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Application of the Side-Jump Model to the Hall Effect and Nernst Effect in Ferromagnets
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We recently showed that an electron wave packet undergoes an abrupt, sideways jump Dy

during scattering in the presence of spin-orbit interaction. This causes the Hall effect in

ferromagnets around room temperature (A~ec p ). The value of the side jump per collision
(Ay= 10"l m) seems the same for impurity and phonon scattering. A more complete justifi-
cation of the side-jump model is given here. This model is used to derive the isothermal
Nernst coefficient Qa', giving Q~'fx: pT, where p is the resistivity. If spin-disorder scattering
is also introduced, then the Hall conductivity y„, is not affected, but the Nernst coefficient
becomes Q~'= —T(n+Pp). This formula agrees with the data of Kondorskii and Vasileva on

Fe, Ni, Co, Gd, and Fe-Ni. The side jump is assumed to have the same value for spin dis-
order as for impurity or phonon scattering. The constant e is predicted to exist even in pure
metals, in agreement with the above data but not with the Kondorskii theory.

I. INTRODUCTION

The isothermal Nernst effect (often called the
Ettingshausen-Nernst effect) is characterized by
the existence of an electric field E in a direction
normal to a temperature gradient and normal to the
magnetic induction B. In a ferromagnet there is
also a contribution from the magnetization M:

E~ = —(Qo' I3, + Q,
"M, ) —,dT

where B Il M II g, the temperature gradient is VT II g,

QD and Q,
"are, respectively, the ordinary and ex-

traordinary isothermal Nernst coefficients, and the
electrical current density I is assumed to be zero.
Saturation magnetization will be denoted by M, . The

extraordinary coefficient Q,
"has probably the same

origin as the extraordinary Hall coefficient B„and
requires the existence of a spin-orbit interaction.
Kondorskii proposed a theory which takes into ac-
count impurity and phonon scattering, and predicts

Q."= —(o'+ Pp) T,
where pis electrical resistivity and n and p are
constant coefficients. In a very interesting paper'
Kondorskii and Vasileva have shown' experimentally
that Eq. (2) holds for Fe, Ni, Co, Gd, and Fe-Ni
alloys, between room temperature and the neigh-
borhood of the Curie point. However, it is not
clear to what extent the Kondorskii theory is af-
fected by a calculation error pointed out in later
publications.

Abelskii' has developed a theory which takes into
account magnon scattering. He obtained

Q,
" ft, (T/p),

where R, is the extraordinary Hall coefficient.
These theories are rather complicated and do not

give much insight into the phenomena. Using a
representation ("physical bands") which achieves

maximum diagonalization of the Hamiltonian, it is
possible to build a much simpler theory giving
equivalent results. This has been done recently
by the author for the Hall effect, and the purpose
of the present paper is to extend the work to the
problem of the Nernst effect. It appears that the
main physical mechanism responsible for the Hall
and Nernst effects of ferromagnets around room
temperature is the so-called "side jump" 4y per-
formed by the electron during each collision with
an impurity or phonon. This abrupt jump, of the
order of ~y =10 -10 ' m, is in a direction per-
pendicular to the incident wave vector and to the
magnetization. As we show below, the side-jump
model predicts correctly Eq. (2) for Q,".

Added to the side-jump mechanism there is also
the Smit asymmetric scattering ' similar to Mott
scattering. It is important mostly at low tempera-
tures, and in alloys. Meyer has proposed a theory
of the Nernst effect, based on the Karplus-I uttinger
theory of the Hall effect of ferromagnets. In the
latter theory, each Bloch wave has a periodic elec-
tric dipole moment q, perpendicular to k and to the
magnetization M. The time variation of k caused
by E implies a corresponding variation of the trans-
verse dipole, equivalent to a current. This trans-
verse polarization current is assumed to be the
origin of the Hall effect of ferromagnets. Unfor-
tunately, the time variation of the dipole caused by
E must be exactly canceled '" in the stationary
state by the decelerating effect of phonon and im-
purity scattering. The only effects which do not
cancel out are our side jump and asymmetric scat-
tering (see Appendix B).

