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A detailed electromagnetic and thermodynamical theory of the intermediate state in type-1
superconductors is worked out in the I,andau laminar geometry. It is shown that the Landau
s domain bounded by a convex wall where the magnetic field very nearly approaches the criti-
cal value is likely to be near the most stable configuration. The analysis of the field distribu-
tion in the n laminas provides a qualitative explanation of the experimentally observed small
importance of the branching that Landau first suggested. Explicit analytical expressions of
the various contributions to the free energy are derived as functions of the applied magnetic
field and of the superconductive fraction. This allows the exact formulation of the equations
yielding the transition fields at the ends of the intermediate range. At the lowest order, the
departure of the field from the ideal value varies predominantly as {4/l)'~~ at the diamagnetic
intermediate-phase transition and as (&/l) at the intermediate normal-phase transition, 4
being the surface energy and l the thickness of the sample.

I. INTRODUCTION

It is well known that a type-1 superconductor
whose geometrical shape permits the setting up of
a uniform internal field with a definite demagnetiz-
ing coefficient p undergoes a transition into an in-
termediate state as the external applied field Hp ap-
proaches the value (I —~r) H„where H, is the criti-
cal field.

Landau' first proved the thermodynamical possi-
bility of an intermediate state, earlier mentioned
by Peierls, consisting of alternating laminas of
superconducting (s) and normal (n) phases parallel
to the field, and derived an expression for the peri-
od of the structure in terms of a tabulated function. 3

Direct observations of the domains by various
means' ' revealed the agreement of Landau's point
of view with experiment. Typical values of the
measured period were within a few hundred mi-
crons.

The first picture of the intermediate state was re-
fined in 1943 by Landau, who suggested a "branched
model" consisting of repeated splittings of n laminas
approaching the surface to avoid the difficulty of
having a subcritical region in these laminas. How-
ever, this model, which predicts the impossibility
of direct observation of the domain structure at the
surface of the sample, is not consistent with the
observations which revealed no branching or only
an occasional branching with a few splittings.

In the present paper a complete calculation of the
free energy of an ellipsoidal sample is carried out,
with some simplifying assumptions. The shape of
the normal-superconducting (n-s) wall in a cross
section of the domains is assumed to belong to a
particular family, allowing an exact determination
of the field distribution by conformal mapping. This

family includes Landau's critical wall, which turns
out to be about the best choice given by the mini-
mum of the suitable thermodynamical potential.
The detailed expression of the free energy permits
a calculation of the equilibrium field in the n
laminas and the study of the transition fields at the
ends of the intermediate range (Sec. V).

In this paper both the study of a thermodynamical
potential fitting the present physical situation and
the buildup of a "simple model" are investigated
(Sec. II). The effects due to the ends of the do-
mains are not taken into account so as to make
clearer their contributions to the thermodynamical
potential, which is analyzed later on (Secs. III-IV).

II. SIMPLE MODEL

The integration is extended to magnetized matter
and to the magnetization process. Disorder terms
may be dropped as insignificant. When the normal
state is taken as a reference, the total thermody-
namical potential or free energy is

where

c+Vs+ W

From the magnetostatic point of view the super-
currents around the sample in the diamagnetic
state or around the s domains in the intermediate
state can be replaced by a distribution of magnetic
polarization intensity J(r). It can be shown through

elementary thermodynamics that the process of
magnetization, whether it is obtained with a per-
manent magnet or an external current, does not
affect the thermodynamical potential E. Thus the
magnetic contribution is given by
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8'~= ——,Ij.oH y 4 3

is the condensation energy of the superconductive
fraction of the sample and

Ws= —', b poH, J d r
is the surface energy of the n-8 walls, character-
ized by the usual parameter A.

Consider now an ellipsoidal superconducting sam-
ple of demagnetizing coefficient v set in a magnetic
field, taken parallel to a symmetry axis for con-
venience (Fig. 1).

In the diamagnetic state a uniform magnetization
intensity J parallel to the field takes place inside
the sample and results in a demagnetizing field
—vJ. J is given by the Meissner condition

is very large, the total area of the n-8 walls is
2 V/a, whatever the real geometrical disposition of
the laminas.

The magnetization J in the 8 laminas is uniform,
except perhaps in a region of extension - a near the
external surface. Thus the whole sample behaves,
on a large scale, as if it had an uniform magnetiza-
tion J= 8J, giving rise to a demagnetizing field
—P8J.

