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A simple theoretical semiclassical calculation of the surface ferromagnetic equilibrium is
given. The equilibrium orientation of the .magnetization in the layers which are near the sur-
face is tilted from the direction of the .magnetization in the bulk. This rotation depends on
both surface and bulk anisotropies. Thus, some instabilities in the spectrum disappear, and
optical surface spin waves are found to be less energetic than what is usually calculated.
Moreover, a simple interpretation of a possible origin of the pinning of surface spins is given.

There have been recently a number of theoretical
investigations of surface spin waves in Heisenberg
ferromagnets, ~ ~ where the existence of surface
modes is related, in the case of nearest-neighbor
exchange, to the variation of the bulk exchange pa-
rameter at the surface. Nevertheless, an impor-
tant question which remains open is that of the
direction of the magnetization at the surface. In
this paper a simple theoretical calculation of the
surface equilibrium configuration is given. The
most interesting result is that when the spin layer
draws near to the surface, the spin magnetization
rotates, and a so-called "pseudohelicoidal" struc-
ture is found in the vicinity of the surface. Conse-
quently, a simple interpretation of the originof pin-
ning effects is given.

Moreover, the surface spin-wave spectrum is
found to be perturbed by the existence of surface
anisotropy. A treatment dealing with the existence
of optical surface spin waves has already been given
in the special case where the bulk and the surface
magnetizations are parallel. ~ However, the aim
of this work is not to demonstrate that the surface
and the bulk spectra are model dependent, but to
lay emphasis on the fact that the magnetic struc-
ture of the surface often differs qualitatively from
that of the bulk.

The direction of the bulk magnetization M is as-
sumed to be determined by a total energy balance
(bulk anisotropy, sample configuration, ~ ~ ) and

thus it is independent of the surface anisotropy pa-
rameters. Let n be its angle with the axis Oz,
which is perpendicular to the surface. In order to
describe the surface effects we introduce the fol-
lowing Hamiltonian '

Z J(fg fa)SyqSyq —
~ Z I(fq-f2)Sy(Syq .

fg, fp, e Sjpf p

(&)
'

The bulk anisotropy is not included in H (o. = x, y, z).
The magnetocrystalline anisotropy integrals I (f~
-fz) differ from zero near the surface only, where
we make the assumption that I(f, —fa) is of the
same order of magnitude as J(f, -f2). The iso-
tropic exchange J(f, -fa) will also be perturbed.
The penetration of the perturbation, i.e., the range
of the helicoidal structure is given by the range
where the I factors are nonzero, which is different
from the surface spin-wave penetration. In order
to simplify the calculation, we assume that only
the first surface layer is perturbed. We define
thus the following parameters:

J„=J(fq —fa), I„=I (fi —'fa),

where f, and f2 are two nearest neighbors located
on the surface layer and

J'~= J(f~ f~), I~=I(f, -f2)-,

where f, and f2 are two nearest neighbors located
on the first and second layers. Let us assume that
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(4a)

(4b)

We examine now the simple ferromagnetic case
where all the bulk spins are parallel (and of unit
length). Thus

Sp= 83= ~ ~ ~ —S„.
In this simple case Eqs. (4a) and (4b) are found to
be

S~ SE
p, —'„=4 x + (1+ p, ) —,',

1 i

$X Sg~S(IV+) S~,

(5a)

(5b)

where X = I„/I,and p = J,/I, are the only parameters
which enter in Eqs. (5a) and (5b). We may notice
that the bulk exchange J has disappeared.

Let us define „n2, ... , n„asthe angles of
the spins S„S&,... , S„with Oz. As stated be-
fore,

Q2= Q3= ~ ~ ~ = Q

and therefore (5a) and (5b) may be written

sin(n+o. &)
= —(2p+1) sin(o. —o, ,),

sin(o. + o.,) = —2X sin2o,

From Eqs. (6a) and (6b) we finally obtain

(6a)

when neither f, nor f2 are located in the first layer
J(f, —f2) equals J and f(f, -fa) equals 0, where J
is the isotropic exchange value in the bulk. The
calculations are performed for cubic (100) struc-
tures.

