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This paper is a sequel to one by Appel and Kohn, in which the theory of superconductivity
was cast into the Wannier (or atomic) representation. This representation should be especially
useful for narrow-band superconductors. In the present paper, group theoretical methods are
used to show how to construct appropriately symmetrized pair states in this atomic represen-
tation. Specific applications to s and d bands in bcc and fcc lattices, and to d bands in p-tung-
sten structures are worked out.

I. INTRODUCTION

In an earlier paper' (hereafter referred to as I)
we have cast the theory of superconductivity in
narrow energy bands into the atomic (or Wannier)
representation in order to highlight the atomic na-
ture of the electrons responsible for the supercon-
ducting transition. In particular, the homogeneous
vertex equation (really a system of coupled equa-
tions), which defines the transition temperature
JEST, = P ', was derived for a Bravais lattice II(2.23)
and (2. 27)]; the nature ot' the irreducible interaction
in the site representation was discussed; and the
vertex equation was solved in the so-called contact
approximation (I, Sec. III), in which the paired
electrons are taken to be on the same atomic site.

Our eventual hope is for quantitative calculations
of transition temperatures in real narrow-band
superconductors and our first model calculations
were far from that goal. In the present paper we
take a further necessary step by solving the group-
theoretical problem which arises when the paired
electrons occupy different lattice sites. We also
extend our earlier work to metals in which the crys-
tal structure has a basis, as, for example, the
important P-tungsten structures. The necessity for
a group-theoretical reduction is evident from the
nature of the coupled vertex equations. For a crys-
tal structure with basis it has the form

where f and f describe states in which the paired
electrons occupy particular sites and orbitals, X
is a kernel incorporating the electron-electron in-
teraction, and (d, co' are imaginary frequencies
[cf. 1 (2. 23)]. Now consider, for example, the d
electrons in Nb3Sn. Let us restrict the paired
electrons to occupying either the same site or
nearest-neighbor sites, probably an adequate mod-
el. Then even after the translational and permuta-
tion groups have been taken care of, there are still
240 distinct f labels, which clearly demonstrates
the compelling need for all possible reductions by
symmetry considerations. In fact, in this example
such considerations reduce the system of Eq. (l. 1)
to the system

with only ten independent labels g; it is still a for-
midable but perhaps not insuperable problem.

The present paper is devoted to the construction
of the symmetrized pair states

ln&=f&(fin&
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and the corresponding new kernel K. The general
theory for an arbitrary crystal structure is given
in Secs. II and III. Specific applications to s- and
d-like orbitals in bcc and fcc lattices are worked
out in Sec. IV and to d electrons in the P-tungsten
structure in Sec. V.

r(f) = -- r(f')&f'Ix lf) .
P

(2. 1)

Here, f denotes an electron pair state:

be implied. Thus we rewrite Eq. (1.1) in the form

II. GENERAL FORMULATION OF PROBLEM f= (nl, T-1, fl(T1); n2, T2, 22(T2)), (2. 2)
In Eq. (1.1) we have written down the homoge-

neous vertex equation for a general crystal struc-
ture. Since in the remainder of this paper we shall
only deal with spatial symmetries, we shall sup-
press the frequencies ~ and ~ . Also, unless other
wise stated, summation over repeated indices will

where the n, label the unit cells, the 7' are atomic
positions within the unit cells, and i, ( T, ) are the
Wannier orbitals associated with the site 7' .

By an obvious generalization of [I (2. 23)], the
kernel X is given by

(f Ix f&=(f &u'Ixl fv&=G(n,', T1i (1T1), &'; n1', T1", i,"(T1'),&")G(n2', T2, i2(T2), —&u'; n2, T2, f2 (T2 ) ~ )

x
& n 1', T,", i,"(T,"), ~"; n2', T2", i2"( Tz'), —~"

I
I

I n1, T1, i1( T1), ~; n2, T2, i2( r2), —cu&, (2. 3)

where the G's are electron Green's functions in the
Wannier representation and I is the irreducible in-
teraction between the pair of electrons.

