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Low-Temperature Spin Orientation in Cobalt Tutton s Salt. II
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The spin orientation of the Co' ions in Co(NH4)2(SO4)2 ~ 6H20 calculated in a previous work
was extended to include exchange in addition to the dipolar and hyperfine interactions. The
exchange was found to have a small effect on the orientation of the spins, but a significant de-
crease occurred in the value of the minimum energy.

I. INTRODUCTION

Cobalt Tutton's salt Co (NH, )aSO, 6HaO is widely
used in attaining low temperatures by adiabatic
demagnetization, and therefore there is consider-
able interest in its properties. Measurements
have been made of its crystal structure, specific
heat, transition temperature, magnetic suscepti-
bility, g factor, hyperfine coupling constant, and

other properties. 6 As a. result it is desirable
to compare these measurements with calculated
values. With this aim in mind we computed the
ground-state spin orientation of the cobalt ions in
cobalt Tutton's salt in a previous work' which will
be referred to as I. The influence of the dipolar
and hyperfine interactions were taken into account
explicitly. In the present paper the calculations
will be extended to include the effect of exchange.

In an earlier work Garrett3 had pointed out that
four possible interactions should influence the
specific heat, namely, (i) the Stark effect, (ii) the
dipolar interaction E», (iii) the nuclear electronic
interaction E„, and (iv) exchange E,„. Kramers's
degeneracy eliminated the need to consider the
Stark effect, and in I the dipolar and nuclear elec-
tronic interactions were included. Garrett as-
sumed that the relative contributions to the specific
heat of the dipolar and nuclear electronic inter-
actions have the following magnitude:

and his reasoning leads one to expect the ratio of
interactions (iv) to (iii) to be

E.„ / E„l -O. 6. (2)

(4)

The method followed in carrying out these calcula-
tions will be described after a brief discussion of
each of the three relevant interactions. Relation
(4) was calculated with f= 2. 6, as defined in Sec. V;
see also Table II.

II. DIPOLE-DIPOLE INTERACTION

Before proceeding with the new calculation it
will. be convenient to summarize the method adopted
in I. The Luttinger-Tisza approach was employed
to obtain a, dipolar matrix a which takes into ac-
count the anisotropies' of the lattice. It includes
the interaction between ions of type A. , that between
ions of type I3, and also the interactions between
both types of ions. The 6 &&6 matrix a was diag-

Qur calculations indicate that the relative contri-
butions to the specific heat of these particular inter-
actions are in accordance with the following ratios:
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onalized to find the six eigenvalues E and their as-
sociated eigenvectors V. The six eigenvectors not
only form an orthonormal set, but they also satisfy
the so-called strong constraint

j-4

where the V& are the three components fox iona of
type A and the V& are the components of type B.
The minimum energy has a value

Eau~in=-0 0399 cm '

The six energies E and their cox responding eigen-
vectors are given in I.

III. ELECTRON NUCLEAR INTERACTION

The next step is the calculation of the effective
magnetic field H to be introduced into the spin
Hamiltonian. In the laboratory coordinate system
the matrix a was written in the form

where the 6 &6 matrices 0 and 0 arise from the
g factor and dipolar operators, respectively, and

p~ is the Bohr magneton. From this matrix a
one may extract an operator H„,

H„=-,' p~ DG,

which produces the magnetic field vector R,

whose first three components constitute the mag-
netic field at site A, and whose remaining three
components give the magnetic field at the 8 site
arising from all of the other ma, gnetic moments in
the lattice. This occurs because the average spin
orientation is given by the vector 0,

whose first three components arise from spin S
and the remaining three from S~.