We consider now the equilibrium spin configura-
tion in a semiclassical way as described by
Tyablikov. It is given by

BII
$" = anSn

n

where S"„is the component of the spin S„located on
the nth layer from the surface (Ox being parallel
to the surface), and a„is a constant. Equation (2)
means that the net torque acting on 5„equals 0.
All the spins which belong to the same layer are
parallel. For the bulk layers Eq. (2) is equivalent
to

Sn 1+Sn+1 fnSn y

where f„is a constant and thus S„belongs to the
plane (S„~,5„,~). Furthermore, as the surface
anisotropy is directed along Oz, S~ belongs to the
plane (Ox, M). Let Oy be perpendicular to this
plane (S„'=0). For the first two surface layers,
Eq. (2) can be written

1 4X Iu(p+ 1)
4X (1+2 p)

4)
f(X, p, , n)=~ sin n+

1
cos o.'—

1y JtL

(7b)
Equation (7a) gives the rotation o, —o. of the sur-
face spin S~ with respect to Sz. The choice of X

and p, maybe restrictedby Eq. (7b), which is arela-
tion between the bulk and the surface anisotropy
parameters. In fact this restriction is not so
drastic when one remembers that generally the
surface perturbation is not limited to the first lay-
er.

The rotation of the magnetization given by Eq.
(7a) is a direct consequence of the surface anisot-
ropy. Obviously such an effect cannot be deduced
from Osborne's model and results. 3 In Ref. 3 the
bulk anisotropy, which is the only one taken into
account, introduces no qualitative change in the
equilibrium spin configuration or in the spin-wave
surface spectrum. Quantitatively, the energy lev-
els and cutoff values are shifted as well as the pen-
etration depth.

Let us give now a few numerical applications of
Eqs. (7a) and (7b).

(i) Let us consider the case @=0where all the
bulk spins are perpendicular to the surface. Equa-
tions (6a) and (6b) imply that o., = 0 or n, = v. (The
surface and bulk anisotropies have the same axis
of symmetry ).

(ii) When all the spins are parallel to the sur-
face, a= —,'g, one of the solution corresponds to p
= —1 and ~ X ~

~ —,'. n~ is given by sinn, = —1/4&.
For example, X=-2 gives o. , = —+em, X=1/2WS gives

1 1 ~

nq= —m3, and X= ——, g).ves n, =a.
(iii) In the special case where I«J, p. » 1 and

two solutions are found for n~: n, =a or n, =n'm.
When n = —,v, Eq. (7b) leads to X = + —,'. For X = —,',
n, = a, which is the classical solution found by
de Wames. ' For ~ = ——,', e, = n + m, which is the
new type of solution found by Sparks, where all
the su face spins are antiparallel to the bulk spins
(antiferromagnetic surface coupling).

Similar calculations can be performed for heli-
coidal and antiferromagnetic structures Isee Figs.
l(b) and l(c)]. In the antiferromagnetic case a
surface antiferro-spin-flop state is obtained, as
described by Mills, without applying any magnetic
field. The same calculation could be performed
when the axis of the surface anisotropy is not Oz
but Ox (in the surface plane). In this case the sur-
face spins rotate in the (Ox, M) plane of an angle
(t(, —(t( = o(, —n given by Eq. (7a).

The first important consequence of this calcula-
tion is that the surface spin-wave spectrum differs
in most cases from those previously calculated,
for example, by de Wames. In a semiclassical
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Some particular results are given in Ref. 8: In
the case where J„=J,=J, no optical surface spin
wave is found. Moreover, the surface branches
are found to be parallel to the bulk ones, and thus
the numerous cutoffs disappear. For example,
when

(3' s, 's,
1
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calculation, we assume that

( Sg) / (S~) = cos o!g,

and thus de Wames's matrix elements become

+ cosQi+ —2(1+Aq) i
2A.J„4I„ Ji+ I~

J~+Ii
d2a = J cosQg —1

Ji
dna = 1 ——cos Qg,

(8a)

(8b)

(8c)

FIG. 1. The direction of the surface spinsat equilibrium
is in the plane given by the surface anisotropy axis A and
the magnetization M in the bulk. (a) Ferromagnetic case,
where X is perpendicular to the surface. (b) Helicoidal
case, where A is parallel to the surface. (c) Antiferro-
magnetic case, where A is perpendicular to the surface.
A surface spin-flop state is obtained.

which leads to

Q g
—& — 7l' ~

We do find optical surface spin waves, but they
are less energetic than those of Ref. 6, where the
surface anisotropy was not considered. These re-
sults are summarized in Fig. 2. When surface
spin waves propagate owing to the surface mag-
netocrystalline anisotropy, in some cases negative
energies are found and-there is thus an instability
of the solution of Ref. 8. In fact, this calculation
shows that the surface equilibrium configuration
is modified so as to cancel this instability (Fig. 2).

The second important consequence is that the
rotation of the direction of the spins at equilibrium
at the surface may in some cases explain the pin-
ning of surface spins. Obviously, when Q. &

—n0
{for example, ni= n+-,'w), the spins Sq do not
precess around their equilibrium positions. Bulk
spin waves are damped by the pseudohelicoidal
structure when they enter the vicinity of the sur-
face. This has already been demonstrated from a
macroscopic point of view by Pincus, whohas in-
vestigated two simple cases (pseudodipolar and

anisotropic exchange). For example, the case of

JJ
dpi'= 1 ——, (8d)

d],g + ding

C = dna+ day + dye d23 —dj,p day )

d= dpp,

(9a)

(9b)

(Qc)

A, being related to the wave vector q by

A, =2 —(cosaq„+cosaq,) .
The energy of the surface spin waves is obtained
by the following relation:

Z/4TS = 1+A, ——', (x+ 1/x), (10)

where S=(S'„)and x is a root of the simple-cubic
equation 0 2

x3+ bx +cx+d=0
submitted to the condition

(1la)

(11b)

FIG. 2. Surface spin-wave spectrum: E/4JS versus
A~ = 2 —(cosaq„+cosaq~). The branch J„,= 4J obtained here
(L. I.M. ) is compared to the one obtained by de Wames
(D. W. W. ). The branch J»=J is shown starting at E=O
and not at E & 0 as in Ref. 8 ~), = J&f/J.
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an antiferromagnetic surface layer described by
Meiklejohn' is a special pseudohelicoidal structure
where Pincus's calculation is still valid. After-
wards, Soohoo' and Wigen' confirmed and devel-
oped these surface spin pinning mechanisms in
agreement with some experimental results.

However, the pseudohelicoidal structure which
generalizes the previous simple cases differs from
a real helicoidal one because a few layers only are
perturbed and thus the structure is not periodical.
The shorter the range of the pseudohelicoidal struc-
ture is, the stronger the pinning.
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Ideal ferromagnetism in perfect crystals (and/or in free space), where spin-orhitinteractions
.may be neglected, is investigated at zero temperature under the following conditions: The
fermion system considered here should have the inversion symmetry of the space coordinates
and the thermodynamic limit. Its ground state is nondegenerate for a fixed eigenvalue of S».
In other respects the ferromagnets considered are quite general and may cover all possible
types of ferromagnetism: insulators, metals, and free fermions. Dynamical spin-spin correla-
tion functions are studied. Sum rules for them are developed so as to exclude the contributions
from Stoner excitations. Spin waves are considered by .means of these sum rules. In the case
of complete ferromagnetism (all electron spins being aligned in one direction), it is shown
rigorously that no consistent result can be obtained; the excitation energies of magnons cannot
be finite in the form of Dq, but are vanishing. This suggests that the complete ferromagnet-
ism, if it could exist, must violate one of the above conditions.
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Genera] Theorems on Ferromagnetism and Ferromagnetic Spin Waves*

l. INTRODUCTION

Ferromagnetism and ferromagnetic spin waves
have been discussed for many years. '2 The dis-
cussions have mostly concerned specific models,
such as ideal Heisenberg ferromagnets and itiner-
ant-electron models. If the spin-orbit interaction
is neglected and hence the spontaneous magnetiza-
tion of a ferromagnet may take any direction, then
a mell-defined acoustic spin-wave mode with fre-
quency spectrum ~ =Dq is always obtained for
small values of the wave number q. This fact,
which can be easily inferred from the results de-
rived for the specific models, has also been dis-
cussed by some authors~ from the point of view of
the Goldstone theorem relating the acoustic mode
with symmetry breaking down. However, such dis-
cussions have again been confined to the models.

A simple and undoubtedly clear derivation of the
magnon mode was given for the ideal Heisenberg
ferromagnet, which is, however, an oversimplifi-
cation of real ferromagnets. Actually, the prob-
lems concerning the nonorthogonality and variety
of ionic configurations of atoms in a solid must
inevitably be kept in mind whenever we go beyond
the simple-minded pictures in which we neglect the
nonorthogonality and assume fixed atomic orbital
configurations. These problems will destroy all
the advantage of the Heisenberg model in its math-
ematical simplicity even in the case of ferromag-
netic insulators.

In the spin-wave theory of metallic ferromag-
nets, which was initiated by the famous work of
Herring and Kittel, we have been dealing with some
models which are again approximate pictures.
Yet we have not been successful in rigorously de-