Now denote the permutation group by 1P (elements
P), the space group of the crystal by Q (elements
G), and their direct product by

(elements Q) . (2. 4)

Then the kernel X must be invariant under the op-
erations of the group g, i.e. ,

(Qf IxlQf)=(f Ixlf) . (2. 5)

Therefore the solutions I'(f) of Eq. (2. 1) must be-
long to irreducible representations of g, which we
label by the index j. Now the spatial electron-pair
states are symmetric under permutation since the
spin function in a singlet and hence antisymmetric.
Furthermore, according to available experimental
evidence, the superconducting state has the same
invariance properties under the operations of the
space group 8 as the crystal structure itself (i.e. ,
there is no broken space-group symmetry). Thus
the physically relevant solution of Eq. (2. 1) must
be invariant under the oper"tions of the full group
g ~

I'(Qf) = I'(f) (all Q and f), (2. 6)

that is, it must belong to the identity representation
j = 1. This symmetry property greatly reduces the
number of independent unknowns and equations in
the system of Eq. (2. 1)

We now follow standard procedures and introduce
the complete set of pair states Ijy) which transform
according to the irreducible representations j of
the group 4; y= 1, 2, . . . labels the different states
corresponding to the same j. We write

(2. 7)

I

and define

r(jy)=- r(f)(fljy) . (2. 6)

Then Eq. (2. 1) becomes, in the Ijy) representation,

r(jy) = ——r(j'y')(j'y' Ix I jy)
P

and

I
y) =

I
ly), r(y) -=r(ly), (2. IO)

&y'Ix I»= &ly'Ix lly& = &y'If '&&f 'lxlf&&fly& .

(2. 11)
Equation (2.9) now takes the form

r(y) = r(y')&y'-Ix-ly& .
P

(2. 12)

The corresponding I'(f) satisfy, by construction,
the symmetry condition (2. 6).

The problem of solving the vertex equation, and
thus determining the transition temperature, can
then be broken into three steps:

(i) Calculate the matrix elements &f'IX I f) [Eq.
(2. 3)] of the kernel X in the Wannier representation
~f&

(ii) Determine (in a convenient form) the trans-
formation matrices &f Iy) or, equivalently, the
"symmetrized" pair states

ly)= lf&(fI»,
invariant under the full group 4,

(2.13)

= ——I"(j y )(jy 'IXjly) (not summed over j)
p

(2. 9)
since, in view of the symmetry property (2. 5), X
does not couple different representations j. We are
only interested in states belonging to the identity
representation j = 1. Hence, we write
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(2. i4)

III. CONSTRUCTION OF SYMMETRIZED PAIR STATES
AND CORRESPONDING KERNEL

Let I f) be any initial pair state in the sense of
Eq. (2. 2). Then, as is well known, ' the state

.ly&= const&&E„Q„ lf), (3. 1)

which are needed for the construction of the kernel
&y'

I X I y) according to Eq. (2. 11).
(iii) Solve the set of coupled equations (2. 1). In

the present paper we deal with step (ii).

Then the totally symmetric state generated from
I f& is

l
y& = const xZ„G„j Os), (3.10)

where v runs over all elements of the space group.
It is useful to extract explicitly the subgroup of

primitive translations from (3. 10). For this pur-
pose we introduce the set G of all elements of the
space group g, which take a. given state 10 s) into
another state 10 s '), with m still equal to 0. Then
every element G can be written uniquely as a prod-
uct

G=TG, (3.11)

0 ~~v@p = +»0& (3. 2)

The constant in (3.1) and similar constants below
are for normalization purposes.

It follows also from the rearrangement theorem
(3. 2) that if I

f"') and I
f' ') are too "equivalent"

states, in the sense of

where v runs over all group elements of g and is
invariant in the sense of (2. 14). This follows im-
mediately from the rearrangement theorem:

(s. i2)

This leads us to define, for each initial state I f),
the normalized "cell state "

l
0 Il&

=—const &&K,G ~ l
0 s ), (s. is)

in which the center-of-mass cell index m = 0, and
the corresponding translated state

where T is a fundamental translation vector. Hence

if&1)
& qlf(2)) (3.3)

imp& = T.-log& . (3.14)

they give rise, via (3.1), to the same invariant
state I y). Thus we may restrict ourselves to in-
equivalent starting states I f&.