As a result the field inside the g laminas is

e„=Ho- ~r8J,

while~ in the 8 laminas) the Meissner condition
gives

Ho —vsJ+ J= 0 or J'= —Ho/(1 —vs), (4)

ls

8 = go(HO —vJ+ J) = 0,
J= —H, /(1 —v) .

The resulting free energy, as deduced from (2),

FD= —,'poH2V+ —2poH~~V/-(1 .—v) .

whence

H„= H0/(1 —vs) . (5)

As the contribution of an external very thin dis-
turbed layer is negligible, the free energy II of the
system can be easily obtained when a and 8 are given
arbitrarily set values:

V is the volume of the sample. It is convenient to
introduce the reduced magnetic field ho= Ho/H,
and the reduced free energy per unit volume

fv = F~/(2 poH, V) = —1++/(1 —v) .

01

V, 2a
I = )UoH ~ +go

2h 8
fg =——s+ $00 1 —v8

In the intermediate state matter undergoes a
splitting which, on a small scale, may be consid-
ered as periodic with a period a. Each period con-
sists of an 8 lamina with width 8g, and an n, lamina
with width na= (1 —s)a. s =1 —n is the supercon-
ductive fraction of any section of the sample per-
pendicular to the field. Since the number of laminas

It will be shown later that the equilibrium value
of a is much larger than 6, so that 26/a may be
dropped. The remaining expression has a mini-
mum with respect to 8 when

1 —vs=ho or s=(1 —ho)/v,

and, by inserting thts value into (4) and (5), we

F
fk

hp

0 ph

FIG. 1. Free-energy anA macroscopic
magnetization of an ellipsoidal sample, in

the simple model, as functions of the re-
duced applied field 50 {demagnetizing fac-
tor v).

p Hp

Hc
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have

Therefore, in the present model the field takes
on exactly the critical value inside the n laminas.
From Eq. (6) the minimum reduced free energy
is found to be

The transition from the diamagnetic to the inter-
mediate state occurs at a field defined by the equa-
tion f~=f„which yields the usual value

The free energy and the macroscopic magnetiza-
tion for both states are plotted in Fig. 1 as func-
tions of the applied field ho. We have

00~D= ~D=—
1 —v

The free-energy curve consists of two arcs of a
parabola which have the same tangent with a slope
2 at the transition point.

III. FIELD DISTRIBUTION

The foregoing model is not able to yield the
equilibrium value of the period a, since the con-
tribution of the domain ends to the free energy has
been neglected. We now work out this contribution.

For this purpose we set up a somewhat more
ideal geometry by considering a semi-infinite sam-
ple bounded by the x0y plane. The periodic array
of s and n laminas is parallel to yOz (Fig. 2). How-

ever, the external ellipsoidal shape of the sample
is taken into account through the demagnetizing fac-
tor v, so that the magnetic flux entering a. period
per unit of length in the y dimension is

laminas is still equal to Pg(l —vs). Thus the as-
sumption that all external lines of force are parallel
to Oz introduces only slight errors in the values
found for the fields very close to the surface. It
must obviously be pointed out that the flatter the
sample, the smaller the errors.

The shape of the n-s wall is given by the resolu-
tion of the Ginzburg-Landau equations, which de-
termine the distribution of the field and the order
parameter. However, in the present situation such
a calculation would be of considerable mathematical
difficulty and of doubtful interest, since the general
features of the result can be inferred from physi-
cal arguments.

Far inside the sample, the wall is a plane. The
field decreases from the value (I —vs)00 =Aj, to
zero over a. distance called the nonlocal penetration
depth X. j, is the critical current density which is
related to the fundamental parameters of the super-
conductor.

In the vicinity of the surface, the wall becomes
concave, but its magnetic thickness is still of the
order of A, which is a characteristic length inher-
ent in the Qinzburg-Landau equations. Insofar as
the radius of curvature is larger than A, the de-
tailed structure of the wall can be described with
only the surface energy ~, and the shape can be
determined by macroscopic electromagnetism and
thermodynamics.

To get an insight of what may occur in a real
situation, the macroscopic field distribution and
the resulting free energy are determined by assum-
ing domain shapes which allow exact calculations.

The magnetic field distribution is conveniently
defined by the scalar potential P and the vector
potential A(0, A, 0) along the y axis. Since H
= —grad/ = curlA/po, it follows that Q and A obey
the Cauchy-Biemann conditions

The field at a distance greater than a inside the n
Q and A/go can be regarded as the real and

imaginary parts of an analytic function of the com-

2 3, b3
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FIG. 2. Geometrical configuration of
the cross section of a period, in the lam-
inar model, near the external surface
of the sample, and analytical correspon-
dence between the planes u(x, y), &(&, Q),
and tl~(p, A/po).
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plex variable u= x+is, the so-called complex po-
tential

k=0+i(A/~0) .

