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an antiferromagnetic surface layer described by
Meiklejohn' is a special pseudohelicoidal structure
where Pincus's calculation is still valid. After-
wards, Soohoo' and Wigen' confirmed and devel-
oped these surface spin pinning mechanisms in
agreement with some experimental results.

However, the pseudohelicoidal structure which
generalizes the previous simple cases differs from
a real helicoidal one because a few layers only are
perturbed and thus the structure is not periodical.
The shorter the range of the pseudohelicoidal struc-
ture is, the stronger the pinning.
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Ideal ferromagnetism in perfect crystals (and/or in free space), where spin-orhitinteractions
.may be neglected, is investigated at zero temperature under the following conditions: The
fermion system considered here should have the inversion symmetry of the space coordinates
and the thermodynamic limit. Its ground state is nondegenerate for a fixed eigenvalue of S».
In other respects the ferromagnets considered are quite general and may cover all possible
types of ferromagnetism: insulators, metals, and free fermions. Dynamical spin-spin correla-
tion functions are studied. Sum rules for them are developed so as to exclude the contributions
from Stoner excitations. Spin waves are considered by .means of these sum rules. In the case
of complete ferromagnetism (all electron spins being aligned in one direction), it is shown
rigorously that no consistent result can be obtained; the excitation energies of magnons cannot
be finite in the form of Dq, but are vanishing. This suggests that the complete ferromagnet-
ism, if it could exist, must violate one of the above conditions.
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Genera] Theorems on Ferromagnetism and Ferromagnetic Spin Waves*

l. INTRODUCTION

Ferromagnetism and ferromagnetic spin waves
have been discussed for many years. '2 The dis-
cussions have mostly concerned specific models,
such as ideal Heisenberg ferromagnets and itiner-
ant-electron models. If the spin-orbit interaction
is neglected and hence the spontaneous magnetiza-
tion of a ferromagnet may take any direction, then
a mell-defined acoustic spin-wave mode with fre-
quency spectrum ~ =Dq is always obtained for
small values of the wave number q. This fact,
which can be easily inferred from the results de-
rived for the specific models, has also been dis-
cussed by some authors~ from the point of view of
the Goldstone theorem relating the acoustic mode
with symmetry breaking down. However, such dis-
cussions have again been confined to the models.

A simple and undoubtedly clear derivation of the
magnon mode was given for the ideal Heisenberg
ferromagnet, which is, however, an oversimplifi-
cation of real ferromagnets. Actually, the prob-
lems concerning the nonorthogonality and variety
of ionic configurations of atoms in a solid must
inevitably be kept in mind whenever we go beyond
the simple-minded pictures in which we neglect the
nonorthogonality and assume fixed atomic orbital
configurations. These problems will destroy all
the advantage of the Heisenberg model in its math-
ematical simplicity even in the case of ferromag-
netic insulators.

In the spin-wave theory of metallic ferromag-
nets, which was initiated by the famous work of
Herring and Kittel, we have been dealing with some
models which are again approximate pictures.
Yet we have not been successful in rigorously de-
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riving ferromagnetism and ferromagnetic spin
waves in those models; some approximations have
always been introduced in deriving the spin waves.
From a physical point of view, all these approxi-
mate theories are significant in the sense that they
can describe some characteristic features of me-
tallic ferromagnetism and its spin waves. How-
ever, for people who prefer mathematical rigor to
qualitative arguments, these theories would be un-
satisfactory. They could claim, first of all, that
the very existence of ferromagnetism has not yet
been proved in those models usually assumed or
approximately shown to be ferromagnetic. The
only models in which ferromagnetism has been
rigorously shown to exist are (1) one-dimensional
fermion gas with hard-core interactions (Lich and
Mattis~), and (2) the so-called Hubbard model in
the limit of the very narrow band just half-filled,
with a, single hole inserted (Nagaoka6). ~e wi]1 not
consider here any model in which ferromagnetism
arises by artificial means (for instance, by includ-
ing the ferromagnetic spin-spin interactions in the
original Hamiltonian).

The Lieb-Mattis theorem states generally that
E(S+ 1) =E(S) in any one-dimensional nonrelativistic
system where E(S) is the lowest energy for the
states possessing the total spin S. The theorem
states further that the equality holds if and o»y if
the interaction potential among the particles is
pathological, i.e. , if it contains hard cores. The
real significance of the Lieb-Mattis theorem is that
it reveals that ferromagnetism is very difficult to
achieve. However, we note here especially that
in the pathological case the ferromagnetism may
appear in the ground states which are macroscopi-
cally degenerate, though from a practical point of
view the situation is hardly ascribed to ferromag-
netism.

The narrow-band limit of the Hubbard Hamiltonian
considered by Nagaoka gives us a more important
example for the existence of ferromagnetism. In
the Nagaoka system (i) the intra-atomic Coulomb
repulsion is first taken to be infinity (hard cores),
(ii) transfer integrals are considered only between
the nearest-neighbor sites, and (iii) N (the number
of electrons) is taken to be equal to (the number of
lattice points) —1. The result is that the ground
state is ferromagnetic with S = 2N if the lattice is
"bipartite" (Lieb's terminology). This theorem
was first obtained by Thouless, ' but his proof was
regarded as incomplete. However, Lieb' has re-
cently shown how easily the Thouless proof can be
made complete. Indeed, Lieb's proof is much
simpler and clearer than Nagaoka's. In the Nagaoka
system the existence of only a "single" hole is
crucial, so that it would be difficult to extend his
result to the thermodynamic limit. One may even
claim that the ferromagnetism would perhaps be

destroyed if there are two holes; each hole gives
a spin alignment of a group of the medium elec-
trons, but the two such groups could interact anti-
ferromagnetically.