Clearly, since

&f 'lf)=o, (s. is)

A. Disposition of Translational and Permutation Symmetries unless n, =n, (/=I and 2) and hence m =m, it fol-
lows that

It is now convenient to replace the cell indices
n& and n~ by the two vectors & m 'Il

l
m )l& = 5-.- . (3.18)

m =- cell index of the center of mass,
P (III +TI +I12+ T2)

n = 11) —112

and to write the basic pair states in the form

l f& -=lmg&,

(3.4)

(3. 8)

(s. 8)

Therefore, the normalized state I y) is given by

(3.17)Iy&=~', ' lmn&=„ i. (& T;)lo)l&,
m m

where N is the number of unit cells. Clearly,
there is a one-to-one correspondence between the
states Iy) and I)l&, so that we may write

where )I= Il (y) or y= y(TI). (3. 18)

g-=(n; TI, i( ); TTI2, f(V~)) (3 'I)

[see Eq. (2. 2)]. All m vectors assigned to the
center of mass of the pair must be unambiguous,
even if the center of mass falls on a cell boundary
(see Ref. 2). Now the primitive translation ele-
ments T" of the space group have the effect

T-log)= lmg) . (3. 8)

l
ms(f) &-=const(lmg&+Pl mg)) . (3.9)

Hence, for purposes of constructing the invariant
states I y&, we may restrict ourselves to states with
m=0.

Next, since m is invariant under the operations
E and P of the permutation group, we define the
normalized states

where for brevity we write

n&-=lou&. (s. 2o)

This desired kernel connects only cell states with
m=0.

First, we take care of permutation symmetry
by defining the symmetrized kernel X' as follows:

&f'l~'lf&=-' «f'I~if&+ &Pf'I ~l f&)

[symmetrization with respect to f is superfluous
in view of Eq. (2. 5)j. Then, clearly, in working
with the symmetrized states Ims), Im)l), and

Our next objective is to determine a kernel K
such that

&y'lx [ y&=&oTI'lzlo)I&=&TI'lzlII&, (s. lg)
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Iy), X' is equivlaent to X. Further, the kernel
X' (like X ) has the full translational invariance
of the crystal. Therefore,

where the normalized state

I
Op ")= const &Z,S, I

Os ) (3.31)

&~'IXI »=&y'Ix'l»=~ ~ &m'~'lx'lm~&
m, m

=Z& 'q'Ix It)q&. (s. 22)

(s)'I z
I q) -=Z-(m'q' Ix'I oq& (3. 23)

[cf. I (2. 28)]; in the sense of Eq. (3.18) we write

We now define the contracted kernel K by the equa-
tion

is a pair state located on atoms (v,' ', vsn') and in-
variant under all operations of the subgroup S and
where

(3. 32)

As we shall see in Secs. IV and V, one can use
standard methods, such as are common in atomic
and molecular physics, to construct directly the
pair state

I
OP" '), associated with two definite

atomic sites and invariant under the group 3, and

then, by Eq. (3. 30), the full cell function I p&.

I'(y)= I'(y(R) ) = I'(0) . (3.24) IV. CELL STATES FOR bcc AND fcc METALS

Then Eq. (2. 1) assumes the form

1(~)= —(I/fI)1(&) (~'I~I~& . (3. 25)

I
~&

-=I «& =
I

og'& (og'
I

on& (3. 27)

B. Practical Construction of Cell States lg )

We have seen that, starting from an arbitrary
pair state IfI = Img), the cell state Is)& is obtained

by symmetrizing between the two electrons, trans-
lating so that m becomes 0, which leads to the state
IOs ) [Eq. (3. 9)], and finally operating with the sum
of the elements G, which were defined following

Eq. (3. 10):

I g& =
I

Oq& = const &Z G
I
Os) . (3. 28)

For practical purposes it is convenient to break
down further the last step. In the state IOs&, a
particular pair of atomic sites (v,"', vz"'), where
v—= n+w, with m=0, is occupied. In general, there
may exist other pairs of sites, (v,' ', vz '), where
X = 1, 2, . . . , Xp, also with m = 0, which arise from
the first pair by operation of the space group Q [we
consider (v, , vz)—= (vz, v~)]. Now denote the subgroup
of g which leaves the pair of sites (v, ', vz ') invari-
ant by 8 (elements S,); and let G, be any one ele-
ment of g which takes the pair (v,' ', vtI") into
(v, , vz '). Then, clearly,

(3. 29)

Hence,
0 )I,p

», P~
I
op"'), (s. so)

The new kernel is given, in virtue of Eq. (3. 23), by

«'IIf
I

&& =& &m's)'I m'g'& &m'g'IX'I or& (og
I

os)&

=(gq'I 5g'&& -.&m'g'lx'I og& &og
I

oq& .
(3. 26)

Thus, assuming that we have calculated the kernel
X' in the f [or (mg)] representation, we now must
construct the cell states

A. Lattice

We take atom 1 to be located at the origin. The
six Wannier orbitals centered on this atom and the
irreducible representations of the cubic point
group 0„, according to which they transform under
the symmetry operations, are given by

sos= p(r),
se, = (15/4v)' ~ '

y zf(r),
se, = (15/4v)'~' zxf(r),
sos = (15/4v)'~z xy f(r),
4 = (15/16m)'~ (x —y') g(r),
u s = (15/16m)'~' (2z'- x'- y') g(r),

r,

r'ss (4 1)
~35

Iia
I'(3 .

We now construct the cell states I q& for the bcc
and fcc structures in which many of the d- and f-
band metals crystallize. These are Bravais struc-
tures with only a single atom in each unit cell.
Thus the contact cell states are constructed from
Wannier orbitals at one atom. The nearest-neigh-
bor cell states involve Wannier orbitals at pairs of
atoms separated by d, the nearest-neighbor dis-
tance. The truncation of the kernel [Eq. (2. 3)],
given by ignoring atomic distances larger than d,
appears justified for d electrons (at least when their
Wannier orbitals are chosen as localized as possi-
ble). For s electrons the restriction to these cell
states is a poorer approximation. However, in
most transition metals the s-s and s-d pairing in-
teractions play a less important role for T, than the
d-d interaction because of a large d-electron density
of states at the Fermi surface.

The valence electron configuration of transition-
metal atoms has a characteristic form. For ex-
ample, the Sc series has the form 4d~s", where the
number of d electrons p lies between 1 (Sc) and
10 (Pd) and where the number of s electrons v is 1

or 2. The electron band structure of these metals,
arising from this valence electron configuration, is
characterized by five rather narrow d subbands
overlapping and hybridizing with a wide s-p band.
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These functions are normalized:

zond &=1 (4. 2)

The functions y, f, and g have cubic symmetry.

1. Contact Cell States

(I'(+ 12~+ I'~2) x (I")+I'2 + I'(2), (4. 3)

This product contains the identity representation
I', three times. The corresponding three pair
states are already the required cell states.

We shall use the following notation:

These states ~ p& are readily obtained from the
so s. We observe that the symmetrized pair orbit-
als formed from the su~'s transform under the sym-
metry operations of O„according to the symmetric
direct product

These v& were found from the so& with a procedure
given, e. g. , by Slater, and using the compatibility
relations between O„and C3 Fg Ajy I25 Afy A3 j
I'ia- As

The pair orbitals which we want are invariant
under the group 3. They are given by those parts
of the direct product

(2A, + 2A, ) x (2A, + 2A, ) (4 7)

which transform according to the identity represen-
tation A, under C,„and are invariant under v„.
There are six such states. For pair states describ-
ing two electrons on nearest-neighbor atoms 1 and
2 we use the notation

I
ij& =- pair state in which the orbitals v, on atom

1 and v& on atom 2 are occupied. (4. 8)

&o&=
I
oo&

I
&i &

= (I/~3) (I »&+
I
»&+

I
»&),

g2&= (I/~2) ( 44)+ 55)) .
2. Nearest-Neighbor Cell States

(4. 5)

I
ij&

—= pair state in which the orbitals w& and w&

centered at atom 1 are occupied. (4. 4)

Then the contact cell states are given by

Then we have the required pair states

Iop, &= Ioo&,

I0Pa& = (I/~2) (I »&+
I
33&»

oP, &=(1/vY) (I44&i I55&),

IQP4) = —'
(I 24)+

I
35)+

I
42)+

I
53)),

I OPS) = (I/&2) (110)+101)).

(4 8)

Next we construct the cell states arising from two
electrons on nearest-neighbor atoms. Here the
first step is to find the pair states I OP& which yield
the cell states i q& [Eq. (3. 30)]. We consider atoms
1 and 2 in Fig. 1. The symmetry operations which
leave both atoms invariant form the group C3„.
They are E (identity), 2C, (rotations by —',v and —, v

around the axis 1-2), 3o„(three reflections in planes
making 120' angles with one another and intersect-
ing along 1-2). The subgroup 3, defined below Eg.
(3. 28), consists here of these elements and the
additional elements generated by 0„, a reflection
plane perpendicular to C3 and through the midpoint
of 1-2. Thus S=(E, 2C» 3o» o„, 2o„C&, 3o„o'„).

To find the states ~ OP& we proceed in this man-
ner: First we construct Wannier orbitals that
transform according to the representations of C3„;
next, these orbitals are used to form pair orbitals
with the symmetry of C3„; and, finally, these pair
orbitals are symmetrized with respect to a „.

The orbitals on atom 1 and the representations of
C3„according to which they transform are given by

4

Iq,&=-ZG, IoPI" & (f=o, 1, . . . , 8) .
2 X=1

(4. 10)

In the present case the G~ may be chosen to be the
four rotations of the crystal which send a point
(x, y, z) into (x, y, z), (x, —z, y), (x, —y, —z),
(x, z, —y).

=Y

To construct the cell state l g, & from the pair state
10PI")-=10P,&, we apply to !OPI") the symmetry
operations G~ which send this state into the states
!OPI ') belonging to the same unit cell:

vo= mo A,

v, = (I/~3 ) (u, + w2+ ~,), Ag

Vg= V
~ [20g 2(%2+'N3)], Ag

v, =(1/v2 ) (u, —m, ), A,
(4 8)

V4= K4 ~

V5= K5 )

A3

A3.
FIG. 1. Pair of next-nearest neighbors in a bcc lattice.
Atom 2 has the position (2, 2, 2); a is a lattice constant.
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B. fcc Lattice

The Wannier orbitals are of the same form as in
the bcc case and are given by Eq. (4. 1).

The contact cell states are also of the same form
as for the bcc lattice [Eq. (4. 5)].

The geometry of two nearest-neighbor atoms is
shown in Fig. 2. The symmetry operations leaving
both atoms invariant are given by the group C2„.
The elements are E (identity), Cz (rotation by v

around the axis 1-2), v„(reflection in x-y plane),
a'„(reflection in plane x=y). Hence the subgroup
8=(E, Cz, o„, o,', o„, o„Cz, o„o„, ago„']. To find
the cell states, we proceed as in the bcc case.

The orbitals on atom 1 and the associated repre-
sentations of C2„are given by

Vo= 0 ~

v, = (1/ v 2 ) (w, + m,),
v, = (1/v 2 ) (zv, —~,),
V3= K3 q

V4= K4,
v5='N5

q

Z1

Z3
Z2

Z1
Z4

Z1 .

(4. 11)

( oP, &
= (ff&, f = 0-5

[OP ) = (1/~2) ([35)+
[
53)),

Op, &=(1/v2) (13O&+ f03&),

[ OP ) = (1/ V 2 ) (
J

50) +
[ 05&),

(4. 13)

where we have used the convention (4. 8).
The nine cell states I q;& are readily constructed

from the nine states (4. 13). To a state I op;")
—:

~ Op;) we apply the six symmetry operations G~
which send this state into one of the six states
10P;"'& [Eq. (3. 32)] belonging to the same unit cell.
The operations G~ —G6 send a point (x, y, z) into
(x, y, z), (x, —z, y), (x, —y, —z), (x, z, —y), (y, z, x),

V. CELL STATES FOR P-TUNGSTEN STRUCTURES

Here we shall construct cell studies for a lattice
with a basis. We choose as an example the P-tung-
sten lattice with space group O„since several com-
pounds with (relatively) high values of T, crystallize
in this structure, Nb3 Sn and Nb3Al among others.
These compounds have the form ABB and their cubic

We have used the following compatibility relations
between O„and C2 ' I'1 Z1 125 Zl Z2 Z3

~12- Z1~ Z4
The pair orbitals of interest are invariant under

the group s. They are given by those parts of the
direct product

(3Z& + Ez+ Z3+ Q4) X (3Z f + 1,z+ Qs+ E4) (4 l 2)

which transform according to the identity represen-
tation Z, under C2„and are invariant under 0„.
There are nine such states. They have the follow-
ing form:

=Y

FIG. 2. Pair of nearest-neighbor atoms in a fcc lattice.
Atom 2 has the position (a/~2, a/~2, 0).

i = (5/18&)"'(3& i —pi) h( pi),
u)2= (15/4m) $qgq h(pq), W3

nr 3
——(15/4z)' qigi h(pi), Wq

w4= (15/16m)'i'($, —q,') h(p, ), W,

~ = ( 15/4 v) ' ~ $, q ~ h ( p, ), W, .

(5. 1)

Here p1= r —T1.
The contact cell states lq, & are easily found. The

unit cell, of cube edge a, is shown in Fig. 3. The
B atoms occupy the sites of a bcc lattice; the A
atoms form three mutually orthogonal chains. For
a given A atom the two nearest neighbors lie in the
same chain at distance 2a. The eight next-nearest
neighbors lie in different chains at distance 1. 22a/2.

In constructing the cell states lg ), we restrict
ourselves to the Wannier orbitals of the d electrons
at the A sites and neglect all s and P orbitals. The
pairing interaction between these d electrons is dom-
inant because of the large d-electron density of states
at the Fermi surface.

The symmetry of a Wannier orbital u; at an A

site, e. g. , site 1, is determined by the symmetry
group of an A site. This group consists of all
those elements of the space group which transform
an A site into itself. It is isomorphic to a point
group, consisting of proper and improper rotations.
The symmetry group of the A atom at site 1 has
the following elements (see Fig. 4): E (identity),
C, (rotation by v around z' axis), 2o~ (reflections
in x'-y' and y'-z' planes), 2Cz (rotations by v

around two orthogonal axes both perpendicular to the
z'axis and tiltedby+45 with respect to the x' axis
2S4 (nonprimitive translation by;a along the z'
axis, rotation by + &m around the z' axis, and reflec-
tion in the x'-y' plane). The isomorphic point group
is I'„. In terms of its irreducible representations,
the Wannier orbitals at site 1 are given by
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Ky '. Zg

~'a: ~3 ~

+'S: ~4 ~

$65', Z2

(5 4)

=Y

The compatibility relations between B~„and C&„
which were used here are O'-Z&, W3-ZS, Z4, R'~- Z&, and W&- Z

For the Wannier orbitals on site 2, we introduce
the appropriate relative coordinates p&= r —7&.
The Wannier orbitals on site 2 are denoted as se;(pz).
These orbitals can be obtained from those on site 1

by reflection in the x-y plane:

~i( ~2 & }2I ~2) l(~2 I 1 2l ~2) (5. 5)

FIG. 3. Unit cell of the P-tungsten structure with the
six A atoms (small circles) belonging to the unit cell.
There are six other A atoms (not shown) located on the
other cube faces which belong to neighboring unit cells.
The B atoms (large circles) occupy the center and the
corners of the cube.

The sV; transform in the same manner as the u&

under the operations of the group C2„.
The pair orbitals we want are invariant under the

group p. They are given by those parts of the
direct product

(2Z, + Z, + Z, + Z4) x (2Z, + Z, + Z, + Z4) (5. 6)

which transform according to Z, under the operations
of C&„and are invariant under 0„. The corresponding
six nearest-neighbor pair states are given by

pair orbitals constructed from the u, transform
according to

( Wi+ Wq+ Wz+ Wi) x( Wi+ W3+ Wz+ W, ),„~ . (5. 2)

This direct product contains S'& four times. We
introduce contact pair states in the same sense as
in Eq. (4. 4). Then we have

(5. 7)

With these states ft)P;), the nearest-neighbor cell
states lqt) are given by (3. 30). The six symmetry
operations G„are defined in the following manner:
G, , G2, G3 transfer the pair 1-2 into itself and

f()p, )= fll&,
f%z&= ~(122&+ 33&),

f|)p,&= f44&,
(5. 3)

In terms of these states, the four contact cell states
lp~) are given by Eq. (3. 30). The six symmetry
operations G, send the point (x, y, z) into (x, y, z),
(x, y, —z), (y, z, x), (y, z, —x), (z, x, y) and (z, x, -y).