= —wB(/3/ +k) .

A third relation is obtained by calculating 3'3:

(12)

It is readily shown that the complex magnetic
field II= H, +jH, is derived from g by

H~ ——d$ (8)
f1B

The analytic function g(u) defines a conformal
transformation of the plane u(x, y) upon the plane
g(Q, A/go). The equipotential lines and the lines
of force of the field correspond to the straight
lines obtained when &f&

= Cte and A = Cte and are
parallel to the axis in the plane g(Q, A/go).

In Fig. 2 a half-period of the array of the do-
main is represented. This half-period is bounded

by two particular lines of force: 1'2 3'4', chosen
as the line 2 = 0, and the straight line 4"1" in the
symmetry plane of the n lamina, where

A = —,'Ao = nagQHQ/2(1 —vs) .

Hereafter, for convenience, the form of the contour
is chosen such that 33'= b.

The determination of an analytical function which
associates the lines 1'2 3'4' and 4"1"with the
straight lines A = 0 and A. =-,A.o is possible in two

steps. In the first step the whole contour is asso-
ciated with the axis q =0 in a, plane r„($, q) through
a slightly modified Schwartz transformation

Ada . q 1
1&yyz

= 2Bk stn fez . (13)
I3

From (11)-(13),B, k, and $3, are determined by the
relations

8=—,$3, +0=—, gf sin
na g j2 1 . ) 1 pb

(14)

We now consider the magnitude of the field along
the wall. From (8)-(10) and (14) the complex field
is given by

Ho (t —1)'~
1 —vs (t —$3 ) +ik (15)

In particular, the critical value h. = 1 is obtained all
along the wall when

(3. —k =1.
Combining with the second equation (14) we get

Along the w33.1 ( is real and positive, and, as will
be shown later, Ho/(1 —vs) tends, at equilibrium,
toward the critical field H, H(1 —.vs)/Ho can be
considered, for the time being, as the reduced
field A the magnitude of which is

du dx+idz . (f —$~. )' +ik
df dg L(i; —1)' ' k= (1 —n )/2n, $3. = (1+n )/2n . (18)

1 = exp(2mgog/A, ) . (10)

The point 2 at which $2=1 and $3=0 are chosen
as origin of the potentials, and the various con-
stants 8, k, and (3, are determined by the geomet-
rical dimensions of the contour. The analytical
correspondence between the planes u, g, and g is
represented in Fig. 2. Actually, the space inside
the contour corresponds to the upper half-plane
q & 0 and to the band (0, Ao/2go).

We have through elementary integration

na . (r. —t~. )'~ +ik dg4'4" =—= —s8
(g —1)'" —=mB .

r
I" is the upper half-circle of infinite radius in the
plane g(i, q).

In the same way, by integration along the half-
circle y of infinitesimally small radius, we have

1"1'=--', a= - iBf (t',!'+k) (m/1-)

8 and k are real constants and the square roots are
real as g is real Bnd large.

In the second step the two halves of the axis g = 0
are changed into A = 0 and A = —,'A.

o through the ex-
ponential transformation

These values characterize the critical wall first
considered by Landau. As shown below, they hap-
pen to approach the best choice for b. From the
third relation (14), h is then equal to

a(1 —n) . ~ 2n—sin'---~ .
2m 1+n

The distribution of the field in the n laminas can
be deduced from the foregoing relations. The
analysis is restricted to the axis 4"1"since the
lowest value occurs at the point &u (Fig. 2). Along
4"1", g takes on real and negative values. From
(9) and (15) the z coordinate can be calculated as
a function of h. The result for the critical wall is

z= (a/w) [tanh (n/h)+n tanh '(nh) —2ntanh 'hf .

The equation z= 0 determines the function h„(n)
represented in Fig. 3. It is shown that the mini-
mum value which occurs for small n is 0. 648.
This curve is in agreement with the values men-
tioned for n = 0 and n = 0. 5 by Lifschitz and Shar-
vln.

The complete variation of the field along 4''1"
is given in Fig. 4 for the typical values n= 0. 1 and
n=0. 5. The relative extension nz/a of the sub-
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0.9

0.8

0.7

As a result the magnetic energy 8'„can be written
for a half-period and per unit of length along Oy'.