Since H is the local magnetic field at the spin
sites A and B it is appropriate to introduce it into
the spin Hamiltonian

R= psR g 8+8. T ~ 1,

which produces 16 eigenvalues and 16 associated
eigenvectors for each spin type corresponding to
the effective electronic spin 8= —,

' and the nuclear
spin I=+3. The lowest eigenvalue corresponding to
the ground state provides the eigenvector I P,„),
which may be employed to calculate the expectation
value of the spin,

The object of the present paper is to extend the
cRlculRtlon outlined above by tRklng into Recount
the additional interaction of exchange. In order to
ca,lculate the contribution of exchange to the min-
imum energy and spin orientation we make use of
the theoretical calculations of Nakamura and Uryd'0
and UryQ. ' They followed Abragam and Pryce
by starting with the I.= 3, 8= & wave function of the
free Co' ion. Some of the degeneracy is removed
by the crystalline eI.ectric fields to produce a new
effective orbital angular momentum / = 1. The
spin-orbit coupling further raises the degeneracy
to produce a lowest level which is characterized
by the quantum number m,

TABLE I. Calculated values of the effective field H,tf,
ground-state energy, and orientation (0&, p) of the spins
taking into account the dipole-dipole and hyperfine inter-
actions only, with exchange neglected. Column 2 presents
values determined in the previous study (I) and column 3
lists more refined values used in the present calculations.

jeff (G)
Ground-state

energy (cm )

Radius
of 100 A

—0. 0678
10
19'

Radius
of 350 A

—0. 0744

21'

where N means A or B. These spin expectation
values are then used in Eq. (9) to produce a new
vector 0 which provides a new local magnetic field
(8) for use in the Hamiltonian (10). The process
of alternately calculating 0 and solving for I p, „)
is repeated until self-consistency is obtained. The
final result provides the minimum energy values

E~L, + E~= —0. 0744 cm

Combining this result with Eq. (5) gives the ratio

EDD/E~ = l. 16

in agreement with (3). These results constitute
the energies of the magnetic ground state at 0 'K
in the absence of exchange.

In Table I we give the energy and orientation
of the spins for the ground state, and also the mag-
netic field at each site. The cooxdinate systems
used in the calculation are shown in Fig. 1, and
the orientations of the spins are presented in Fig.
2. Column 2 of Table I lists values ealeulated with
summations over lattice sites within a sphere of
radius 100 A, and column 3 gives the same quan-
tities calculated with a, larger sphere of radius
350 A. These latter quantities were used for the
ealcul, ations described in Sec. IV.
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2+ g2+ c2= (15)

A

These wave functions will be employed to calculate
exchange matrix elements.

The Hamiltonian term for exchange is given by

(16)

K)

and its representation in the tetragonal system for
a pair of equivalent nearest-neighbor spins
[PC,"„");/ or PC,„);,] with J;/ = 8, is as follows:

——,'J, C 2

2
z J1C

—4J D

—4J, D2

z J, C

I'IG. 1. Coordinate system where k& lies in the ae
plane, T~ is at an angle & above this plane, 'I'~ is o.' below
the plane, & =34', P =106.56, and /=130 .

en= my+ I,=+ z )

where m, . denotes the eigenvalue of the z compo-
nent of E and m, is the eigenvalue of the z compo-
nent of the spin S. The wave functions (t are
linear combinations of the functions ()/(, , in the
absence of spin-orbit coupling subject to condition
(18):

(SC,„);/--J (S'„S„+S'S')+J„S'S,,

where

J,= —8J,D', J =-2J, C',

This matrix representation corresponds to an
equivalent Hamiltonian with terms of the type

(17)

(18)

(/1/2 ((/(-1, 3/2)+ ~0(0, (/2)+ 0((, -1/2)

(I -2/2 0(1 -3/2) ~0(0 -1/2)+ (I (-1 1/2)

The calculated values of the coefficients are

a= —Q. 8959, b = Q. 2772, c = —Q. 3471,

(14)

C = 1+ 2(a2 —c2), D= b + v3ac .

In the case of different spine [(X,"„')„=(X,„");,] the
matrix is somewhat more complicated, and for a
pair of close spins with J,&= J2 it has the explicit
form

+ex

c z J,C'cos2u

!

1—z J2 CD sin2&

&, CD sin2o

2 JzD (1+ cos2n)

1—z J2 CD sin2n
1—zJ2C' cos2a

—2J2D (1 —cos2o. )

1—z J2 CD sin2n

—,J2 CD sin2&

—2Jz D~(1 —cos2o)

—z J,C cos 2n2 2

z J2CD sin2&

RZ, D'(1 ~ cos2 ))
1——,J,CD sin2~

z J2 CD sin2a

—,
' J,C'cos20.

(20)

where

J,= 8J2D cos2n,

J,= 2 J2 C cos2n,

Jq ———8J2D )

Jz-—- —4 J2 cD sin2n,

(21)

(22)

and o.'is the angle shown in Fig. 1. These equiv-

This corresponds to the following equivalent Ham-
iltonian:

alent Hamiltonians are in forms that are convenient
for use in calculations.

Crystallographic structure data on Co Tutton's
salt' indica. te thatan ion of type Aatthe (0, 0, 0) po-

0
sition has two A-type nea, rest-neighbor ions 6. 24A

away at (0, 0, + 1) and four B type next nearest ne-igh-

bors 7. 85 A distant at the positions (+ 2, + 2, 0).
Each nearest neighbor has an exchange interaction
energy I» and each next nearest neighbor has an
exchange energy I» with the ion A. Therefore the
total exchange energy E& associated with the ion
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omitted, and the effective field H, «has the three
components

2~.(s.}
y=1 g~WB 8'j. P a

O', S,' 2/i(S, )
g=1 g~ p, a g~PB

(26)

O'„S,' 2Z„(s, )
g=1g')) P a g)i Pa

Kl

In the Weiss approximation we assume that each S
can be replaced by its average value (S). This
effective field may be derived from the operator

=X

AA
H, y

——

~i/8'i 9 B

2 JJg'~IuB

FIG. 2. Spin orientation at O'K including the dipole-
dipole and hyperfine interactions. From the figure ~~
= (67' —56') = ll' and fIt) = 21'.

and in the formalism of Eq. (7) it has the form

HAA HAA . (S} (28)

+A +AA+ +AB) EB 2IBB+ 4 Aay

where, of course,

IAB=IBA .

V. EFFECTIVE FIELD APPROXIMATION

(23)

The Hamiltonians (18) and (21) for the individual
exchange interaction between pairs of like and un-

like spins, respectively, may be summed over the
appropriate neighbors in the manner of Eq. (23).
Before carrying out this summation, it will be ap-
propriate to consider each Hamiltonian [(18)and

(21)] as the energy of a spin S' in the effective
magnetic field arising from the exchange interac-
tion with the other nearby spins. This procedure
will be carried out first for the nearest neighbors
(AA and BB cases) and then for the next nearest
neighbors (AB case).

For the AA and BB cases, Eq. (18) may be
written as

in an A site and the analogous energy Ea associated
with an ion in a B site are given by

4

/=1

(28)

may be put in the form of Eq. (25), where in this
case the components of the effective field are

H. = 4(~.(S.) —Jd (S.})/e. I B,

H, = 4js (S&}/gi P B

H. =4(~d(s. }+~.(S.})/g VB .

(30)

This effective field may be derived from the opera-
tor

~d/8'i P B

4Jslg, VB.

where the components of (S) are defined by Eq.
(26).

For the AB case the treatment is the same as for
the AA case, but the actual expressions are some-
what more complex. The Hamiltonian (21)

2

x*,„= Z [~,(s'„s'„+s,'s', )+ z„s,'s', ],
)~1

which may be put in the form

3t'„=qiPB (SxH +S&H&)+gIIPBS H

(24)

(25)

~d/gli OB'
to give the analog of Eqs. (8) and (28),

H, dd= H~y ~ (S) .

~C/Iq II I B

(31)

(32)

where the superscript i on the spin operators is Combining Eqs. (27) and (31) gives the total operator
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2 J))
0 ii Pgy

4J,
8 j. P z

4J„
C'i( Pa

4 J
4'isa

4J,
R)( ga

(33 )

4 J'„
C'i) P a

4J,

~12 Sl ' Ks ' 2+ S1 ' Ka ' S2

where K, and K„respectively, represent symmet-
rical and antisymmetrical tensors. '

The antisymmetrical parts acts to cant the spins,
while the symmetrical part tends to make them
parallel The .operator H„given in Eg. (7) has the
following antisymmetrical part in the tetragonal
system, in units of gauss:

0 —110

0 —107

0 43

0 -10

110 107

0 0

0 0

-43 10

43 -10

10 0 107

0 —110 —10V

(35)

The operator H„given by (33) has the following
antisymmetrical part:

Notice that the (H„)4, and (H„)~& components are
different from their respective counterparts (H„$4
and (H„), . "

The most general form of the bilinear spin-spin
coupling between two spins S, and S, can be written
as follows:

0 0 0

0 0 0

0 0 —284

0 0

0 0 0 —284 0

0 0 284

0 0 0

284 0 0

0 0

0 0

0 0

(36)

Following the same technique used in I we calculate
the ground-state energy, the orientation of the spin
system, and the effective field at 0 K.