II. JUSTIFICATION OF SIDE-JUMP MODEL

The existence and value of the abrupt sideways
jump 4y, undergone by a wave packet on scattering
by an impurity (or phonon), was derived in an ear-
lier publication by the author, using partial-wave
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methods ol the first Box'n appx'oxlmatlon. As fax'

as the author knows, this effect had not been treated
before in the large literature on quantum scatter-
ing theory. Using the side-jump concept, a non-
classical transport theory of great simplicity was
constructed by the author. The key to the simplici-
ty of the theory WRS the fRC't that the HRIIlllto111RI1

II~ of the periodic lattice was completely diagonal-
ized, including the effects of interband mixing by
spin-orbit interaction and by the applied electric
field. In the II~ representation, all nonclassical
contributions to the extraordinary Hall effect, such
as the nonclassical side-jump current J, are lo-
calized inside the impurities. Note that J repre-
sents a time variation of the usual Wannier co-
ordinate R, and not of the transverse dielectric
polarization q; it is the behavior of 8 alone which
can be calculated by free-electron scattering meth-
ods.

A short discussion of other proposed mechanisms
for the Hall effect of ferromagnets was given in the
author's earlier payer. In view of the divergent
opinions expressed in the literature, me want here
to expand this discussion.

The classical current j = )1'e g~ f, eE,/ek is not
localized in the impurities. It arises from the field
E pushing the distribution f~ of Bloch waves away
from equilibrium. This process is limited by scat-
tering, If the differential scattering cross section
has a left-right asymmetry, f„will be modified in
such a may that the electron gas will acquire a
transverse j component (Smite asymmetric scat-
tering, mentioned above).

Considering nom the acceleration itself of the
electron by E, dk/dt can be shown "' to be exactly
parallel to E in the periodic lattice, as for free
electrons. However, Doniach "' and Fivaz
have suggested that the action of E during the pxo-
cess of impurity scattering itself would accelerate
the electron in a direction at an angle to E. This
effect, called "anomalous driving term, " would be
formally equivalent to the electronic charge being
a tensor rather than a scalar. This would provide
a second mechanism for a transvexse component
of j. In our earlier paper, me sketched a proof that
such a mechanism does not exist. We give a more
complete proof in Appendix A, in the first Born
approximation. A somewhat simQar conclusion
(nonexistence of a "field term'*) is reached by other
authors.

A last possibility would involve E creating a non-
classical current J in the impurities by direct po-
larization of the impurity mave functions, as rep-
resented by the tensor Z:

J= (shy/v) (jx n)+Z ~ E, n= M/M,

while the first term represents oux j-dependent
side-jump current [which agrees with EIl. (26) of

Ref. 8]. However, if we surround the impurity atom
tightly with a spherical boundary, it is obvious that
such a localized part of the wave function will, for
given boundary condition and surroundings, usually
have a. discrete, atomiclike spectrum with energy
gaps of order = 1 eV, and is very rigid against field
polarization. It is much easier fox E to polarize
the remaining periodic part of the lattice mhich has
an almost-degenerate spectrum, thus creating the
classical current j; this mill change in turn the
impurity wave function through the boundary con-
dition and polarize the impux'ity indirectly, as de-
scribed by the first term of the equation above
(side-jump current). This argument, which can
be written more explicitly, suggests strongly that
the (j-dependent) side-jump mechanism is much
more effective than this E-dependent imyurity-
polarization effect. Moreover, this direct impur-
ity-polarization effect mould predict for the Hall
resistivity pH ~ p, while p~cf- p is observed.

An importa, nt by-product of the scattering cal-
culation of Appendix A is the idea that the side jump
4y may also be described as a left-right asymme-
tx'y of At~. The delay time ht~ is the time after
mhich the scattered wave packet emerges from the
IIllpllr lty.

Finally, we give a complete accounting of all cur-
rents existing in a ferromagnet (see Appendix B).
The conclusion of this accounting is that, because
of certain cancellations already noted by Smit,
only the classical Smit asymmetric scattering cur-
rent j and the nonclassical side-jump current J ac-
tually exist. The fact that the side-jump current

J, located in impurities, mas not included in the
considerations of Smit ' '" i.s at the origin of the
discrepancy between his conclusions and those of
I uttinger "' or of Adams and Blount.