Ho

xH"' dz

oaHo
2

4m 1 —vs

0.e

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 O.e 0.7 O.S 0.9

Actually, this expression diverges, since the do-
main is semi-infinite. We separate the contribu-
tion of the end of the domain by subtracting the

principal part S~ at large distance where x=-,'sa
and H, =II'(1 —vs), i. e. ,

Ho

lV~ = Po &Ho

0 00

2
oHosa dz

4(1 —vs) d$

sa Ho dz
2 1 —vs

This is the contribution of a half-period to the mag-
netic energy in the simple model (cf. Sec. II). The
term of interest can now be written

FIG. 3. Plot of the minimum value of the reduced field
in the n domain vs the normal fraction n for the Landau
critical wall.

critical region below ~, as defined by

sr= (1 —8„)
dh

is shown to be rather small as long as n is small
(dh/dz- ~ for n- 0), and more appreciable around
n-0. 5. As n approaches unity the field tends to-
wards the critical value in the whole n region.

From these results it can be concluded that the
branching of the n laminas is most likely to occur
with a few splittings in the medium range, but not
near the transition points n=-0 and n—- 1, where the
importance of the subcritical region is negligible.

IV. FREE-ENERGY CONTRIBUTION OF DOMAIN ENDS

0
5 8'g = $V„—8'~

y ,B, *d(, ' d

)2(1 —vs), 2m ( 2 d$

dz/d5 is given by (11). Upon substitution we get

V,H,'' f 2, dE f (5
—(,,)'i' d$

Surprisingly, a rigorous expression can be calcu.—

lated for the terms inside the square bracket. The
second integral is elementary. The first one,

2x dE 2
" dx——= s lnA —— In& —dE (A —~),

a $ a d(
1

is obtainable through residue calculation. For a
sample of thickness l, with the restriction l »a,
the resulting reduced magnetic energy due to the

domain ends is given by

(18a)

We now proceed to work out the contribution of
the ends of the domains to the magnetic energy (1).
Because of the symmetry of the supercurrents with
respect to yOz, the magnetization intensity in the
s domains is along Oz and depends only on z. It
follows that inside the domain, where J+H"'=0,
the magnetic field is also along Oz and z dependent
only. Then we have

J= —H"',
where 0,"' is the z component of the internal field
along the wall and is given by

dQ n aHo d(
dz 1 —vs 2m hdz

with

g~(n) = [(I + n)(u+ 1) In(o+ I) —(1 —n)(n —1)
v(1 —vs)

&& In(o. —1) —2nn inc' —4 In2], (18b)

where we have used the simpler notation (3. = n.
In addition, the increment of the n volume with

respect to the simple model, and the increment of
the wall length, give ri:se to two new extra terms
in the free energy.

The increment of the n cross-section area rela, —

tive to one corner is
&3c

c) a
DS= —-x —d& .

2 d$
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0.5

FIG. 4. Variations of the reduced field
along the axis 4" 1" for the critical wall
and relative extension of the subcritical
region for typical values of the normal
fraction n.
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0'8 x

is
After integration, the expression of x for $ & $3. f=——s+ 4 + (ggA +gc)

2b, s
a 1 —vs l

(20)

Cfc = 48S/al = (a/1) gc(n),
with

gc(n) = (kn /m) [(n+ 1)1n(n+ 1)

(19a)

+(o —1)1n(n —1)—2alno. ] . (19b)

In a similar way the wall-length increment 5/ for
one corner can be exactly calculated and gives rise
to a contribution to the free energy

5f = 4661/al = (6/1) g (n),

where g~(n) is a. definite function of o. . This con-
tribution happens to be negligible. Thus the final
expression of the reduced free energy is

x= —[m(n —1)+ 2k tan '(t —1)"'],
2'

whence 5$, by new integration. The reduced incre-
ment of the condensation energy is then

The redundant subscript in ho is dropped from now
onwards.

If, in a more realistic way, we take into account
the spatial variation of l for an ellipsoidal sample,
I is simply replaced by the ratio of the volume to
the equatorial area.

Equilibrium values of the independent parameters
a, b, and s or, equivalently, a, s, and n are given
by minimizing this function. Vfe begin with o.,
which is found only in the last term. If 4 is re-
placed by 1/n —n, Egs. (18b) and (19b) can be com-
bined to make a minimum of g„h +g~ with respect
to u, to occur for

(
nh n —1 @+1+(1 —2nn) 1n 2 + - —n 1n =0.