In view of these problems we will give up looking
for good models for actual ferromagnetism, but
we will simply "assume" that the ground state is
ferromagnetic. For mathematical simplicity we
consider here only the absolute zero temperature
and only the systems satisfying the following con-
ditions: (a) Relativistic effects are completely
neglected, (b} the inversion symmetry is there (in
order to avoid more lengthy analysis, another con-
dition will be imposed, though it is not necessary,
which says that the fermion system should be either
in a perfect crystal or in a free space), (c}the
ferromagnetic ground states are nondegenerate
except for the intrinsic spin degeneracy for differ-
ent eigenvalues of S, (this is referred to as the con-
dition of "quasinondegeneracy" throughout this
paper), and (d) the thermodynamic limit exists.

A ferromagnetic ground state is supposed to be
an eigenstate of S, i.e. , total spin vector squared,
as well as that of S,. This is the most character-
istic feature of ferromagnetism. By this feature
the ferromagnetic ground state is found to be a pure
quantum-mechanical eigenstate of the Hamiltonian,
while other macroscopic states with long-range
orders, such as the Noel state of antiferromag-
netism, etc. , cannot be energy eigenstates but are
simply wave packets.

The spin-wave mode is said to be observed when-
ever, say, the inelastic small-angle scattering of
thermal neutrons shows a sharp peak as a function
of the energy loss ~ of the bombarding neutrons.
(8' is taken to be unity throughout this paper. ) Thus,
to speak about the magnon mode exact].y, we neces-
sarily need to have some knowledge of the dynamical
spin-spin correlation functions which are directly
detected by neutron scatterings. For this purpose,
sum rules for the dynamical correlation functions
will be developed. Many authors " seem to have
already reached sum rules that perhaps resemble
the f-sum rules for the dynamical density-density
correlation functions. ' However, these conven-
tional sum rules are not enough to lead to the re-
quired conclusions for the acoustic magnon mode.
The difficulty comes, as will be shown later, from
the contribution of Stoner excitations (namely, the
individual-type excitations of electrons from up-
spin states to down-spin ones if the direction of
spontaneous magnetization is upward} to the trans-
verse spin-spin correlation function. The Stoner
excitations always have finite excitation energies
as q-0, while the spin wave in this limit has van-
ishing excitation energy. Then, as we step for-
ward to the first, second, and higher moments of
the transverse spin-spin correlation function for
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small q, the contribution of the Stoner excitations
becomes more and more dominant.

In order to exclude effectively the contributions
from the Stoner excitations, we will try to develop
new sum rules. Indeed, these sum rules take into
account only a narrow frequency range that tends
to zero as q-0. The sum rules take on especially
simple closed forms if all the fermion spins are
aligned in one direction in the ground state (such
ferromagnetism will be referred to as complete
ferromagnetism from now on). The main conclu-
sion of this paper, which will be given in Sec. IV,
is that the exchange stiffness D of the spin-wave
spectrum cu =Dq in the long-wavelength limit is
shown to vanish in complete ferromagnetism. Al-
though this conclusion itself is derived rigorously
and generally, it would be safest to say that its
physical implications have not yet been derived with
complete mathematical rigor. Our interpretation
is that complete ferromagnetism can never appear
in a stable (quasinondegenerate) ground state of
any nonrelativistic system with inversion sym.-
metry. As will be discussed later, this interpre-
tation is the most plausible one. This is not in,
contradiction with the Lich-Mattis conclusion of the
possibility for complete ferromagnetism because
the system they considered violates seriously the
condition of quasinondegeneracy for the ground
state.

Our result may not necessarily hold in artificial
systems, where thermodynamic limits do not exist.
Moreover, our conclusion can only be applied to
general nonrelativistic many-particle systems, and

may not be true for special models that are great
simplifications of real systems. For example, the
Heisenberg Hamiltonian and a restricted Hamilto-
nian(suchas Hubbard's) given under the tight-binding
approximation are beyond the scope of the present
treatment. Indeed, the systems described by the
Heisenberg Hamiltonian can be ferromagnetic at
T = 0 K whenever the exchange interactions have
ferromagnetic sign. After all, our conclusion does
not exclude the possibility of having all electron
spins up in some valence or conduction bands while
the core electrons do not show such complete spin
polarization. Such a conclusion, when applied to
the electrons in real crystals, would not be absurd
at all, though it might not be significant from a
practical point of view. It would be of some value,
however, to say that the electron gas can never
show such complete ferromagnetism, and also that
an assembly of He atoms, whether it is a solid or
a liquid, can never be in the state of complete fer-
romagnetism, at least if all the relativistic effects
are neglected.

The above conclusion presents these questions:
Why can there be stable (incomplete) ferromagnetic
ground states in nonrelativistic systems, and how can

D be positive there? Although no rigorous math-
ematical proof has yet been given for the existence
of such ferromagnetic systems satisfying the con-
ditions (b), (c), and (d), there is little doubt of
their existence. In Sec. V, an explanation is given
for the possibility of D & 0 in partial ferromagnetism
in spite of the conclusion of D =0 for complete fer-
romagnetism.

For the sake of simplicity we will refer to the
fermions simply as electrons.

