optical branch. A primary drawback of the usual
microscopic derivation, however, is the fact that