1 —vs Q 1 —vs Q —1

(21a)
For A=1 —vs, this gives
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Explicit calculations of g~ and g~ in the Landau

case give

n (1+n)' (1-n)'
ln(1+ n) — ln(1 —n)

(1 —vs)!! n n

-))-')).()..) 2).s.), )~4!

gc= [(1+n) 1n(1+n)+(1 —n) ln(1 —n, )

—(1+n ) ln(1+n )] . (25)

The particular value of the function g~b +@~ in
the limits v = 1, 6= n must be identified with twice
the function called lp by Landau which has been tab-
ulated by several authors. '" Its exact expression
ls

=(gg, & +gc)v=s

ln(1+ n) + ln(1 —n)
(1+n)' (1 —n)'

r 2 2

1+ 2)2
ln(1+n ) —2n ln8n . (26)

2

The representative curves of g&n gc along with
their sum in these limits, are given in Fig. 5.

The equilibrium value of the period a is readily
obta, ined from (20):

FIG. 5. Representative curves of the magnetic energy
(g~h ), the condensation energy (g~), and the total energy
g~ +g~ of the domain ends, as functions of n =fg„ in the
Landau limit v =1.

~&'+gc

The expression of f is then

se'
f= —s+ +2 —(gs/L +gc)1 —vs

(27)

(28)

a= 1/2(1 —v) . (22)

At the intermediate normal transition (s=0), n
approaches unity, according to the simpler equa-
tion derived from (21a):

1 2 in[(o. + 1)/(u —1)Ju=-, — 1+ (1 —v)n+vn +s(1 —v)
an in[(n —1)/o, ]

(21b)

In the limiting case v=1, the root of this equation
is n = (1+n2)/2n, which is exactly the value of the
Landau critical wall defined by the relations (16).
At small va, lues of 1 —~r and at intermediate values
of n and s, the ratio of the logarithms is of the
order of 1 and n does not differ too much from the
Landau limit.

Near the diamagnetic intermediate-phase transi-
tion where n —-0, it is shown hereafter that the rela-
tion 6. =1 —vs is still valid. Within the present ap-
proximation l» a, 1 —~r is larger than the transition
values of n for usual-dimensions samples. The
predominant contribution to n is then

The equilibrium value of s is then obtained by
minimizing (28) with respect to s:

Bs (1 —vs) l (g))) E +gc)
(29)

Because of the smallness of the last term, the re-
sult slightly differs from that of simple model sp
= (1 —l!)/v.

Putting s = sp+ 5s, one gets

2!2 (gsk +go) l
(30)

H„ 1 —vso 2(g„h +go)' l

The functions of s, g~, g~, g~, and g~ appearing
in the expressions of a (27) and 5s (30) are evalu-
ated at s=sp.

The small departure of s from sp gives rise to
a slight variation of the field in the n laminas with
respect to the simple-model value (5):

6 = (1 —vs) [1+P(ln2P/1n2) —s+ .],
with P= n —1.

(23)
Since in the very interior of the s domains J

= -H„, the mean magnetic moment J&=sJ a.iso
undergoes a deviation from the ideal value (7):
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whence

vs pk +c
1 —vsp (1 —vsp)

I p~ 1/2

lowing approximate expressions, in the limit n
«1 —v«1, can be derived:

g„(n) = — [ln8 (1 —v) —1],2n

2/(1 —v)

Thus the dimensional effect resulting from the
finite length of the domains is of the order of (z/
l)'/, as mentioned by de Gennes. '2 This effect is
rather small for the usual sample dimensions.

V. TRANSITION FIELDS

gp(n) =—(1 —v) .2n

g~ and gc being of first order with respect to n,
the following equation is established:

2 4
c / 2gc+&gc

(1 )2 g2(+ (1 )2 (2g2/+ ng2() +
(1 )2

+0(~n2) .
The various expressions obtained above for the

thermodynamic quantities in the intermediate state
allow us to write the equations governing theequilib-
rium between the diamagnetic and the intermediate
phases (D I), as we-ll as between the intermediate
and normal phases (I I(I). Th-ese equations give the
values of n (or s) and the values of the field at the
transition points.

A. D-I Transition

The equilibrium condition fp= f, yields the new

equation

Or, since ng~=- g~. and age= —gc, we have

4 (1 v) gp'" -'-)
whence

4~ '"
= (1 — ) ((2 —

inn�

(1—
mv l

From (34), the related value of the field is

2(1 )2
- 2/2

h=(1 —v) 1+ 2 g +
vn ' (1 —v)

= 1 —v+vn .