Next we determine the nearest-neighbor cell
states. From Fig. 4 it is seen that the symmetry
operations which leave both atoms 1 and 2 invari-
ant form the group C2„. The subgroup I = LE, Cz,
o'„, o„', o„, o„Cz, a'„&x„, a'„o„.). In terms of the
representations of C2„ the Wannier orbitals on site
1 are

=Y'

x'

FIG. 4. Coordinate system in which the symmetry group
of an A atom at site 1 is defined.
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into the pairs 3-4 and 5-6, respectively. G4, G, ,
G 6 transfer these three pairs by 2 a in z, x, and

y directions, and then rotate their contours by 45
around their respective chain axis.
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Effect of Nonmagnetic Localized States in Al Films with Enhanced T
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Mixtures of Al with 10 wt% A1203 and various concentrations of transition-metal elements
(Cr, Mn, Fe) were sputtered at 77'K and their transition temperature (T,) was measured
without warming above 77'K. The transition temperature (T~) of the reference Al —10-wt%-
Al203 mixture is approximately 3'K. In agreement with Kaiser's theory, Tc depends exponen-
tially on the transition-metal concentration. The excellent agreement between film data and
bulk data provides further proof that many electronic properties, in particular the density of
states, of the aluminum with enhanced T, are very close to bulk values.

The effect of nonmagnetic localized impurities
such as Cr, Mn, and Fe in Al with enhanced T, has
been studied as a function of the impurity concentra-
tion. The technique used (getter-sputtering films
at 77 'K) has extended the range of concentrations
achieved in bulk by Boato et al. ' by as much as two
orders of magnitude in the case of Fe. As a result
of the high concentrations covered in this study, it
is possible to assert that, inagreementwithKaiser's
theory, the decrease of the critical temperature is
exponential in the impurity concentration. An ex-
ponential decrease of T, has been previously re-
ported in an s-p-band superconductor' and in d-
and f -band superconductors. ' ' A further advantage
of the present technique lies in the fact that the
reference films are quite "dirty" (residual resistiv-
ity po = 10 ' 0 cm) and can be directly compared to
Kaiser 's theory for an isotropic superconductor
without having to subtract, as in the case of bulk, '6
the anisotropy contribution as calculated by Marko-
witz and Kadanoff. ~ The fact that T, is a well-be-
haved function of the impurity concentration supports
the view that the enhancement in such films is homo-
geneous. '9 The excellent agreement between film-
data and bulk-data. points provides further support
for recent susceptibility and NMR measurements
which suggest that many electronic properties of
these aluminum films, amongst which the density

of states is one, are very close to bulk values.
The experimental technique has been previously

described. ' The ref erenc e f ilms were sputtered
from a target made from an A1-10-wt%-A120, powder
mixture. The transition-metal elements were added
as powders in the desired quantity to the Al-AlzO3
powder mixture. It is essential that all powders be
smaller than 325 mesh in order to ensure a statistical
distribution of impurities in the target. The compo-
sition of the targets as checked by x-ray-fluores-
cence analysis'0 was in all cases within +10/0 of the
nominal composition. The composition of the films
checked by the Coprex technique agreed with the
composition of the sputtering target. ' The films
were deposited on sapphire substrates at 77 'K and
were measured at liquid-helium temperatures with-
out warming above 77 'K. The transition tempera-
ture was measured resistively and defined as the
temperature where the smallest normal resistance
can be detected. " The temperature width of all
transitions (from 1 to 95% of the full normal resis-
tance) was approximately 0. 2 'K.

The transition temperature for Al-10-wt%-Alz03
films as a function of the transition-metal concen-
tration (Fe, Cr, and Mn) is shown in Fig. 1. The
transition temperature (T„) of the reference Al-10-
wt%-AlzO, film varies between 3 and 3. 2 'K, but
the T,-vs-impurity-concentration curves seem to


