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fine field which we have not considered here. The
important ones may be magnon-magnon, magnon-
phonon, and electron-phonon interactions. None
of these is expected to be very effective for YIG
in the temperature range of our experiment. A
more comprehensive discussion of these different
processes will be included in a future publication.
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Several mechanisms which describe the interaction between spins and phonons in a dense
paramagnetic insulator are theoretically explored in order to estimate their resonant contribu-
tion to the ultrasonic attenuation at high temperatures. In particular, one mechanism provides
a quasiresonant contribution to the attenuation which is roughly proportional to the square root
of the difference of the frequency and certain multiples of the Larmor frequency. Other mecha-
nisms may lead to the same type of line shape.
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Theory of Acoustic Paramagnetic Resonance in Dense Magnetic Insulators*,

I. INTRODUCTION

In this paper we shall theoretically examine the
question of acoustic paramagnetic resonance (APR)
in dense magnetic insulators. The basic model
used for the spin system is a Heisenberg paramag-
net with an isotropic exchange energy much greater
than the Zeeman energy due to an applied magnetic

field or any anisotropic spin-dependent forces. For
the most part, only temperatures much greater than
the magnetic transition temperature of the spins are
considered. For our purposes the "resonant" con-
tribution to the acoustic attenuation will be taken to
mean that contribution which depends on an exter-

, nally applied magnetic field.
Electron paramagnetic resonance (EPR) experi-
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ments in dense magnetic insulators show an in-
tense, rather narrow line at the resonant frequency
vo=yIIO, where HD is the applied magnetic field and

p is the electronic gyromagnetic ratio. One might
naively expect similar results in an APR experi-
ment as is the case with paramagnetic impurities
in insulating dielectrics. For example, an esti-
mate of the peak attenuation due to the acoustically
modulated spin dipolar coupling for a typical dense
magnetic insulator (MnF3) at a temperature of
300 K and a frequency of 1 GHz is about 3~10
cm —if a linewidth of 0. 3 kG (1 GHz) is assumed.
Observation of such a change in attenuation is within
the range of present-day experimental techniques.
Unfortunately, estimates from moment calcula-
tions ' suggest that a linewidth of 300 kG (10 GHz)
is more appropriate. Not only would it reduce the
peak attenuation by three orders of magnitude but
it would make the "line" almost impossible to
sweep.

The results obtained from experiments and our
analysis indicate that the situation is somewhere
between these two extreme cases. In the high-
temperature limit we obtain magnetic-field-depen-
dent contributions to the ultrasonic attenuation
which are roughly proportional to —

I ~ —I~0 I

'

where m can take on the values + 1 and + 2. Other
mechanisms which are weaker in the high-tempera-
ture limit, ' but may still dominate in a temperature
range well in excess of the magnetic transition tem-
perature, may give similar contributions.

The reason why EPR and APR experiments yield
different results is simply that, even at high tem-
peratures, the Heisenberg paramagnet is a strongly
interacting system and is not equivalent to an equal
number of noninteracting spins. In fact, bandwidths
due to spin-spin exchange interactions can be
orders of magnitude larger than typical Zeeman
energies. Since the coupling of an electromagnetic
field to the spins is linear in the spin operators,
since the wavelength of electromagnetic radiation
is very large, and since the total spin of the sys-
tem commutes with the exchange interaction, this
bandwidth is relatively unimportant in EPR experi-
ments. The isotropic exchange interaction does not
directly contribute to the EPR line shape (or mag-
nitude) but comes into play only through exchange
narrowing of the relatively small anisotropic di-
polar interaction. On the other hand, since spin-
phonon couplings are quadratic in the spin, the
complexities of the spin-spin exchange forces are
of central importance in APR.

The rest of this section contains a description of
the various interactions that are used in this paper.
In Sec. II the formalism and approximations used
in the calculations are developed. A discussion and
tabulation of the results are contained in Sec. III.
For readers not interested in technical details,

Sec. II may be omitted.
The Hamiltonian for a magnetic insulator is

written as a sum of spin, phonon, and spin-phonon
interaction parts:

+spin+ phonon + int

The spin part is taken, to be

a.„,=-aye H, S(n, t)

and cyclic permutations.
Because only changes in the phonon spectrum due

to the spin-phonon interactions are being consid-
ered, it is sufficient to use the harmonic approxi-
mation for B»,„„. In terms of the normal coordi-
nates, '

e,„,„,„=-,' Z [Q(q, x, t)Q(-q, x, t)
q, X

+(uo(q, x)Q(q, x, t)Q(-q, X, t)], (4a)