III. PELTIER TENSOR

The electl'leal conductivity tensol 0' and the
Peltier tensor p of an isothermal metal are de-
fined by '

&e ~z dIe '4 &z dIjtq= p ~ I = --' -' de, +
e~ &~d&r

I= g ~ E,
where &„ &„ are the energies of electrons and
holes. The Fermi levels are q~ = q~ = —q~. Writing
the charges e„=—e~ = e, we obtain the Mott relation'3

where e = 1.6 x 10 C.
Isolating the antisymmetric part p, of the resis-

tivity tensor p = 0 and the scalar resistivity p,
we write
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p=p 1+pa ~ (7)

2 2
=——T (tan(t ),m k~ 2 d

3 e dE p
H (8)

where tan(t)e = p,„/p is the tangent of the Hall angle,
while the diagonal element is as expected'

2 2

=v„=m„=
3

—T
d

(lnp) .k~ 2 d

IV. ISOTHERMAL NERNST EFFECT

The thermoelectric tensor p, is defined by

E*= p. V'T, (io)

where I = 0 is assumed to hold. The "electrochem-
ical field" is defined by E*=E+ Ve~/e, where e
= l. Gx10 C. It is well known ' that most elec-
trical measuring instruments measure E* rather
than E. p, is related to the Peltier tensor by the
Kelvin relation '

p, =7/T .
The isothermal Nernst electric field of Eq. (1) may
be related to p, or 7t ..

dT 77 dTE =E*= p,
dx T dx

'

Combining Eqs. (1), (8), and (12), we obtain

Q
' = ———T (tan(t) ),1 ~ k,

M 3 e A (i3)

where tan(t)„, is the extraordinary part of tan(t)„,
which depends on the magnetization M rather than
on the field B.

The general relation of Eq. (13), which does not
seem to have been noticed before, could also be
written in a similar manner between the ordinary
coefficient Qo" and tan(t)„0, where (t)„0 is the ordi-
nary part of the Hall angle.

V. SIDE JUMP AND ASYMMETRIC SCATTERING
IN PRESENCE OF IMPURITIES

If the second term of Eq. (7) is much smaller than
the first one, we obtain finally for the nonzero off-
diagonal elements

where o, =n., e,//m Oh=&h h/'mhsh are the con-2 / 2/

ductivities of the electron and hole bands, 4y„
A, and A„A„are, respectively, the side jumps
and the mean free paths of electrons and holes, and

s„s„are their relaxation frequencies.
For a given value of hy, and hy„(scattering

dominated by a given kind of impurity), Eqs. (14)
imply

Q" o- T p (15)

@is~ T1 0 (17)

The side-jump model predicts R, cc p, while
asymmetric scattering' gives R, cc p. Then we see
that Eqs. (15) and (17) both lead to Eq. (3), written
originally by Abelskii for magnon scattering rather
than for impurity scattering.

Physically, it can be said that the extraordinary
Nernst effect arises because electrons of different
energies undergo side jumps of different magnitude.
As a result, the side jumps of energetic electrons
diffusing down the temperature gradient do not quite
cancel the side jumps of less energetic electrons
diffusing up the temperature gradient. Thus a net
transverse electric current tends to appear, re-
sulting in an excess of electronic charge on one
side of the sample, and in the existence of the
transverse Nernst electric field.

The Hall angle of a ferromagnet has also been
calculated' in the case of the asymmetric -scatter-
ing mechanism. For a two-band model, Eq. (13)
becomes, in the low-field limit,

1 s' k', d s.(:„/s',,) ~ s„(',,/s"„,)

)~s 3 e d~E go+ (7h

(18)

where the tensors s' and sh have the dimension of
a relaxation frequency. The diagonal elements
s'„„=s'„= s'„represent the usual relaxation frequen-

cy and are proportional to the impurity concentra-
tion c. The off-diagonal elements s'„, = —s',„de-
scribe' the asymmetric scattering of electrons on

impurities, and are proportional to M, and to c. If
the scattering is dominated by one kind of impurity,
then Eq. (16) implies

The Hall angle of a ferromagnetic metal has been
calculated in the case of the side-jump mechanism.
Then, for a two-band model, Eq. (13) becomes, in
the low-field limit, ~,v «1, if Mll z:

VI. COMBINED IMPURITY AND PHONON SCATTERING

As was mentioned in an earlier publication, ' the
fact that the value of the side jump ~y is theoreti-
cally found to be rather insensitive to the depth,
sign, and range of a, central impurity potential sug-
gests that the same constant ~y value might apply
even in the case of the (noncentral) deformation po-
tential which describes phonon-electron interaction.
This idea is in good agreement with existing data
for dilute Fe alloys around room temperature, which
show that phonons and various impurities have the

1 ' k' d s, (ky, /k, ) ~ s„(ky„/k„))
M 3 e de~ O~+ Oh

(14a)

1 ' k' d (, ,'ky, s'Ilk, ) ( „'„y/kk )k, „
IVY, 3 e de„o,+ah

(14b)
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same influence on the extraordinary Hall effect.
We will show, however, that they do not have the
same inQuence on the extraordinary Nernst effect.