II. BASIC FORMULAS FOR TRANSVERSE SPIN-SPIN

CORRELATION FUNCTION AT 1= 0 'K

The spin-spin correlation functions are defined

s„,(q, (u)

where +0 stands for the ground-state wave func-
tion, p, and v indicate the coordinate axes (x, y, or
z), M, (q) is the Fourier transform of the p, com-
ponent of the spin density, and M„(q, t) =e'"'M„(q)
&&e

' ', Il being the Hamiltonian. Denoting the
coordinates of the jth electron by r; and the Pauli
spin matrices

of the jth electron by cr&
—

(a&, o~&, oj), we have

M(q} =Q e'~ '~ o~ .

The ground state belongs to a definite eigenstate
of the operator

s' = M„(o)'+M, (o)'+M, (o)' .
Let the eigenvalue be M(M+1) so that

S + =M(M+1)4'

Since the ground state is assumed to be ferromag-
netic, M/N is nonvanishing even in the macroscopic
limit (N- ~, V/N = fixed value, where N is the total
number of electrons and V is the volume of the
system). M is called the spontaneous magnetiza-
tion. Let us take the z axis along the direction of
the spontaneous magnetization so that

where

S.=-M, (O) =Q o,'.

Let us introduce the notations

oy-=(ops 2oj }
2
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M, (q) = [M„(q)+ tM„(q)] =Q e"'~ o', (2')

and define the transverse correlation functions by

s. (q, (u)

=(1/2v} f dte'"' '
(@OlM,(q, t)M (-q)le, &

(2)

=&+, lM, (-q)s(a-E, -~)M (q) le,& .
(6)

On the other hand, the transverse dynamical spin
susceptibility is defined by

y, (q, (a+to')

=t f dte'"' "(4', l[M, (q, t), M ( —q)]l4', & .

S,(q, (u) = (the subscripts + and —are

interchanged in the above expression) .

These correlation functions appear in the cross
section for magnetic neutron scattering, d v/dQd&u,

that is, the cross section for the scattering of
neutrons in the direction represented by the solid
angle dQ with the energy losses lying between ~
and ~+dry. To be more specific, let us introduce

~p
the wave vector k of the incident neutrons and k
of the scattered ones. Then the momentum trans-
ferred from a neutron to the system is q =k —k,
and the energy loss is &u =k /2m~- k /2m„. With
this notation, the cross section under the Born
approximation is expressed as

k' 1( &P
2 I(1+~1 [s, (q, ~)+~,(q, ~)]

2

+ 1-~ S„q co, 4

where the contribution from orbital magnetism of
electrons has been ignored. In referring to the
magnon excitations, we are interested in the com-
ponent of the scattering related to the transverse
correlation functions.

Let us introduce also a set of energy eigenfunc-
tions vJ„(n = 0, 1, 2, . . . ), i. e. ,

Then from (3) the transverse correlation function
is obtained as

This describes the linear response of M, (q) against
the circularly polarized transverse magnetic field,

H„(r, t)+iH, (r, t) =a.(q, (u) e@'

The dynamical susceptibility defined above may be
generalized to the case of complex values for the
frequency variable by introducing

y, (q, z)= 4', M. (q) M ( —q} ep)

+ 4'™~q E M'q eoII- Eo+z
(8)

The expression (7) is just the special case of this
generalized function. This is expressed also as

1 A, (q, x)dx
X+-&q.~ ~& =

~ CIO

where

A, (q, ~) =v(e, lM, (q)~(a-E, -~)M (-q)l~, &

for v &0

(v~, lM (- q)f(ff Eo+~-)M.(q) I ~0&

for e &0

A more concise expression for A is

(q, ~) = v&&4IM.(q)~(ff -E, —~)M (-q}

-(e, lM (-q)v(e-E, +~)M.(q) l@,&j

(1o)
or

A, (q, (u)

s, (q, ~) =,'. g l &e„lM (q) I e,&
I'

1 1
(u —(E„—Eo) —tO' (u —(E„Eo)+tO'-

=-,' f dte'"' "'"(e,l[M, (q, t), M (-q)] le, & .
(»)

For this so-called spectral density function A we
have the well-known sum rule

or

s, (q, (u)

=Q l(e„lM (q)le, &l'n(~ —(E„-E,)) J A, q, w =M.
e 00

Throughout this paper we consider a nonrela-
tivistic system of electrons described by the Ham-
zltonzan

= —Im(4'OlM, ( —q) . , M (q)l@0& If=5 Pg'/2m + l'(r g, rg, ~, r~),
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=O'J (0),
with

(14)
(16)

where the potential energy V(r„ra, . . . , r„) is as-
sumed to have the inversion symmetry, i.e. ,

V( —rb —r2 . . . —rN) = V(rg r2 . . . rg)

for an appropriate choice of the origin of the coor-
dinates. Our condition is that there should be at
least one such origin, i. e. , the center for the in-
version transformation. For mathematical sim-
plicity we will confine ourselves to the considera-
tion of the electrons in perfect crystals or in free
space, where V(r„r~, . . . , r„) has the periodicity
of the lattice or the translational invariance, though
this condition is not inevitable.

Then we get the following equation of continuity:

[a, M, (q)]

=Q e~~'s(q p)/.m)o', +(q'/2m) Q e'~ ~&o','

III. CONVENTIONAL SUM RULES FOR SPIN-SPIN
CORRELATION FUNCTION

The sum rules derived in Sec. II are perhaps the
most conventional ones, but are not directly re-
lated to, say, the neutron diffraction cross sec-
tioris. For the practical purpose of describing the
neutron scattering we need to deal with the dynam-
ical structure factor S~„(q, &u}, instead of y(q, &u}

and A(q, (u).
First of all, we notice the following sum rules

for the transverse spin-spin correlation functions:

f" d s, (q, )=&@,IM.(q)M (-q)l~,&,

f d s..(q, )=&q'. IM-«)M. (-q)l+o& .
(is)

The ground state has the largest possible eigenvalue
of S, under the condition that it belongs to a definite
eigenstate of S . Therefore,

M.(0) I~,& =0,
and we expect that

J,(q) =
2 Q (e'~' &p, +p, e+'&)o,'

From (10) and (14}we obtain the sum rule'

(16)
lim M, (q) I

40& = 0 .