[Q(q, X, t), Q(q', X', t)] = —eb(X, X')b(q+ q'),

[Q(q, ~, t), Q(q', ~', t)]= [Q(q, ~, t), Q(q', ~', t)]= o.
(4b)

In these equations, q is a wave vector in the first
Brillouin zone, X specifies the branch or normal
mode, and ~0(q, X) is the harmonic frequency of the
mode (q, X). The displacement of atom b in the
nth unit cell, U;(n, b, t), is

U, (n, b, t) =Z, »&z e, (q, A., b) Q(q, X, t) e"', (5)
q X 'L y)

where there are N unit cells in the crystal, M~ is
the mass of atom b, and e;(q, X, b) is the appropriate
unit polarization vector.

+-,' Z S((n, t) J))(n, n') Sq(n', t)+5 E,[S(n, t)],

(2)
where S(n, t) is the spin operator at the lattice site
n at time t in the Heisenberg representation. Latin
subscripts refer to Cartesian directions, Bo is an
external magnetic field, and J;&(n, n') describes the
interaction between spins at different sites n and
n'. lt is assumed that J&& has an isotropic part
(usual Heisenberg exchange) that is much larger
than both its anisotropic (presumably dipolar) part
and hyIIO. Any single-ion anisotropy energy (due
to crystal-field and spin-orbit effects) is included
in E,[S]which is also much smaller than the iso-
tropic part of 4&~. It will be our convention that all
repeated Latin subscripts are summed over. The
spin operators obey the usual commutation relations
of

[S„(n, t), S,(n', t)] = ib(n, n') S,(n, t),

[S„(n,t), S„(n', t)] = 0,
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The spin-phonon interactions considered in this
paper are linear in the strains or normal coordi-
nates and quadratic in the spin operators. Interac-
tions of higher order in the spin variables should
be much smaller while interactions of higher order
in the strains should contribute very little to any
resonant process. Since the exchange interaction
depends upon the distance between the spins, lattice
vibrations modulate this coupling and give rise to
the volume magnetostriction described by H&', t',

&v) 1 m e&(q, &)
+int 2 ~ „(AM)lf 2 Qg))(o —~') s&(~, t)

e,e', X,q

xS~(n', t) [e" —e"' ']Q(q, X, t), (6)

where

Q,',(n —o.') = (V„);J„(n —n').

Only the magnetic ion in a unit cell will enter any
of our expressions and thus the label b is sup-
pressed. The anisotropy energy of a spin depends
on the positions of the neighboring atoms and is
therefore also modulated by lattice vibrations.
This gives rise to the single-ion magnetostriction
described by H&",,', conveniently written as

a&;,)=i Z
( )„,G„q,ZO[S(Z, t)]e"'

e,g, X

x e,(q, &)Q(q, &, t). (8)

The magneto-elastic constants G„. and the form of
F0 [which is quadratic in S(&)&, t)] depend on the

crystal structure under consideration. Different
structures are considered in Sec. III.

II. FORMULATION

A. Ultrasonic Attenuation

For our purposes it is most convenient to discuss
the acoustic properties of the system in terms of
the phonon Green's function,

D(q, X, t —t') = (i/Ii) ((Q(q, X, t)Q(- q, X, t')), ), (9)

where the angular brackets (X& denote the average
value of X in the canonical ensemble and ( ~ ~ ).de-
notes the Wick time ordering operation. D is
Fourier transformed in time according to the pre-

scriptionn

D(&d„) = f dte'"n" ' D(t —t'), (1O)

where &d„= (1&v/- i@/) and v is an even integer. If
we consider only single-ion magnetostriction, Eqs.
(4) and the Heisenberg equation of motion,

iK = [A.(t), H(t)],

lead to an exact equation of motion for the phonon
Green's function:

82

et
—,+~'p(q, X) D(q, ~, t t'-)

= 6(t —t') -g-'(mX)-"'Z-. G„q e "'
x e*, (q, X) ((F„[S(o),t)] Q(- q, )&, t')), ). (12)

Following Ref. 7, the term on the right-hand side
of Eq. (12) is expanded to lowest order in H,",,)

yielding

(
82—

~ h Vh&q, X)) D &n, h, t —t')

p- ih8

5(t —t')+ ' dtil(q, z, t —t)D(q, z, t t'), (—l3)
Jp

ll(q, ~, t t)= -Z e "'"- 'G„(q, ~)G„,(q, ~)
ee'

x((s,(Z, t) s, (To., t) s,(n', t) s, (o.', t)), &,

(14)
where the G;&(q, X) is defined by the equation

e, (q, X) G&& q&F;& [S(n, t)] = S&(o.', t)G;&(q, X)SJ(o., t).
(16)

This expansion is well justified because the spins
and phonons are only weakly coupled. There are
also terms contributing to II from the volume mag-
netostriction and from interference terms between
H&,'t and II&„t'. These terms will be included later.