Equation (13) may be written in the form
2 2

(18)

If we use a one-band model, the expressions for
the extraordinary Hall conductivity yHs and the
scalar resistivity p are y„, = dyne /kk and p= I/a
= ms/ne .

Writing s = s'+ s~", where i and ph stand for im-
purity and phonon, Eq. (18) becomes

Q.
"= —&(~+ I3P),

2 21 z k~ « —~n
p yH

1vi. 3 e ~E
~ H

VII. COMBINED PHONON AND SPIN-DISORDER SCATTERING

In order to explain the existence of the constant
n in Eq. (2) within the side-jump model, it is neces-
sary to introduce two simultaneous scattering mech-
anisms, having different temperature dependence
and different energy dependence. Since the Kondor-
skii-Vasileva data mentioned above' have been ob-
tained between room temperature and the Curie
point, it is natural to assume that these mechanisms
are phonon scattering and spin-disorder scatter-
ing, '"'"but not impurity scattering.

Using a one-band model, and writing s =s„+s»,
where ph and sp stand for phonon and spin-disorder,
respectively, Eq. (18) becomes, after expanding
s„and s» around a temperature To and keeping only
the linear terms,

Q,
"= —~(&+ Pp),

1 m k, yHs
2 2

Q
3 e

where

d8
&n=

'Pl Ck g

ds ~g ds
s» A ' ' s' dk~

'

(r„—r,h) (a,„—a.,) P„(To)P h(T0) (23)
P (~0)+a hP h(~0)

1 m kg d

M, 3 e de+
and p, is the impurity resistivity:

Q" ' r "' &2l)
M, 3 e des (s')„„+(s'")„„

This implies

Q,
" & ]&g( p;/p) + &0( p;/p) ], (22)

where A& and A2 are constant coefficients, This
contribution is probably important only at low tem-
peratures.

p; = ms'/ne

The coefficients cy and 8 are temperature indepen-
dent. Thus we have obtained a prediction agreeing
with Eq. (2). Nevertheless, Eq. (19) leads to seri-
ous difficulties in the case of pure iron or gadolin-
ium, which exhibit a large a value even though p&

should be quite small in a pure metal. Kondorskii's
theory3 leads to the same inconsistency, too. We
will present in Sec. VII a more satisfactory theory,
based on spin-disorder scattering.

Finally, we treat the problem of asymmetric
scattering in the presence of both impurities and
phonons. For a one-band model the relaxation ten-
sor becomes s = s&+ s' . However, the matrix
element (s'")„, is of odd order (third) in the phonon
scattering potential, and therefore its thermal av-
erage vanishes except for the higher-order terms,
which are very small. Thus Eq. (16) becomes, for
one band,

msss
e z

ms»p»-

ssy To~ dT r s» To dT p

r

The coefficients z„, g» are assumed to be inde-
pendent of T.

Since Eqs. (23) and (24) are based on an expansion
around a certain temperature To, the temperature
range over which they are valid is not necessarily
very large, and the coefficients n and P are phys-
ically not very meaningful.

In deriving Eqs. (23) and (24) we have also used
again our old principle that the value of the side
jump ~y should not depend much on the range,
strength, or sign of the scattering potential, and
we have therefore assumed by to have the same
value for phonon scattering and for spin-disorder

r. (r —r„).p. (.T,r) ~ p,„(r„., r„)p, (T,) )—
(&0)+a hp h(~0)

(24)
where

ys, =

boyne

/kk,



1866 L. BERGER

scattering. According to the first Born approxima, -
tion this could hold even though spin disorder causes
spin-flip scattering, as one can easily show.

We have assumed conduction by one band only
(s band). This does not exclude the possibility of
s-d transitions induced by the spin disorder, pro-
vided the d-band current can be neglected. In fact,
this model ensures that the relaxation rate s„will
be well defined.

As in the case of impurity and phonon scattering,
the value of the extraordinary Hall conductivity y„,
is not affected by the nature of the scatterers.