Thus,

for arbitrary values of q, where N is the total
number of electrons. The proof of (17) is given by
the following:

+&@,IM (-q)(a-z, )M,(q) Ie,&

=&@,I[M,(q), [e, M (-q)]]le,&

= —(q2/2m)M+ (q2/m }~ &'4
I
o~ oi I

eo

o', oj= 2 ((oq)'+ (o', }''—i'[o,*,o,']]'

—p 0') —0'g + gg

1
+ 2 0'y ~

Substituting this into (17 ), we arrive at (17).
Similarly we get

(i2')

and

—(uA, (q, (u) = q'
4m

for any value of q.

lim d&u[s, (q, &u)+S,(q, e)] =M .
q" O.

Needless to say, the contribution from S,(q, &u} to
(19) is of the order of q .

From (6) we obtain also

(i9)

f" d s -(q ~)~=&'HIM. (q)[If M-( —q}]l+.&
(20)

f (u[s, (q, &u)+S. ,( —q, (u)] d(u

=&+, l[M,(q), [a, M (-q)]]le,& =X&'/4m, (21)

where the algebra used for the derivation of (1'7 )
has been adopted again.

As can be seen from (5), S(q, &u) is always posi-
tive. From this fact and also from the sum rules
(19) and (21), we can readily conclude that as q-0
the transverse correlation [S, (q, ur) +S,(q, ~)] can
have nonvanishing (and large) values only at small
values of ~ comparable with q /2m, while it is
vanishingly small (of the order of q2) for large
values of &u [»(q2/2m}]. This fact can simply be
expressed by the following result for the first mo-
ment &~&, :

&
&0

f (u[s, (q, (u) +s,(q, (u)] d(u

f [ s, (q, (u) +s „(q, (u)] d(u

=Nq2/4Mm (for small q} . (22)

From this result, however, we cannot yet con-

and similarly

f- ~s.( q, &)d&=-&e, l[a, M(-q)]M, (q)l~, & .
Then we obtain the sum rule
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elude that there is a well-defined magnon mode for
small q. It is not yet possible to say anything about
the width of the magon spectrum in comparison with
its peak value. Moreover, it is absolutely wrong
to expect that Eq. (22) tells us about the exchange
stiffness D of the acoustic spin waves. The dif-
ficulty is more remarkable when we consider the
mean-square fluctuation of the transverse excita-
tion energies defined by

(( ( )O)2)() I (cu —((d), ) [s, +S,]d(d
I [s. (q, (u) + s ,(q, (d)] d(d

This is found to be of the order of q . However,
one must not conclude from this result that the
width of the magnon excitation energies (if it is de-
fined by [((&u —(&o)', )') ', ] ' } is larger than the mean
excitation energy so that there are no magnon
modes at all.

Actually the Stoner excitations contribute to sum
rule (21) with importance almost equal to that of the
magnon contribution. From (21) we can conclude
that the integral

f" s. (q, ~)d~= & I(+.IM.(q)lqo&l',
n (&n-EP &a)

with some finite positive energy value a, is of the
order of q . Then the Stoner excitations are ex-
pected to give the dominant contribution to

following reasons: First, consider the case of

q4 0. Since the periodic or translational symmetry
of the system has been assumed, the intermediate
states must have a different translational sym-
metry from that of the ground state. Then the con-
dition of quasinondegeneracy leads us to conclude
k & 0 or A 0 p. If q = 0, the intermediate states
should have a different parity from that of the
'ground state, then again ))(&0. The sum rule (21)
tells us that

N
K „(q)= 5„„, p, ) =x, y, ore.

4m
(24)

This means that

Z„„(q)=Z.„(0) (25)

for arbitrary values of q.

IV. SPIN WAVES IN COMPLETE FERROMAGNETISM

Since the conventional sum rules developed in the
previous sections are not adequate for investigating
the excitation energy and the energy width of a
magnon with a small wave vector q, some new
transverse sum rules are formed here to investi-
gate magnon excitations. For this purpose the fol-
lowing integral is considered:

f(q, u)=- f d(d e '"[S.(q, (d)+S,( —q, ur)],

(u"[s,.(q, (u) +s,(q, (d)] d(u, where
(26)

with n =2, 3, 4, . . . as q-0. Indeed, these higher
moments are always of the order of q, as can be
proven easily.