The present calculation is carried out with the
values of J& and J& given by Uryu, "

J, /k= 0. 0123 'K,

J,/k = 0. 0095 'K,
for the following cases:

~i = ~i/f, ~a = ~a/f,

(37)

(38)

where f assumes the values 1, 1.5, 2. 0, 2. 5, 3. 0,
10 . The last value was used in order to check the
calculations made in I which neglected exchange.
The effective field at 0 'K in the tetragonal direc-
tion was found by Garrett to be 340 6 and according
to Miedema ' the angle 6)& between the tetragonal
axes and the direction of magnetization was found

TABLE II. Calculated values of the effective field Hgf f ground-state energy, and orientation (8~, fI()) of the spins for
four values of the exchange parameters J~ and J~ defined in Eq. (38). Garrett's experimental values are given in column
8. The parameter f is defined by Eq. (38).

a &&(G)

Ground-state
energy (cm ')

666

—0. 1476
10
15'

f= 1.5

491

—0. 12027
4o

17'

406

—0. 1073
2'
17'

f=2. 5

357

—0. 0999
00

18'

f=3. 0

—0. 09514
2'
19'

f=10'

178

0. 0744
11'
21'

Expt.

340

~ ~ 0

10'

~From Reference 3. From Reference 5.
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A

4l K,

=X

to be 10 . Uryu ' '" defined the angle Q as the

angle between the plane in which the spin lies and

the k, ks plane and calculated it to be P= 15'. Our
calculated values are given in Table II and Fig. 3.

VI. DISCUSSION

There are three main criteria which may be em-

ployed to evaluate the merit of a theoretical cal-
culation of the type presented here. They are the
effective field H, «, the Neel temperature T„, and

the angles of orientation. The calculated values

FIG. 3. Spin orientation at O'K including the dipole-
dipole, hyperfine, and exchange interactions. Only spin

type & is shown. From the figure, &g ——(56' —56') =0' and

P = 18'.

of these three parameters for various magnitudes
of f were compared with experiment. The use of
Uryu's exchange parameters J, and J& correspond-
ing to the f= 1 case in column 2 of Table II pro-
vides an effective field of 637 6 which was much
higher than Garrett's experimental value of 34Q 0,
which is given in column 8 of this table. In addi-
tion, the transition temperature T„calculated from
the ground-state energy in column 2 is higher than
Q. 1Q 'K, which exceeds the experimental value of
Q. Q84 'K. The actual method employed for calcu-
lating T„ involves a complex iterative procedure,
so the details are being reserved for a separate
publication. The f= 2. 5 case shown in column 5

gives an effective field of 357 6 which is in fairly
close agreement with Garrett's experimental val-
ue. In addition, the transition temperature calcu-
lated for f= 2. 5 was close to the experimental val-
ue as well as the relation given in Eg. (4).

As Table II indicates, the angle 0„ is very little
affected by the exchange, and in addition it is sub-
ject to a rather large experimental error. How-

ever, the spin system remains ferromagnetic in
the z direction and antiferromagnetic in the xy plane
for all ranges of f values. Therefore, very little
weight was given to the orientation in selecting the
optimum value of f.

The antisymmetrical parts of the operators H„
and H„given in E|ls. (34) and (35) determine the
tilt of the spins. The hyperfine and dipole-dipole
interactions alone tilt the spins to the ac plane by
8„=11', as shown in Fig. 2. When the effect of
exchange is included, the matrix elements of Eq.
(35) are opposite in sign to their counterparts in

Eq. (34), and the net effect is to reduce the angle
6& to zero, as shown on Fig. 3.
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