Equations (23) and (24) predict very roughly Q,"/T
=(3&&10 '

) V/T K for iron at 400 K. This value is
within an order of magnitude of the experimental
value: = 20' 10 . This spin-disorder model
seems preferable to the Kondorskii3 theory, and to
our model with combined yhonon and impurity pre-
sented in Sec. VI, since it leads to @40 even for
pure metals.

Note that the Hall conductivity y~ appears as a
factor in the expression for o,'in Eq. (23). Thus,
any sign change of y„, should imply a corresponding
sign change for z. This prediction seems to be
verified in the Fe-Ni alloy series, where y„,
changes sign' »'" at 85% Ni, while n changes sign' at
a close-by concentration (70% Ni). The agreement
is as good as can be expected in view of the various
approximations involved. The sign change of y„,
is itself caused by the Fermi level moving""' from
the nickel band to the iron band of the alloy.

In this section, we consider the effect of E on the
scattering of Bloch waves. The field Hamiltonian
is —eE ~ x= —eE R —eE'q, where R is the usual
Wannier coordinate, and q is the transverse elec-
tric dipole of a Bloch wave. We assume a periodic
crystal potential U(x ), a periodic spin-orbit inter-
action H„, and a central scattering potential V(x).
The total Hamiltonian is H= H»+ V(x) —eE R,
where H»= —(I /2m)v + U(x)+H„—eE q istheperi-
odic part of H. Note that H~ can be diagonalized
completely with Bloch waves P» satisfying H» g»
= E» P». To first order in E, it is sufficient to con-
sider the perturbation by —eE ~ q and by —eE ~ R
separately, and to add the results. We use here a
one-band model with carrier charge e which can
be positive or negative.

In the presence of V(x) and of —eE ~ q alone, the
band is asymmetric, ' '"' 'd'

E»=g )'t /2m* —eE ~ (q ) (Al)

with (q„) = ——,'k&D. Then, to first order in E, it
is sufficient to consider an equilibrium distribution
fo(E»). The classical current is

transverse effects, we hope to have answered a
question left open since 1879 and 1886, dates when

they were observed for the first time ' in ferro-
magnets.

APPENDIX A: ABSENCE OF ANY ANOMALOUS

DRIVING TERM

VIII. OTHER TRANSVERSE EFFECTS

Once the Hall and Nernst coefficients are known,
the Righi-I educ and Ettingshausen coefficients can
be calculated, using the Bridgman and Wiedeman-
Franz relations. " The validity of these relations
has been investigated on the basis of existing data. '

IX. CONCLUSIONS AND FINAL REMARKS

The Hall and Nernst effects of ferromagnets are
of special interest, being among the very few trans-
port properties of m tais which cannot be treated
by semiclassical transport theory.

A fairly transparent and versatile theory of these
phenomena has been built based on the concept of
side jump. ' This concept is easy to grasp in space
time, but not in the momentum representation.
From that point of view, it is very similar to the
lifetime of a virtually bound impurity state.

If spin-disorder scattering is also introduced,
and if the side jump is assumed to have the same
constant value for electron-impurity, electron-
phonon, and spin-disorder scattering, then one can
derive expressions which agree with existing ex-
perimental data for both Hall and Nernst effects
[see Eqs. (23) and (24)j.

By providing a simple explanation for these large

k= K+eEt/8, dK/dt = 0,
(A2)

where the periodic factor g„satisfies, as usual,

p 228
V u»+ Vu» ~ k —U(x ) u„—H„u»

(A3)

u»(x)=u»(x+a) . (A4)

Equations (A2)-(A4) imply, to first order in E,

Pg, " ek

(see Appendix B). But this expression vanishes
identically~ '" at any time, even for an asymmetric
band. There is no acceleration of the electron gas.
The situation is similar to that of an impure mag-
netic metal without space-inversion symm try, at
E= 0.

In the presence of —eE ~ R alone, then consider
the following wave functions

Pr(x, t) = u»(x ) exp[i(k x —hK2t/2m*

+eE Kt'/2m+)],
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e2 &- eEt '
4»-2 ~ ILK+ y» ~

8—$»= (Hp —eE ~ R) P»,

&-- eEtky»= IK+-

(A5)

(A6)

(A7)

k= K+ eE t/5, 1= L+ eE t/5 .