Before closing this section, let us notice a simple
theorem on the spin-current correlation functions
defined by the diadic form

K (q) = (@, J,(q) —J ( —q) e)
—q —g, q Cp

where I( =H- Eo. It is noticed that Eqs. (20) and
(21) with the help of Eq. (15) can also be expressed
as

f&u[s. (q, (u)+s. ,( —q, (u)]d(d

+ e, [M (-q), sr] —(j T,(q)) e~)

K(q) q .
This transformation is possible because of the

(
f" (()e '"[S, (q, &u)+S,(q, (d)]d(u
f"„e "[S, (q, (0)+S.,(q, (0)] d(d

(2V)

is carefully analyzed. Assume tentatively that
there is only a single transverse collective mode
among the long-wavelength transverse excitations
and that the mode has the spectrum w= Dq . Then
S, (q, &u) + S .( —q, &o) for any &u larger than &u,

—= c'q 5, 1»6'&0, should be bounded by a maxi-
mum value S& while taking the limit of q- 0. Simi-
larly S, +S, for any (d& ~&=c~ q '6, 1»g'& 0, is
bounded by a maximum value Sz when taking that
limit. Thus the background contribution to the
numerator of the first moment (2V) is seen to be

( f,
'

(odJ+d(o)(ue "[S.(q, (u)+S.(-q, (d)]

u=u, =c/q 6, 1»5&0.
The constant c is chosen to be positive and is re-
garded as a variable independent of q. Thus

uq /2m-0 whenever q-0 .

As can be seen quite easily, the contributions to
the integral I(q, u) from all the high-energy states
(i. e., the states with excitation energies» q /2m)
are eliminated whenever q tends to zero.

The advantage of introducing the frequency cutoff
e " can be clearly seen when the first moment de-
fined by
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&Sa f d&u&ue "+Sq f d~&ue where

S'=Q o', , (32)

lim I(q, n, )=M .
q w 0

(28)

Therefore, the first moment (2'l) is expected to give
the eigenfrequency Dq of the magnon mode with
wave number q if we assume the existence of a
single (only single) magnon mode. Actually this
assumption is rather unnecessary in order for us
to arrive at the results of this section. The as-
sumption has just been tentatively introduced for the
purpose of seeing the significance of the frequency
cutoff.

Inserting (6) and the corresponding expression for
S,( —q, a&) into (26), we obtain

I(q, n) =(@0~M,(q) exp( —nh)M ( —q) ~@o)

+(eQ~M (-q) exp( —nh)M. (q) ~eo), ' (29)

with 5=H —Eo.
Suppose tentatively that there is a nonrelativistic

many-electron system showing complete ferromag-
netism. This means that all electron spins are
aligned in one direction in the ground state, namely,
M = —,'N. Then

As q- 0, the right-hand side approaches a value- S& c ' c' q
' ~ . Therefore, the background con-

tribution becomes negligible as compared with the
magnon contribution, which is expected to be

Dq e ' f d~[S, (q, u&)+S, ( —q, &u)]=MDq~

as q- 0. Indeed, disappearance of the background
contribution from suitably defined moments of fre-
quency spectra is just what we intended to achieve.

The sum rule (21) tells us that the transverse
frequency spectrum for small values of q is peaked
for small values of ~ ranging from ~ = 0 to a value
comparable with q /2m. Then it is evident that

Jd =Z (pg/m) (k —or' )

= q'/2m -Z/G,
where

F -=(eo~ Jexp[ —n(h —8)]
~
eo)

(33)

G—= (40~ exp[ —n(Ir —8)]~%0) .
The quantities I' and C may be expanded as fol-
lows:

&=5 fa.
n=&

where

f2„——fo dug ~

fo
"

dugN g

(s4)

x(@ ~g
-( - g) g. .. ~„~-ug„p rrg~y

is the current of the electrons with down spin.
Let us define the normalized wave function

~e,) =M-"' S-~e,&,

with energy eigenvalue Eo or Ir
~
%0) = 0. Then

I(q, n) =M e " r'"(4'0~ exp[ —n(Ir-8)]~@,),
(32')

where 8=q J~. The first moment defined by (2V)
is then given by

aI(q, n)/an
I(q, n)

or'~ 4'0) = 0, j= 1, . . ., N .
In this case the expression (29) is very much

simplified as

(so)
G= 1+ Q gg„,

n=l

where

g,„=f du, f "'du, „

(36)

I(q, n) =Q (@ohio)
e"'s exp( —nh) e "'& or ~@0)

2
= e ~ r "Q (e 0 ~

o, exp[ —n(Ir —q pr/m)] or
~
eo),

(31)
where the explicit form of Hamiltonian (13) and the
formula

= Ir (ri ~ ~ ~ rg i Pg ~ ~ ~ Pr-i Pg
—0 Pg+) ~ ~ ~ PN)

have been made use of. On account of (30), expres-
sion (31) is further transformed as

I(q, n)=e ~r~ (4
~

0'Se xfp—n [h —(q ~ J~)])S ~4o),

f~=(k~ 8 r 4) . (36)

Since the system is invariant for the inversion of
space coordinates, 40 must have a definite parity
and, hence, 4 +0 should have the opposite parity.
Owing to the condition of quasinondegeneracy of the
ground state, 8 40 can not contain any energy
eigenstate that has the same energy as Eo.
Therefore, 5+ 0 and ht 0 in the above expression.

Let us define the spectrum function

x(eo~ge'" "lr"&g ~ ~ ~ e "se "an-1 "/~@0) .

The first term in expansion (34) is evaluated as
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(~) = (@o
I
y 5 (&u - h) 8

I +0) (37)

In the thermodynamic limit this is expected to be
a continuous function of co. Indeed. , whRt we meant

by the existence of the thermodynamic limit is the
existence of such A(&u). Then (36) may be ex-
pressed as

f, = d(u — A((d) d(d . (36')A(+) e-are

0 p CO

The first term in (36') is evaluated as

+ q'ps (1'pg
m a m

—(i/2m) (@0~ ((1 x, ) ((1 p, )
~

(1(,)

= q'/2m .