(36)

(36)

1/8
—s+ /2 +2 —(A, /2 +g'c) = —1+c

At the transition n and 6 are therefore defined by
Eqs. (29) and (32). Putting 2a/l= 2, after some
arrangements, the following system of two second-
degree equations with respect to h is obtained:

(1 —v)'(1 —vs)'

2 4Egx 82+ 1 —4&gc = 0

The field is still rela, ted to s by h= 1 —vs, as sup-
posed in (22).

From (35) and (36) it results that the increment
of the transition field above 1 —v is predominantly
as (h/l)'/2. For the typical values v = 0. 9, n/l
=10 it is found that n= 0. 71&&10 and nh/(1 —v)
= 6. 3/p.

h2 ~ 2 1/2
( h2+ )2/2 0

1 —vs N C (37)

B. I-N Transition

The calculations a.re very similar. The condition
f, =

f// now gives

p4

(1 —v)(1 —vs)2

2 —v —vs 2Egg ~p 2&gc
(1 —v) (1 —vs) n n

By eliminating 6 we get

(33) leading with (29) to the system

2)4 2 2

p
— +4Egg k + s —4Egc = 0,

(1 —vs) 1. —vs
(38)s//s(2 —vs)

( )2
—

(1 )n
+ 2fgN, /2 + (S —2tgp) = 0,

whence
vn + 2e[2(1 —)/)gp + n(1 —vs)gc]

vn /(1 —v)(l —vs) —2&[2(1 —v) g„, + n(1 —vs)g//]

(34)

The result of the elimination of h is rather com-
plicated, but can be simplified by taking into ac-
count the smallness of n at the transition. From
(18b) and (19b), with the value (22) for n, the fol-

vs' —[2gc —s(1 —vs)go] 2g
vs'/(1 —v s) + [2g„—s(1 —vs) I]g2e/

(39)

s and /2 are given by (38) and (23) through (18b) and

(19b), but here the derivation of simple approximate
expressions is much more involved. However, the
elimination of h in (38) and then in Eqs. (23) and

(39) leads to the equations

(
nln2' 1 —2)n(2/2))

m 4ln2
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2 ln2 1 —2 ln2J3 4
& —2 ln~p 1 —2 lnI3

p + (1 —2v) p &+ 1 —10v —v +v - p s +2v(2+v)ps —v s seln2 ln2

41n2 t 1+21n2p 2 ln4p 2 pln2p
21n2 ln2 ln2,

'P — v+ - Ps+ v+1 s E — s — —:is=0

& —2 ln2p
+ ~+I--4l

2
-- v Ps'=0, 40

(41)

In the coefficients only the terms which are of
the lowest order with respect to s and P= a. —1 have
been retained. The analysis shows that a solution
exists such that s-P- e'

The resulting value of the transition field is then,
from (23),

v+ 1 P ln2P
2 2 ln2

(42)

which shows that the reduction of the field is of
order s, P, i. e. , (n/f)'~ . Numerical computa-
tions are required for a comparison with experi-
ment and will be given in a paper to be published
later.

With the present assumptions, the equations writ-
ten above determine completely the transition fields
for a flat-ellipsoidal sample, and allow a detailed
analysis of the limiting cases corresponding to ex-
perimental situations of interest.

The departure of the transition fields from the
idea~ values (1 —v)H, and H, has been experimental-
ly investigated by different authors on small cylin-

rsi3, i4 and thin slabs. ' Their results generally
agree with Landau's branching model. In these
experiments the typical parameter n/f was of a few
10 . If such values are inserted into the present

unbranched theory, the agreement is just as good.
For v =0. 9 and a/f = 10, (35) and (36) give n
= 2. 7% and nh/(1 —v) = 24. 3%%d . Howeve r, i t must
be borne in mind that the different theories imply
the assumption of semi-infinite domains. It is then
questionable to apply these results to samples with
l - a at the transition point.

VI. CONCLUSION

Through detailed electromagnetic and thermo-
dynamical analysis, analytical expressions have
been calculated for the various contributions to the
free energy of a superconductive ellipsoidal sample
in the intermediate state.

The result permits a precise formulation of the
equations describing the phase transitions at the
ends of the intermediate range. At the lowest or-
der, the deviation of the field from the ideal value
is of the order of (n/f)'~~ for the diamagnetic inter-
mediate-phase transition and of the order of (n/l)'~
for the intermediate normal-phase transition.

This quantitative theory could be compared with
experiments performed on ellipsoidal samples
whose thickness is larger than the period of the do-
main structure.
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