But ' ' ""' since x=8+q,

V(x) = V(R)+q BR '

with

(All�)

(A12)

q=Q c (t) y„(x, t), (A8)

where —eE ~ q has been neglected in H~, as ex-
plained above. Thus the Bloch waves p» are solu-
tions'3"' of Schrodinger equation [Eq. (A6)] in the
presence of —eE ~ R [but in the absence of the scat-
tering potential V(x)]. Their wave vector k is time
dependent. To find a solution in the presence of
both —eE ~ R and V(x), we expand

q=--,'kxD, Dllzlls.

~LK= JV+iS, hk„JLK,

Ji»= fff d x V(x) cos(K —L) ~ x,

(A13)

(A14)

This gives finally, assuming Kllxll E, and Sile,
and if the interband elements of V(x) are neglected:

—P=HP .
Z

(A9)
D

LK 2@$ f ag
d x —— —sin(K —L) x .

Ix) ex
(A15)

From Eqs. (A5)-(A9), we obtain Then, to first order in S,:

where

cl, =Q VL» c»e -5 (OIK-0tL)

2 K
(A10) ——. cL, =Q c„JI,» exp(zbs, b„Jf;~/Jr»

K

+ i [n~ (t) —o.»(t)] ]. (A16)

n»=1K t/2m* —eE. Kt /2m*,

V~»= fff d'xu*, (x)e 'I'* V(x)u, (x) e'"'",
Assuming the electron to be initially in state Kp,

with Ko II E II x, Eq. (A16) can be integrated in the
first Born approximation [c„(t)= 1]:

c~(t) = ——J~» — exp ' ~" "-— C — (at+ b)
i v» i iS,(KO)„jg'»„ i b 2

2a

2 1/2 . 2 1/2 . 2 1/2
—C — b +iS — at+ b —iS — b, A17

where

2b = eEP, J'r'» /J~» +()I/2m ) (L —K(~)),

a= —(e/2m ) (L —Ko) E,
and C and S are the Fresnel integrals'

C(x)= f cos-,'wt dt; S(x)=f sin-,'wt dt .
To first order in E:

at+ b=Ã [ez(t —ntr) —e»(t —btl)],
where

e, (t) = (n'/2m') (L+eEt/I)', (A18)

H(y) = f dx 5(x) ——,
' . (A20)

The small actual width retained by C and S at E 4 0
can be neglected here, since it is independent of L
direction and has no left-right asymmetry.

If we consider Icz(t) I, the same step functions
appear there. Using Eq. (A20), we obtain from
Eq. (A17):

Since C (+ ~) = S(+ ~) = 2, C (- ~) = S(-~ ) = —k
C and S functions in Eq. (A17) behave more and

more like step functions H[el, (t —&tq) —&»(t —&tl, )]
when E- 0. The step function is defined by H(y & 0)
=+ —,', H(y & 0) = —~, and satisfies

(A19) ~c~(t)
~

~= —I J~»
I

dt &[e ~(t —&tl ) —e»(t —b.t~)] .

htL is a L-dependent delay before the scattered
wave appears out of the impurity.

This implies for the transition probability per
unit time PL at time t+ 4tL:
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Pz(t+ &tz) = —
~

cz(t+ &tl„)
~

This has the usual form for the first Born approx-
imation. The only difference is that, due to the ac-
celeration by E, electron energies &~ and &„ are
time dependent. Also, there is a delay ~tI., direct-
ly related to the existence of the side jump ~y.
Since &Pl. is odd with respect to L„ its effect is in-
deed to shift the initial location of the center of
mass of the scattered wave by a finite amount ~y
=v& ~

&t
~ in the y direction, without affecting its

later motion or the scattering rate.
It is interesting that this scattering rate

I'~(t+ rM~) from state ko=K, +eEt/I to state l= L
+eEt/ti is perfectly symmetric with respect to the
plane (E, S) in 0 space, assuming ko I I E i Ix and
8! Iz. This results from t J~«I itself being sym-
metric. Thus there is no evidence that the influ-
ence of E on impurity scattering causes any pre-
ferential transverse acceleration of the electron,
creating subsequently in the periodic lattice a
transverse component of the classical current j .

Therefore, there is no evidence of the existence
of an "anomalous driving term" of the general kind

proposed by Doniach "and by Fivaz, ' ' in the
first Born approximation.