Consequently,

A((u) q

p 4) 2'

(36)

This means that A((d)-0 as (d-0. Therefore we

have

A((u) ~ (q'/m) (d" for small (u (40)

with a positive constant v. The precise definition
Of V lS

sin A.((d)p=—llm 4g
0 8&0

Now

g(~ O'P ~ O'Ps
& )

In this convention, &"ln~, for instance, is simply
denoted Rs (d, Rnd 8 ls understood Rs v = o0.

On account of (40) the second term in (36') is
evaluated as

4

(p~/m) )@0)=x&)00) =i '[x„H](4'0)=ihx&(@,)

(4'0
~
(p,/m) = —i (e,

~
x, h . Then

3

A((d) d(d (x: &
m

(4o')

Therefore,

~ ~q. p& 1 q p&

m h m

f e-"
A((u) d

as q- 0. Therefore,

f "'"'d.- - -0
p CO

= (i/2~) & +0
~
( (1 ' Pg) ( (1 ' xJ) t @0) fq=q'/2m+0(n "q ) . (41)

The next term in expansion (34) is analyzed as

where

f,= f duq f 'du2 f 'du, (e ~ge
' "&'" 8e'"3 "&'"8e™&"2'"8~+,)

=/4+5 4 .
(42)

Rnd

with

y —f. du .. .f 2 du (y
~

g e-(a-up)h ~ ~e(u2-m())) g e(us-aP)))
g~ @

Now
df

f4=[ du& du( du, (0', ~8e "~'" /~4, ) (C,
~

ge'"& "2'" g~e, )
"2 0

I ()0 ] (R N)6 ] p "N6

du d& de', A(g) A(q') .
0 0' 0

(43)
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Since 1, 8 1 —e-( ""= 0, 1= 1 —e "' = 0, and A(e)
= 0, the following ine(banality is seen to hold:

0&f4& du de ) de . =o)(q /2&n)
5 A(e) A(e')

0 -0

(43')

For the analysis of fh, let us define

where

8...=(+.I8 I
~.)

and 4„'s satisfy the following conditions:

HI @„)=E„I4„),

Selsyn) =(hN 1)-I+)5) 5

(4„I4 ) =6„„.
In the definition of f4 all the exponential functions
are always positive. Therefore,

N Q2

If4 I
& du& du& du)&(5150Ig*e ' "&'"/*Pe'"h "~'hg5'e'"h "»"gh I)I& )

0 0 0

du ] du 515 5!5)s e-(n-ul&h d! 5)sP e &u2-u&&h 5!5)s
t

u1 ] e "2h

1 2 p

0

r ~l

du, du, @, g*e (~ "&&"/*Pe'"' "~&hg+ —g5 @,
. 0 0

-f1~ P C

ge e-&o-f 1)~y~P0

0 0

(X- q4 ~

1 —e " P P
(44)

In the above analysis the condition of quasinonde-
generacy imposed on our ground state plays the
crucial role. As the result of this condition, there
exists the formal expression containing P/h.

From (43 ) and (44) we may safely conclude that

P P P
If, I

a(q'/2l)'+ e 8+ —8+ —8+ —8+ 4

for sufficiently small values of q. The above rea-
soning can easily be extended to the similar analy-
sis of the higher terms in the expansion (34). Then
we conclude that

5+(5, 5 —()" —5 —5 5,)
q2 ttn

So. (n —1)! 2&n&

for small values of q. (The smallness does not
depend on n )Let us d. efine

- np-1

X o( + ~ ~ ~ Q —(1/n! ) (nq'/2m)"
~Q ~Q ~Q

for small values of q. Since the right-hand side
converges to a finite value -(q /2&n)e f as
np- and E„&I'„,, for all n, limF„as n-~ should
exist. Therefore, it is concluded that the expan-
sion (34) constitutes a convergent series. The con-

vergency becomes more and more rapid as q be-
comes smaller and smaller, especially,

SS

fs-fs f dsd(s) ss 0-0. (55)

Let us consider now the expansion (35) of G. The
first term is

C &hh Ql

gz
——

I
du, duh(51&(&Ice'"h "&&"QI5I&0)

Then Thus

QS

du de A(e)
0 '

sp

(46)

q — . P P P2

0&g & g+ 0&g2& du deA. & ~=a q' 2m (46')
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An immediate conclusion of (46 ) is that go-0 like
O(q') as q-0.

The second term in expansion (35), i. e. , g„
is divided into two parts as

I
g4=g4+g4

where
al Q3

g4=- f du, . . . f du4
0 p

1d!!!!«, 8~ d i!)
0

Therefore

0 & g,'& (1/2! )(eq'/2m)'~ q"

as q-0. In the above expression Eq. (39) has
been used.

We can prove

and

x(@
l

d! e(«o-«&&&! d!
l
y ) ( y

l
d!e («4- «o»& d! l!Id )

g4 = f dug. . . f du4

x( !Id I d!e~"2 «&»" d! Qe «3 «2&&!!)e~«4 «3& && I y )Oi } 0

S up

0&g4= du, . . . du, (eo I

ge'"o "»"
pl eo)

0 0

lg"
l

& 0 g*—8*—0*—8* 4 ~q'
4 o ~ h h 0

in the same way as has been done in deriving (44).
The above argument can easily be extended to the

analysis of general higher terms in expansion
(35). Then we get rigorously

lg l
& 1+ ~I d!*—8*—8*—8" &id

P P P

pu2

dug. . .
o Jo

x @, g1

duo (Col ge'"o """glco)

x — e—+ ~ ~ ~ ( /In!)(eq /2m)"8 8 8

Be Be! Be

for small q. Then the series

de dQj Q +0
0 Q2

X +
is shown to converge. 'Zherefore, it is concluded
that expansion (35) constitutes a convergent series
and

G-1 as q-0 .
X

dM!! (%, 8 d d,)
0

X

Thus we have obtained a rigorous proof of sum
rule (28). It has been confirmed again that only
the low-lying excitations with vanishing excitation
energies [-O(qo/2m)] can contribute to the trans-
verse spin-spin correlation function for a small
fixed value of q.

From (33), (36'), (43), and (46), we obtain

q8 «! d e-(-u) 5 1 e-u 6'

lim (o&), = — de A(z) + du de d&'A(z) A(e')
q 0 f12

0 o

1+ dQ d&A & — d&A E +b
y

1 —8 q ' 1 —8

0 0 2m Jo

where in the limit of small q, where

us 1 e Q6

x l

Applying (39) to the above, we get

(o» ), = a+ I»

e-(R 6

a -= d~ A(&)
0

Equation (40') states that

ao- a "q cf-q "'"' "' for small q .

We have also
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((R g) 6 ~ l4

0 ~Q ~Q

= const x du (o. —u) " (q'/2m)'

= const x n' " (q'/2m)'

region u - n. Then we could conclude that

0

= constx nl "(q~/2m)2,

with the convention

2(1+v) + 6 (1-v)

For v = 1 we have

if v& 1..
Since I f 4'

I & constx q, we have

gw1

0& b & constx f du(u —u) '(q'/2m)'
0

+f,du[ f d~A(~)/~]'

- const x (inn) (q /2m) + const x o '
(q /2m)

Note that v& l. '~ Therefore, b/a 0, a-s q-0.
Consequently,

((~ ) CC o-v 2~ 2(l+&)-&5

for small values of q. Note that the q terms in

(~), have completely canceled out each other.
If such a result as

((u), = Dq'+ O(n "q')

with a positive constant D were obtained, then we
could have concluded that there were the transverse
magnon modes with the spectrum = Dq . The term
O(n "q ) would then be ascribed simply to the back-
ground contribution. Qn the contrary, we have now

only the background contribution while D = 0. From
this it is rigorously concluded that there cannot be
the magnon mode that has-the typical dispersion
(d =Dq .

Qne might think then that the magnons in complete
ferromagnetism would show another dispersion
relation, say, (d = Bq4. Assume for a moment that
this is true and there is no other transverse collec-
tive mode. Then let us take tx = c/q' ' with 1» 5 &0.
As a result of this assumption, S, (q, ~) for any ~
not smaller than ~~=-constq ', 1»5'&0, should
be bounded in the limit q- 0. In this way we could
conclude

(&u), =Bq +[terms of at most O(n q )]

or at least we could assert that the magnon excita-
tion gives a dominant contribution to (&u), .

By assuming tx=c/q ', let us see whether we can
really arrive at the above result. Prom

() f2 f4
2'fPg 1 +g2

we see that

((u) =b f 4 +O(n "q2) . —

In the definition of 5 it is easily seen that the main
contribution to the g integration comes from the

(&u), =b+O(n "q )

for small values of q. Therefore, it has been said
that the background contribution is again dominant
even if n is chosen to be c/q~'

The significance of all the above results could be
clearly seen in the following conjecture which can-
not be said to have been proved rigorously but,
nevertheless, seems to give the only interpretation
for the rigorously derived results. Qur conjecture
is that S, (q, u&) as a function of v ( &0) has a peak
at cu =0 or ~ =0 with the frequency width ~~ ~q '",
x&0. In this case the sum rule (21) in the long-
wavelength limit should be exhausted by the Stoner
excitations, though sum rule (19) must be exhausted
by the "spin-wave" excitation at ~ -0. The exis-
tence of spin waves with vanishing frequencies im-
plies that the assumed ground state of complete
ferromagnetism cannot be staMe: There should be
a very high degeneracy in the ground states which
can have various values of the total spin multiplic-
ity. This is not consistent with the condition of
quasinonde gener acy.

The whole difficu)ty comes from the assumption
of the existence of complete ferromagnetism satis-
fying conditions (a), (b), (c), and (d). Complete
ferromagnetism could only exist in systems that
violate one or more of these conditions. One exam-
ple is the one-dimensional fermion gas interacting
via a hard-core potential, considered by Lieb and
Mattis. ' In this case there is a macroscopic de-
generacy of the ground states: The lowest energy
state among the energy eigenstates with any fixed
value of S should have the same energy as that of
another such state for another fixed value of 8
S (8= ,'N). The Nag—aoka theorem might be regarded
as another example, though the Hubbard Hamiltonian
cannot be regarded as an example of our general
Hamiltonian. It seems to us that the possible lack
of a thermodynamic limit in the Nagaoka system,
rather than the special nature of the Hubbard Hamil-
tonian, is likely to be the basic reason that the
present conclusion is compatible with the existence
of complete ferromagnetism in his case.

V. GENERAL CONSrOERATIONS OI MAGNO&s

Let us consider the following integral:
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d(ue s"(u[S, (q, (u)+S,(q, (u)]
0

=(4, ~M, (q)e "I)M (-q)~e, )

+(e,~M ( —q)e '"lM, (q) ~e, )

t'hen

K (0, p)= I A~(cu)d&u .

We know that

d(d=K(0) =K(q) = (V/2m)1,
Ql

(52)

(53)

-Sh
+ +0 M -q, H HM, q @p

where

(1)„„=6~ „ for g, v= x, y, or z.

Since the integral of (53) exists, we must have

K(q P) q

where the diadic K (q, P) is defined by

e-Bh
)o(o, o)=(oo o,(o)

o
o (-o) oo)

(48) A~ (&o) = «o" for small co,

where a is a positive constant, v (& 0) is defined by

din A~((u)
p = 11Ql (d

au" 0 d(d

It is seen that

«Sh

+ @0~- -q J. q eo
and Az(~) is the diagonal element ofAz(v) =A+((d)-1.
In the above, such a convention as that used in the de-
finition of v by (40) has again been adopted. For
P» 1 it is concluded that

K(q, o)= K(q),

where K (q) was defined by (23). Let us define
~ (q, P)by

f [e '"A((d)/~]d(d =a I, ~ ""' e "d(o~P '.
(54)

Let us consider again f(q, o,) defined in Sec. IV.
Consider especially

K(q, P)= K(0, P)+() (q, P).
From (25) it is evident that

& (q, 0)=0 for any q

(5o) &sf(q, n) =q K{qn)q
a=lq

with n, = c/q '. Equation (54) tells us that

lim K(0, &,)=0
q"o

like O(q"' "). (55)

~(0, p)=o.

& (q, n) may be expressed as

a (q, o)

8-eh
J, q+J -q J -q+J, q 40

Therefore, it is seen that the magnon mode with the
e =D q spectrum is obtained if and only if we have
the following theorem:

lim b (q, o.,)= p, 1,
qmo

with positive constant p, independent of c and
5(1» 5& 0). Then we could obtain

-eh
— o, [o,(o) + o (o)1 '„—

I o, (o) +o (o)1 o,) .

(51)

2 l ~ I(q, a.,)

Let us define further a new spectrum function by

A ~((o) = A. ((u) + A .((u),
with

or

=lim q ~ Z(q, a, ) q/M= (p, /M)q
q" 0

D= p, /M .
A, ((d) =()1)0~ J,(0)5(I) —(()) J (0)

~

)I)0)

A-, (~) =(~OI J (o)5(a —~) J,(0)
I
~0) .

In the case of complete ferromagnetism the rela-
tion between Az(&u) and A(o&) defined by (3V) is

q ~ A, ((u) ~ q=q ~ A, ((u) q=MA((u),

Thus it has been found that the very singular term
7(q, o) is responsible for the magnon excitation
energy, while the K(0, o. ) term has nothing to do
with the magnon mode. Indeed, K(0, o) contains
only the background contribution, mostly due to the
Stoner excitations. Any effort trying to relate D
with (@DID,(0) [I/I)] J (0) I@o) is thus seen to be ir-
releva. nt. ' We could be more radical and say that
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the conventional sum rule (21) or (24) is irrelevant
to the present subject of finding D. More detailed
analysis of Z(q, o) in general ferromagnetism of
nonrelativistic systems will be given in a separate
paper.

It would be interesting to see how 7L(q, o', ) vanishes
in complete ferromagnetism (M = —,'lq), though the
mathematics given below is essentially equivalent
to that used previously for the derivation of sum
rule (47). In this case expression (51) becomes

M=e """q'/2m- ~, 8
'

— S $~)

&e 1 —e -uh

+ du 4'o~ „~4'o q /2m

e -eh
+ ~ ~ ~

h

Applying (39) to the above, we obtain

0& q. 7r, (q, o) j
e-uh

q 2m
Q

= —&+olM.(~) e "[i ~ (-q)]~@o&

—&4o(g „g(4'o&, , (56)

where 4 and 8 were defined in Sec. IV. The first
term on the right-hand side of (56) becomes

-Q &eo~gJ e"'~ e "-,' ($, e " '&+e " '&&()(rq~@o&

= -Z &@o ~o,
' exp[—o(h —&, +q'/2m)]

x(g~ —q /2m) o j ~
@o&,

where $&=q ~ pj/m. This is further written as

—M&+
f
e~[- n(a —a+q /2m)] (8-q /2m) e &.

Thus (56) is expressed as

q ~(q, o.) q=M&eo~ exp[- ot(h-g+q'/2m)]

x(q'/2m —g) ~4o& —&4o~g (e '"/h) g ~4'o&

f e

ao

x&~o~g e-»[q'/2m -8]~ eo&

t a~
+ ' du, duo&@o~8e '"~ "o'"pe "o"

&M e ' ~o"
t du 4' g —g 4' q'/2m

I

&M o. (q'/2m)'

for small q. Therefore, it is concluded that

lim b, (q, a, ) =0

for complete ferromagnetism.
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If v & I, the integral ]0"(A(e)/s ) de is finite. However,

this integral does not exist in the thermodynamic limit,
as can be seen from the following argument:

dC = 4'p ~ 0 +p
0 l

Presumably p will be unity in interacting many-particle
systems.

This comment is applied, for instance, to the author' s
own report circulated with the same title as that of the
present paper. The so-called most general expression for
D was given there, but it is actually seen to be vanishing.
Whatever excuse could be given for its derivation, it was
essentially based on the following treatment:

+M ' &4 l[q J (-q)] (e "/h) [q' J (q)]lq'0)

-M ' &e, l[q J,(0)] (e 'a/h) [q J (0)]I@0)

+M ~ &40J[q' J (0)] (e "/h) [q'J„(0)]J40) q o'. "

in the thermodynamic limit where N with V/N= const.

which is probably wrong.
This comment cannot readily be extended to criticism

against the Feynman relation for the Landau phonons in
condensed liquid He . There it would be possible to show
that the contribution to the density-density correlation
function from high-energy excitations is atmost O(q '")
with g &0.