In order to proceed further the four-spiv correla-
tion function in Eq. (14) must be evaluated. Fol-
lowing other authors, v' we shall approximate it by
the sum of all possible products of two-spin corre-
lation functions containing different times:

(([s,.(Z„ t) s,(n„ t)].,[s,(Z„ t ) s,(Z„ t )].,),&

h

&))( 1 3) t t)GJ&(Q2 D4) t t)

+G;,(n, —&)&4, t —t)G)n(Z2 —o.s, t —t), (16)

where G,&(n, —np, t —t) is the usual two-spin corre-
lation func tion,

G;;(n —~', t —t ) = ((S;(o', t) Sy(~', t )).&.

The symbol []„denotes the symmetrized, traceless
form of the operators enclosed,

[s, (o&, t) s,(n', t)]., = —,
' [s,(Z, t), s, (n', t)]

——,
' S(S+1)5,,5(o., o. '). (18)

Correlations that are independent of time will not
contribute at finite frequencies and are neglected.
Our calculation is primarily to be taken at tempera-
tures much greater than the magnetic transition
temperature where this decomposition is expected
to be most valid.
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The two-spin correlation function (or Green's
function) is conveniently transformed according to
the prescription

G,,(n n—', f —&)

etl7 ( m-a!' &e (alp-(t t'-&
G (q ) (19)N. P

V

V

where G(t(q, o&,) is expressed in terms of its spec-
tral weight function X "(q, (d),

G„(q, oo„)=
""

d(o XIt(q, o&)

(d —(0V
(2o)

From Eqs. (10), (14), (16), and (19), it is easily
seen that

II(q, X, o&.) = (pftfN) ' 5 G, , (q, X) G„(q, X)
Vt

&( [G;(&(q'„(t&„.)G»(- q', o&„—(t&„.)

+Gt((q'. , ~, ) Gta(-q', ~, —~, )1,

(21)

II(q, X, (o) = II'(q, X, (t&) + t'Il" (q, X, (t&)

= lim II(q, X, (o,- (o + ie),

&o&(q, X) = —II'(q, X, (oo(q, X))/2(d o(q, X),

p(q, X) = rl" (q, X, (uo((I, X))/2o&o(q, X).

(22)

Using Eq. (20) the frequency sum in Eq. (21) is
performed using the identity

—Z = 2 coth —,PN(t&.
1~ 1

pm „(d—(o„
After letting v„-co+i& and using the fact that
plfo& «1 for all relevant frequencies at tempera, —

tures much greater than the magnetic ordering
temperature, one obtains

Now, if the anharmonic coupling is small, the ultra-
sonic dispersion and absorption are obtained by the
prescription

where Qt, (q) is the Fourier transform of Qt~(n - n'),

Q(q) = N ' Z; e"' Q(n).

B. Correlation Functions

In the long-wavelength limit, qa «1 (where a is
typical lattice spacing), ytt(q, q') is linear in q.
Furthermore, if q'a «1, Z;t (q, q') is also indepen-
dent q' and thus we write

~;;(q, q') -qX;t. (27)

A, =A„y jA, Ap—-A, . (29)

The resonant frequencies associated with the three
spherical components are

co, =+yHp and (dp=O.

D is the spin diffusion coefficient and X„„(q) is the
wave-vector-dependent susceptibility.

The effects of the terms in the spin Hamiltonian
that do not commute with the total spin (the aniso-
tropic part of J;;(n —n') and Z, [S(n, f)]] are taken
into account phenomenologically. At high enough
temperatures the primary effect is a correction to
the linewidth or decay rate of the spins due to the
exchanged-narrowed anisotropic interactions. This
is included by replacing' Dq by I'(q) where

r(q) = I,+Dq'.

The quantity I"p is the linewidth observed in EPR
experiments. Since at temperatures much greater
than the magnetic transition temperature,

In order to evaluate the sum and integrals in Eq.
(24) we shall use the low-frequency, small wave
vector form of the spectral weight function. In a
coordinate system where a uniform external field
points along ther axis, and if the interaction Hamil-
tonian commutes with the spin, hydrodynamical
arguments demand that

X"..(q, (d) = X.,(q)(dDq'[(o& —o&.)'+D'q'] '
(&,y.

(28)
The spherical vector components, denoted by Greek
subscripts It = (+, —,0) and p = (-,+, 0), are used
where

(- )
1 g d~( "d~o p;t(q, q')year(q, q')

PM% ~ g „

X, (q) = X,(q) = 2X oo(q) = 2X o
= r3PS(S + 1),

it is convenient to write

(32)

[X (q. . .)X„(-q, )
4) i+ (Op —CO —S&

+ X 4(q+ &() X;t(—q', &o)] ~ (24)

When both the single-ion magnetostriction and the
volume magnetostriction are included,

V;;(q, q') = [G(J(q, X) —
2 t(Q(t(q') —Qtt(q!))],

Qz, (q) = e((q, &() Q,', (q),

X,'t(q, o&) =Z X";,(d r(q) [(o& —o& ) + r'(q)] ', (32)

X;t = ~(.»;Xo(2- ~.,o). (24)

The quantities y; are defined by the transformation
of the Cartesian coordinate system of the crystal
to the spherical coordinate system in which Hp

points along the 0. =0 axis,

A; =Q,y;„A (»)
The sum and integrals in Eq. (24) can now be
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performed. Let T z be defined as

1 g "d(d~ d(d2 1(q )
v m (~, —'&o, )'+ I'(q', )

(q —q')
((d2 —(dg) + I (q ) (d&+ &d2 —(d —'l6

The two frequency integrals are easily performed,
yielding

1 (dI'~= 1+ —ZN,". (u +(o~ —il"(q', ) —i 1(q')
'

The summation of q' over the first Brillouin zone
is replaced by an integral over the Debye zone:

1 qg f
al'

N , (2m) J
q dq dP sin8d8, (38)

where v, is the volume of a unit cell and q„
= (6m /v, ) . In the limit I &a +&oz —&u —2iI'0) «Dq~~,

(dv
Tla =1+4 a [i —,'v f, ~(co—)],

4& (dg

x, = cosQ (x„cos8+z„sin8) —y„sin Q,

y, = sing (x„cos8+z„sin8)+y„sing,

z, = g„cos~ —x„sin0;

(43)

For the spins it is also more convenient to work
with the spherical vectors

tais and acoustic modes in the high-temperature
limit. We shall also comment briefly on other pos-
sible mechanisms with different temperature and
angular dependences.

Our discussion will be limited to crystal struc-
tures that possess uniaxial (tetragonal) symmetry
of which cubic crystals are a.special case. It is
convenient to define two coordinate systems; one
(denoted by the subscript c) which coincides with
the crystal axes and one (denoted by the subscript
h) whose z axis points along the direction of the ex-
ternal magnetic field. If the direction of the mag-
netic field is given by the spherical angles (8, Q) in
the crystal coordinate system, a convenient trans-
formation between the systems is

A, =A„+iA~, A. o=+ e„, (44)

(40)

f,(&u) = i+[I'+(x'+ Y')"']]"'
—(x/IxI ) (-,'[- I + (x'+ r')'~ 2]}'~2

r=(2I'o+-2Dq )/(os, X=((o +u)~ —(u)/(o~. (41)

It should be noted that the part of T z which de-
pends on Ho (the part proportional to f ~) comes
from the low-frequency and small-wave-vector
parts of the frequency and wave-vector integrals.
That is, the resonant or field-dependent part of T ~

comes from that region of phase space where the
hydrodynamic approximation is valid.

By combining Eqs. (24), (2V), (33), (36), and

(39), one obtains the final result

Il(q, X, (u) = —(3mq'(u/2pMurs)X;, (X,(+X„)Z;,X,'„f 8(co),

(42)
where all indices, Latin and Greek, are summed
over.

III. RESULTS AND CONCLUSIONS

In Sec. II we have derived a formula that includes
the resonant (magnetic-field-dependent) ultrasonic
dispersion and absorption due to single-ion and
volume magnetostriction. Since the infinite-tem-
perature form of the magnetic susceptibility has
been used, Eq. (42) is valid only at temperatures
much greater than the magnetic transition tempera-
ture. The treatment coul& possibly be extended to
lower temperatures but some of the other approxi-
mations may be far less valid there. In this section
we shall apply the results to different types of crys-

y„,= y„* = —,'(cos8 cosP+i sing),

y„=y, = —,
' (cos 8 sing —i sing),

y„=y, = ——,
' sin(9,

y,o= cos8, y„o= sin8cosp, y„o= sin8 sing.

(46)

All of these indices are somewhat overwhelming,
but are necessary if we wish to consider arbitrary
magnetic field angles and phonon modes. From
Eqs. (34), (41), (42), and (45), one obtains the res-
onant part of the ultrasonic attenuation coefficient"

for acoustic phonons with velocity v,

u(x) = —(6w&u p/Mv &o )[s(s+1)/3]'

'&I &-I'[f"'(~)+f' "(~)]
+ I&,OI'[f"'(~)+f' "(~)1] (47)

where

a,nd

x„=y; G„(q, x)y, ~/q (46)

f '"'((u) = (21'0+ [((o —mu) 0)'+ 41'0']'~ j'~'/(2(os) '~',

(49)
where ~ = vq and X specifies the phonon branch.
For a tetragonal crystal with its c axis along the

than the Cartesian vectors. Any vector in the crys-
tal coordinate system can be related to spherical
vectors in the spins coordinate system through the
transformation

(45)

where' =(x, y, z), p, =(+, —,0), and the complex di-
rection cosines, y;„, are
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TABLE I. Coupling constants g, and y, o for various acoustic phonon modes which result from Eq. (48). The c axis
of the crystal is in the z direction, the direction of the magnetic field is given by the spherical angles (8, (t)), q is the

,
phononwave vector, and e is the phonon polarization vector.

A„{q II e II [001]}

X,0{@Il e II [001]}

A„{q II e II [110]} (cubic crystal only)

go{q II e II f110]} (cubic crystal only)

A„{q II f001], e II [cosP, sing, 0]}

go{q II [001], e II fcosg, sing, 0]}

9G3& sin 8/16

9G33 sin 28/4

[QGf f sin 8 + G44(sin 8 —2) sin ft) cos (I~)] /4 + G 44 cos 8(sin ft) —cos Q) /4

sin 28.(~G~&+G44 sin(II) cos(t))2'+G44 sin 8(sin Q
—cos Q) /16

G44 sin 8[sin (ft) —g)+cos 8 cos (p —g))/16

G44[cos 8 sin (ft) —g) + (1 —2 sin 8) cos (~t) —g))/16

z direction, G,&(q, X) can take the general form

P„„(q,X) = (Gtt —Gst)&~~+ (- Gii —2Gst) yy ~

G,„(q, X) = (Gt, —Gst)&,„+(-G„—2Gs, )&„„,

=3G„(q, x) = —, G33&„,

G„„(q,X) =G„„(q,X) =Gest„„

G„,(q, X) = G,„(q, X) = G44s,„,
G„(q, X) =G,„(q, X) = G44&„,

where

e;~ = —,'[q,e~(q, X) + q~e, (q, Z) ]

(50)

(51)

and e, (q, X) is the usual phonon polarization vector
For a cubic crystal, G33 Ggf G3j Q Ggfp and
Gee= G44

The contributions to the G's come from both the
single-ion magnetostriction and the anisotropic part
of the volume magnetostriction. Sine e we have taken
the spins spectral function to be diagonal in the spin
[see Eq. (28) or (32)], the part of the volume mag-
netostriction due to modulation of the isotropic
Heisenberg exchange does not contribute. Similar-
ly, for our purposes, the diagonal part of the sin-
gle-ion magnetostriction does not matter and Eq.
(50) has been adjusted to our convenience with this
in mind. From Eqs. (46), (48), (50), and (51), the
values of X z can be straightforwardly worked out
for various phonon modes and magnetic field con-
figurations. In addition, several simple cases are
included in Table I. The "exchange frequency" +~
is given by Eq. (40), and I's is the intrinsic line-
width such as is observed in EPR experiments [see
discussion after Eq. (31)].

The distinctive feature of the resonant attenuation
is the shape functions f'"~(~) which, in the absence
of any intrinsic linewidth (I's), are proportional to
the square root of )co -m(do(. The total field-de-
pendent ultrasonic absorption is proportional to a sum
of four terms with m equal to both +1 and +2. The
minus sign in Eq. (47) means that the contribution
of each f' '(&c) to & decreases as l&c —m&ucl in-

creases. There is, of course, a field-. independent.
contribution to n from the same mechanism which
is larger in magnitude. In addition, n is propor-
tional to the usual factors of tc, T ', and (M V ) '.
This line shape fits weO with existing experimental
results.

This mechanism, which we have considered in de-
tail, should dominate at sufficiently high tempera-
tures. However, other mechanisms could also pro-
duce a line shape similar to that described by Eq.
(49). For example, besides giving an intrinsic line-
width 1"0, the anisotropic spin exchange and aniso-
tropy energy will lead to off-diagonal elements of
the spectral function [e.g. , )('„'(q, &c)]. The magni-
tude of this effect can be estimated from an expan-
sion of the wave-vector-dependent susceptibility in
powers of interaction energies divided by k&T.
This would lead to additional factors in the attenua-
tion of order

[sPS(S+ 1)E~„], (52)

where & &, is due to anisotropic exchange and the
anisotropy energy. Even though this factor is very
small at temperatures above the magnetic transition
temperature, the net effect of this "off-diagonal"
process could be larger than the "diagonal" process
already considered because the modulation of the
isotropic exchange now enters. This modulated
isotropic exchange can be several orders of mag-
nitude larger than the modulated anisotropic ex-
change or single-ion magnetostriction.

These "off-diagonal" processes would be propor-
tional to T instead of T ' and would have a differ-
ent angular dependence. For example, in a cubic
crystal, the anisotropic dipolar interaction leads
to an angular-independent term. Other mechanisms
involving more spin pairs may also be important
which could give contributions proportional to
f'"'(to) with I m I greater than 2.
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A simple theoretical semiclassical calculation of the surface ferromagnetic equilibrium is
given. The equilibrium orientation of the .magnetization in the layers which are near the sur-
face is tilted from the direction of the .magnetization in the bulk. This rotation depends on
both surface and bulk anisotropies. Thus, some instabilities in the spectrum disappear, and
optical surface spin waves are found to be less energetic than what is usually calculated.
Moreover, a simple interpretation of a possible origin of the pinning of surface spins is given.

There have been recently a number of theoretical
investigations of surface spin waves in Heisenberg
ferromagnets, ~ ~ where the existence of surface
modes is related, in the case of nearest-neighbor
exchange, to the variation of the bulk exchange pa-
rameter at the surface. Nevertheless, an impor-
tant question which remains open is that of the
direction of the magnetization at the surface. In
this paper a simple theoretical calculation of the
surface equilibrium configuration is given. The
most interesting result is that when the spin layer
draws near to the surface, the spin magnetization
rotates, and a so-called "pseudohelicoidal" struc-
ture is found in the vicinity of the surface. Conse-
quently, a simple interpretation of the originof pin-
ning effects is given.

Moreover, the surface spin-wave spectrum is
found to be perturbed by the existence of surface
anisotropy. A treatment dealing with the existence
of optical surface spin waves has already been given
in the special case where the bulk and the surface
magnetizations are parallel. ~ However, the aim
of this work is not to demonstrate that the surface
and the bulk spectra are model dependent, but to
lay emphasis on the fact that the magnetic struc-
ture of the surface often differs qualitatively from
that of the bulk.

The direction of the bulk magnetization M is as-
sumed to be determined by a total energy balance
(bulk anisotropy, sample configuration, ~ ~ ) and

thus it is independent of the surface anisotropy pa-
rameters. Let n be its angle with the axis Oz,
which is perpendicular to the surface. In order to
describe the surface effects we introduce the fol-
lowing Hamiltonian '

Z J(fg fa)SyqSyq —
~ Z I(fq-f2)Sy(Syq .

fg, fp, e Sjpf p

(&)
'

The bulk anisotropy is not included in H (o. = x, y, z).
The magnetocrystalline anisotropy integrals I (f~
-fz) differ from zero near the surface only, where
we make the assumption that I(f, —fa) is of the
same order of magnitude as J(f, -f2). The iso-
tropic exchange J(f, -fa) will also be perturbed.
The penetration of the perturbation, i.e., the range
of the helicoidal structure is given by the range
where the I factors are nonzero, which is different
from the surface spin-wave penetration. In order
to simplify the calculation, we assume that only
the first surface layer is perturbed. We define
thus the following parameters:

J„=J(fq —fa), I„=I (fi —'fa),

where f, and f2 are two nearest neighbors located
on the surface layer and

J'~= J(f~ f~), I~=I(f, -f2)-,

where f, and f2 are two nearest neighbors located
on the first and second layers. Let us assume that