Central to that conclusion is the fact that we have
used the representation of H~ ("physical bands").
This ensures maximum diagonalization of the prob-
lem, compatible with Bloch waves of well-defined
k. As a consequence, the off-diagonal part of the

density matrix is minimized and can be neglected
outside the impurities. Also, the energy eigenval-
ues E~ are as correct as possible; such is not the
case for the work of Doniach "or of Fivaz,
who work in the representation of H~+ eE ~ (q„), not
so close to the exact Hamiltonian B, and resulting
in eigenvalues &,.

The mechanisms of Doniach and of Fivaz were
themselves proposed as an interpretation of the
anomalous driving term found in the Boltzmann
equation of Adams and Blount. ' However, Adams
and Blount did not sep ~ate out of their statistical
distribution f, of Bloch waves [see their Eqs. (5. 9)]
the part which actually describes an admixture
from excited states, caused by the potential V(x)
and localized in impurities [see our Eqs. (B5) and

(B6)]. Such a, local admixture to a Bloch wave can-
not be represented as a simple Fermi distribution.
Thus it seems that the current, which Doniach and
Fivaz describe as coming from the acceleration by
E of a Fermi distribution of Bloch waves in an
asymmetric band in the periodic lattice, is actually
localized in the impurities and other scattering
centers and would be more correctly described by

our side-jump model. As mentioned in a,n earlier
paper, the extraordinary Hall resistivity derived
from the anomalous driving term is identical to the
one derived from the side-jump model, as long as
+,7'«1. The side-jump current J is j dependant
rather than E dependant, however.

Note that Hp and q itself, are not invariant
under a gauge transformation. Thus we have to
choose a particular gauge' ' in order to write
q~= ——,'k&&D. But, as long as all calculations are
done correctly and completely, all physically mea-
surable quantities, such as ~y, will automatically
be given their correct, gauge-invariant value in the
end. And, of course, as in electromagnetic theory,
the choice of a particular gauge makes for a con-
siderably simpler treatment of our specific, prac-
tical problem.

See Appendix B for a complete accounting of cur-
rents in a ferromagnet.

APPENDIX B: COMPLETE ACCOUNTING OF CURRENTS IN
A FERROMAGNET

Using the same notation as in Appendix A, we
calculate the total velocity (v) = (dR/dt) +(dq/dt):

(dR/dt) = —([Hi„R])-@([eE R, R])

eceW(x -R) .

%e find, after some calculations:

(W(x —R) (2/A)[H R] W(X R ))

(B2)

)~ 0 ik'(R-R" & (R Ri) (B3)
Bk

where the sum extends over the first Brillouin
zone, and where the value of the function g becomes
negligible as soon as j R —R j exceeds one or two
lattice cells a. Thus (i/ti) [H~, R] is a fairly local
operator in the crystal. Introducing a modified
wave function i|~ where the part close to the im-
purities has been removed

g (x)= ~ ceW(x —R),
] 5]&2a

we can write the expectation

(B4)

(t/)
~

(z/h) [H, R]
~ y) = (i]i'

~
(i/Ii) [H, R ] ~ ( ')

+ &((i/fi) [Hi„R]), (B5)

The second term vanishes. The first term is
evaluated in the %annier representation as follows.

Considering Bloch waves Q, satisfying Hi, Q„
= E,i'~, we define the Wannier function W(x )
= g, g, (x) for a given band. Then an arbitrary state
,P of the dilute alloy can be represented by the coef-
ficients cR, if admixture from other bands is ne-
glected:
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where

&((i/K)[H, R])= E Fig(R-R )c*c ~

)R) 2a R'

+Q Z g(R R )cfjcp~
) R'I-8a

The first term of Eq. (B5) represents the classi-
cal current j, corresponding to free motion of an
electron wave packet in the periodic part of the lat-
tice, while the second term represents motion in
the neighborhood of the impurities. Using a Bloch
representation for $ ', we write g'=g, a, Q„, and
Eq. (B5) becomes

(4~(f/8)[H„R]~8) =5 ~a„~', ' —+~((f/8)[H„R]) .
(B5)

Usjng 2~
q = —zkxD:

V(x) = V(R+q) = V(R)+q = V(R)+H,',",

-([V(x), R]) =- ([H'„", R]) . (Bv)

We average Eq. (B6) over an ensemble of states g,
each having probability P„and we define
fa = Z.&.~ &a ~

'
Writing, moreover, f, =df„+f'(E,), where df, is

the departure from equilibrium, and using the
identity

Ef (E) —0
ek

we obtain from Eqs. (B1), (B2), and (B5)-(B'7):

dR 1 8k

(B8)

To first order in E, the first term may also be
written

where H', ,"=A"'(R&&k), 8, is an effective spin-orbit
Hamiltonian with a coupling constant A,',"10 times
larger than the usual atomic spin-orbit parameter.
Thus

where c, = (h /2m")0 . Thus this classical current
j is not affected by the existence of asymmetric
bands [see Eq. (A1)].

On the other hand, in the stationary state:

= —Dx —=-Dx -— + — =0 .

(Bo)
As a conclusion, the total current (v) in a ferro-

magnet is given by Eq. (B8). The first term gives
the classical current j, and is not localized in im-
purities. It has a transverse component because
of the Smit asymmetric scattering on impurities.
The general conclusion of Appendix A is that no
nonclassical unaccounted transverse effect can in-
fluence the coefficients df, in Eq. (B8). The second
and third terms of Eq. (B8) are localized in impuri-
ties, where V(x) &0, and represent the nonclassi-
cal side-jump current J.

It is because of that localization that the calcula-
tion of J can be reduced to a problem of scattering
theory.

Note that, since [H~, R] has no off-diagona, l ele-
ments in the Bloch representation (except between
different bands), only the diagonal part f, of the
density matrix can contribute to the current j out-
side the impurities [Eq. (B8)]. On the other hand,
an off-diagonal contribution to J exists, and is
automatically included in our scattering calculation
of J.

Note also that, when writing f, =df, + f'(E,), we
assume f, to reduce to a simple Fermi distribution
f'(E, ) when E-0. This cannot be strictly true,
since f, refers to an ensemble of alloy functions g
which have been made artificially to vanish in the
regions of the impurities. The existence of such
local "holes" in the $ must be reflected in their
Fourier spectrum by a broad isotropic contribution
Af(E~), so that actually f~=df~+2 f (E„)+f (EI,).
However, in a dilute alloy this causes only a small
error in j. And this longitudinal, classical, cur-
rent j does not need to be calculated very exactly.
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The spin orientation of the Co' ions in Co(NH4)2(SO4)2 ~ 6H20 calculated in a previous work
was extended to include exchange in addition to the dipolar and hyperfine interactions. The
exchange was found to have a small effect on the orientation of the spins, but a significant de-
crease occurred in the value of the minimum energy.

I. INTRODUCTION

Cobalt Tutton's salt Co (NH, )aSO, 6HaO is widely
used in attaining low temperatures by adiabatic
demagnetization, and therefore there is consider-
able interest in its properties. Measurements
have been made of its crystal structure, specific
heat, transition temperature, magnetic suscepti-
bility, g factor, hyperfine coupling constant, and

other properties. 6 As a. result it is desirable
to compare these measurements with calculated
values. With this aim in mind we computed the
ground-state spin orientation of the cobalt ions in
cobalt Tutton's salt in a previous work' which will
be referred to as I. The influence of the dipolar
and hyperfine interactions were taken into account
explicitly. In the present paper the calculations
will be extended to include the effect of exchange.

In an earlier work Garrett3 had pointed out that
four possible interactions should influence the
specific heat, namely, (i) the Stark effect, (ii) the
dipolar interaction E», (iii) the nuclear electronic
interaction E„, and (iv) exchange E,„. Kramers's
degeneracy eliminated the need to consider the
Stark effect, and in I the dipolar and nuclear elec-
tronic interactions were included. Garrett as-
sumed that the relative contributions to the specific
heat of the dipolar and nuclear electronic inter-
actions have the following magnitude:

and his reasoning leads one to expect the ratio of
interactions (iv) to (iii) to be

E.„ / E„l -O. 6. (2)

(4)

The method followed in carrying out these calcula-
tions will be described after a brief discussion of
each of the three relevant interactions. Relation
(4) was calculated with f= 2. 6, as defined in Sec. V;
see also Table II.

II. DIPOLE-DIPOLE INTERACTION

Before proceeding with the new calculation it
will. be convenient to summarize the method adopted
in I. The Luttinger-Tisza approach was employed
to obtain a, dipolar matrix a which takes into ac-
count the anisotropies' of the lattice. It includes
the interaction between ions of type A. , that between
ions of type I3, and also the interactions between
both types of ions. The 6 &&6 matrix a was diag-

Qur calculations indicate that the relative contri-
butions to the specific heat of these particular inter-
actions are in accordance with the following ratios:


