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This paper combines parts of the theories of spectroscopy, collisions, and autoionization to
provide a unified framework for a quantitative theory of experimental data on 4d-shell photo-
absorption in rare earths. The calculations by atomic theory are intended for tentative applica-
tion to solids. The theory should also apply to 3p-shell photoabsorption in the transition met-
als and to other cases where the effect of a potential barrier is crucial. A prescription is
given for the ab initio numerical calculation of total and partial photoabsorption cross sections,
as well as of the profiles, energies, and widths of resonances. A sum rule is derived for
transitions of the type l~4'&' l& l&

&' l~ '~, which yields the integrated strength of observed
absorption spectra.

I. INTRODUCTION

Recent experiments'~ on the 4d-shell photoab-
sorption spectra of the (trivalent) rare earths show
a prominent peak about 6-18 eV above threshold.
In many of the rare earths this main peak appears
to be composed of several peaks that are not com-
pletely resolved. The magnitude of this main struc-
ture varies greatly: Its experimental width at half-
maximum varies between 6 and 26 eV, and its
strength decreases to zero with increasing atomic
number (57 & Z & 71), i. e. , as the 4f subshell fills.
Also present in the absorption spectra are numerous
weak lines in the vicinity of the 4d-shell threshold.
At lutetium (Z= 71) all these absorption features
disappear.

These experiments have been interpreted in a
preliminary report as being due to dipole transi-
tions of the type 4d'o4f"-4d 4f"'. The supporting
arguments are these: (i) An independent-par ticle
model shows that at La (Z= 57) the 4f wave function
becomes bound inside the centrifugal potential bar-
rier and overlaps the 4d wave function; higher-en-
ergy f orbits remain outside the centrifugal barrier
and have almost no overlap with the 4d wave func-
tion. Hence, essentially all photoabsorption
strength from the 4d shell in the rare earths should

go to the 4f shell. (ii) The excellent overlap of the

4f orbit with the 4d orbit also implies a strong ex-
change interaction between the 4f"' subshell con-
figuration and the 4d vacancy. This interaction is
so strong that it splits the term levels of the
4d 4f ' configuration by about 20 eV, sending some
levels far above threshold. These levels then auto-
ionize to the various channels having the core con-
figuration 4d 4f". (iii) The observed decrease in
strength of the main absorption peak with increasing
atomic number (i. e. , as the 4f subshell fills) is
understood in terms of the exclusion principle. A
sum rule has been derived which shows that the
summed line strength is proportional to the number

of vacancies in the 4f subshell. This sum rule is
given in the Appendix of this paper. (iv) The dis-
crete energy levels of the 4d 4f ' configuration
were calculated by diagonalizing this configuration's
interaction matrix using experimental spin-orbit
parameters and multiplying the calculated Slater in-
tegrals by a single parameter which is adjusted to
obtain a best fit to experimental levels. Agreement
is excellent for those cases tried, namely, I a, Ce,
Er, and Tm. Calculations for these and other rare
earths will be reported in a detailed paper by Sugar. '

In this paper we present a comprehensive theory
for the 4d-shell photoabsorption spectra observed
in the rare earths. This theory combines elements
from theoretical spectroscopy, collision theory, and
the theory of autoionization; it pieces them together
to provide a unified framework for the understanding
of these new experimental phenomena. Our empha-
sis throughout is on providing the basis for future
ab initio numerical calculations of photoabsorption
and photoionization intensities, including, specifi-
cally, the partial cross sections for ionization into
particular final channels and the energies, widths,
and line profiles of the 4d 4f"" resonances above
threshold. In particular, we have enlarged the
scope of the theory of Fano and Mies for multi-
level multichannel autoionization by showing how to
construct the prediagonalized states which these
authors assume at the outset.

In the theoretical development that follows we
consider photoabsorption by a single rare-earth
atom, with the understanding that our results are
meant to interpret the experimental spectra for
rare-earth solids. This is justified because the
outer electrons in the n = 5 shell (i. e. , 5s 5P )
screen the 4f and lower subshells from the environ-
ment of the solid, or, in other words, the radius
of the 4f orbit is small compared to the radii of the
n = 5 orbits. Since dipole absorption, exchange in-
teraction, and autoionization all occur within the
radius of the n = 4 shell (i. e. , the appropriate ma-
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trix elements all involve overlap with the 4f wave
function) it makes little difference whether one con-
siders an atom in a gas or an ion in a metal. In

particular, we ignore any modification of our atomic
continuum wave functions arising from interactions
specific to the solid state or to outer shell electrons.

Other important points that are implied in the
rest of this paper are the following:

(i) The levels of 4d'4f ' are regarded as entirely
separate from the Rydberg series 4d'4f "nf. Be-
sides having different level structures, these two
configurations differ in that the 4f orbit is bound in-
side the potential barrier whereas the nf orbit
(n~ 5) is not. The final channels are thus consid-
ered to start with the z = 5 configuration.

(ii) Dipole transitions 4d-P are not considered
explicitly. They are allowed and should, in princi-
ple, be considered as additional final-state chan-
nels. How ever, preliminary numerical calcula-
tions indicate that the autoionizing levels decay 100
times more strongly to the f channels than to the p
channels. Hence, for simplicity, we shall not men-
tion the p channels any further.

(iii) All interacting final states must have the
same total angular momentum J and projection M~,
but we do not single out J and M~ from the other
quantum numbers that identify the final states.

(iv) Implied in our summations for total cross
sections is a sum over all dipole-allowed total
angular momentum quantum numbers J and MJ.

(v) This paper considers only the final-state wave
function. We do not consider the initial-state wave
function explicitly since this constitutes a well-de-
fined separate problem.

In Sec. II we indicate the procedure for obtaining
the prediagonalized states of Fano and Mies. In
Sec. III we discuss the shift in the resonance ener-
gies due to interaction of the autoionizing levels
with the continuum channels. In Sec. IV we obtain
the final-state standing-wave eigenvector. In Sec.
V we switch to incoming wave eigenvectors and de-
rive expressions for partial and total cross sec-
tions, which show explicit resonance behavior. In
Sec. VI we give a prescription for numerical calcu-
lations. Finally, in the Appendix we present a sum
rule for the sum over all final levels of the line
strength for transitions from a closed shell to a
partially filled shell. The summed strength is
found to be independent of the state of the initial
configuration and proportional to the number of va-
cancies in the initial partially filled subshell.

tions of Slater determinants for th'e relevant con-
figurations, which we identify by the following nota-
tion:

N+g 4d 94gN+ j

4 sf= 4d-'4f ~f

As discussed in the Introduction, other (usually
closed) shells of electrons are implied in our nota-
tion, but not indicated explicitly, in order to em-
phasize t:he essential features of this problem. Note
that we shall use lower-case Greek letters to de-
note both the coupling schemes and the quantum
numbers necessary to specify uniquely the states of
the above configurations. Upper-case Greek letters
(other than 4) will be used to identify the various
states pertaining to a wave function of energy E that
is not associated with any particular configuration
le. g. , see Eq. (2) below]. The various states hav-
ing the configurations (1) are thus denoted by
!4 'n) and ! 4 X, ef, p), where n identifies the state
of 4, X identifies the state of C, and p identifies
the state of 4 "X, cf. We denote the Hamiltonian, in-
cluding both electrostatic and spin-orbit interaction
between and within the configurations 4 ' and 4 "ef,
as H and the independent-particle-model Hamilto-
nian as II,d. We define the residual interaction as
V„,= H —H,„. —Each of the states !4 'n) and
!4 X, cf, p) is an eigenfunction of H ., whose energy
depends only on the configuration.

We represent an exact standing-wave final-state
eigenfunction of the Hamiltonian H as

!AE)=P ~4"'n) ~„,(E)

+5 fdic~@"&, ~f, p) B(&, ~, p;AE) . (2)
X, p

The quantum number A identifies a particular state
of the wave function having eigenvalue E. Taking
matrix elements of H between the ket ! AE) on the
right-hand side and either (4 'n'! or (4 X', a', f, p I

on the left-hand side, we obtain the following linear
equations for the coefficients A. and B:
Z(4 ' n' ~Hi 4 ' n)A (E)

+ E fde(4"'n'
i V„,i 4

"X, ef, p)
X, p

x B(X, E, p' AE) = EA ~ (E), (3)

Z(4 "~', ~'f, p'~ V„., ~

4"'n&~.,(E)

+ 2 fde(4 1', e'f, p' ~H
~

4 "A., ef, p)

II. DIAGONALIZATION OF HAMILTONIAN
SUBMATRICES

X, p

x B(X, e, p; AE) = E B(X', e', p'; AE) . (4)

We start from a zero-order basis set obtained
from an independent-particle model such as Har-
tree-Fock or any of various central-field models. '
Using this basis set we construct linear combina-

The solution of Eqs. (3) and (4) for the coefficients
A and 8 constitutes the main task of this paper. In
the remainder of this section we concern ourselves
with the first step of the complete solution, namely,
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the diagonalization of the Hamiltonian submatrices

(C,N+lo)
l

H
l

C, anglo&

(I "1', «'f, p' lHlc "x, «f, p& .
The submatrix (4 "'n' IH I 4 'n& is of finite di-

mension and is diagonalized by the methods of theo-
retical spectroscopy. ' We label the new states with
the index P. In this new representation the Hamilto-
nian submatrix is

Note that the Ez are not quite the same as the ener-
gies of the experimentally observed resonances.
We shall find in Sec. III that the resonance energies
differ from Ez because of the interaction of the dis-
crete states )4 "'P& with the continuum channels.

The diagonalization of the Hamiltonian submatrix

requires a different treatment because of its depen-
dence on the continuous variables &' and &. We
treat the problem by splitting the residual interac-
tion submatrix into two parts, namely, one part
(denoted V", ) involving only interactions among the
electrons in the core configuration C, these inter-
actions being diagonal in E and p; the other part
(denoted V,",,) involving only electron-core interac-
tions between the excited electron and the ionic-core
configuration. We may thus write

= (E,+ «) 5...5(«'- «)5...

+(e"~', «'y, p'lv„", , lc "~, «y, p&, (8~

where we have used the relation

H .„le"l(., «f, p&=(E, +«)l4"x, «f, p& .
Note that the core energies E„are degenerate in the
zero-order model and hence the first task is to
split these levels by diagonalizing the matrix
(4 "X'

I
V'„'",'IC "X&. That is, one must obtain a new

set of states identified by I I "» ef, o&, such that

= (E,+ «) 5...5(«'- «) 6... , (7)

where E, is the experimentally observable energy
of the jUth level of the ionic core configuration 4
In this new representation the Hamiltonian subma-
trix becomes

(c p. , «y, o lHlc p., «y, o&

= (E„+«)6„,„5(«'-«) 8, ,

Note that the matrix elements of V'„', represent the
difference between the interaction of the excited
electron with the ionic core and the interaction of
the excited electron with the independent-par ticle-
model potential.

The eigenvectors which diagonalize Eq. (8) and
satisfy the required boundary conditions asymptot-
ically are known as the "incoming-wave" eigenvec-
tors. The boundary conditions they satisfy are,
alternatively, that the photoionized electron recede
to infinity either in a specified direction or in a
specified angular momentum state. These incom-
ing-wave eigenvectors, however, satisfy an integral
equation having a complex energy denominator,
which is inconvenient for numerical calculations.
Therefore, we consider initially the standing-wave
eigenvectors of the Hamiltonian, which satisfy real
equations, and postpone application of the appropri-
ate boundary conditions.

A standing-wave eigenvector for the Hamiltonian
submatrix in Eq. (8) may be represented as a linear
combination of the basis states I 4 "» «f, o&. In

writing this linear combination we introduce two

new sets of coefficients, discussed further below.
One of these is represented by matrix elements of
an operator K($), which is determined from colli-
sion theory. The other set, denoted by U. ..&
x (8) coswr)r, must be determined by a separate cal-
culation. Note that because the standing-wave
eigenvector is a linear combination of basis states
I 4 "(u, Ef, o) it is not identified by any particular core
state jL( or excited-electron energy E. Rather, we

denote the standing wave having total energy 8 by
IC eI'8&, where C" indicates the core configura-
tion, e indicates that there is an excited electron,
and I' is an index identifying a particular standing-
wave state having energy 8. We thus write the
standing-wave eigenvector as'

l
e "e r8& = Z

l
C "» «f, o&, + Z " d«'

l

e"l1', «'y, o'&

g, (g'g', g'f g'~~(g)~~g v, , ef g) IU (g)gos g....„(g),
The subscriPts 8 below the unprimed basis states I@ tu, «f, o) imply that these states have total energy
8 (i. e. , E) + « = 8), whereas the Primed states assume all possible energies. The symbol 6 denotes the
Cauchy principal value is to be taken in integrating over the singu]arity in the energy denominator.

The operator K($) is just the reaction matrix of collision theory. It is determined as the solution of the
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following integral equation:

AN THONY F. S TABAC E

(@ tu' e.'f, o' IK($)
I

@"p, , ~y, o) = (c'"tu', e'f, o'
I

v'„,', I@ "i",&f, o) + ~+d~ (~"& ' 'f "I&:.
I

+"~" &"f o"
&

P

x „(4"p,",e"f,o"
I
K($ )

I
4 "p, &f, o) . (10)

Note that in both Eqs. (9) and (10) the integration
over energy includes a summation over the discrete
Rydberg series starting with 5f (since the 4f levels
are being treated as resonances). The energy of the

5f level is close to threshold and hence one may
consider the discrete levels as an appendage to the
continuum by normalizing the 5f level per unit ener-
gy and integrating from the energy of 5f Ad. is-
cussion of the numerical methods used to solve Eq.
(10) in a one-channel case has been given else-
where. ' It should be emphasized here, though, thai
the integration over the singularity poses no numer-
ical prob)ems.

The matrix U. ..r($) is an orthogonal transforma-
tion (whose rows are indexed by the pair of quantum
numbers p, , o) which diagonalizes a submatrix of
(4 "p, «f, IK($) ~O tu', e'f, o'). This submatrix is
constructed by selecting the basis states with total
energy 8 (i. e. , &, + & = &, + c' = 8). We denote this
submatrix by (K($)}„„„...; it is known in collision
theory as the reaction matrix "on the energy shell. "
The matrix U. ..r($) is thus the orthogonal trans-
formation that diagonalizes JK($)}„„~... and is ob-
tained by solving the system of equations

~ (K($)}..., . . U. ..', ,(8)

= —v-'(tan~q, ) U. .„(8), (11)

where —v 'tan))qr is the I'th eigenvalue of (K($ )}.
Now the scattering matrix S is related to the matrix
JK($)}by the well-known formula'

1 —imI)K($ )}
1+iv(K($)}

Note that the S matrix is also diagonalized by the
orthogonal matrix U and its I'th eigenvalue is e' '"&.

Thus the label F designates an eigenchannel of the

scattering process. The angle my~ is the eigenphase
shift in the eigenchannel I' owing to the residual in-
teraction V',,', .

The asymptotic form of the standing-wave eigen-
function will be needed later when the incoming wave
boundary conditions are applied. We obtain this
form by using the standard asymptotic formula for
the basis states in Eq. (9):

1/2
~d' ll, fj, g)g „8„,( (g)

x —sin[k, ($)r ——,'mf+ 5,($)] . (12)

x —sin[k, ($)r —,'el+ 5,(—$)+mimir] U. ..r($)

as r ~, (13)
which shows explicitly that mp& is the eigenphase
shift in the I'th channel due to V,"„.

We have thus shown how to diagonalize the Ham-
iltonian submatrix in Eq. (5), which in the new
representation becomes

(4 "er'8'I~IC'"erS)=$5, .,5($'-8) .
III. RESONANCE ENERGY LEVELS

(14)

Using the new representations for the discrete and
continuum states obtained in Sec. II, the Ath stand-
ing-wave eigenfunction for the total Hamiltonian be-
comes [cf. Eq. (2)]

+5, fdS
I

C "el"$)B(1"8;AE) . (15)

Here the A and B coefficients satisfy the following
linear equations [cf. Eqs. (3) and (4)):

z,x (E)+p fdS'(e"'pl v...le"er'8')a(r'8'; A&)

= E&ga(E), (15)

Z(4 "erS
I v-.

l
c' p')&, (&)+$&(1$;jiE)

=Em(1"8; A&) . (IV)

We thus see that in the new representation the dis-
crete-continuum interaction stands out as the only
one remaining; Fano's treatment of autoionization
started from here. Our task in this section and
Sec. IV is to obtain explicit expressions for the A.

and B coefficients, which amounts to obtaining the
exact final-state eigenfunction [Eq. (15)] for our
problem.

Solution of the linear equations above starts by

I

Here 8, , comprises the wave function of the ionic
core and the appropriate angular factors, k„($)
= [2m($ —E„)P~2/0; l= 3, and

5,($ ) = k,'(8 ) in[2k, ($)r]+argl'(I + 1 —ik,'(8))

Equation (12) is just the asymptotic formula for a
particle in a Coulomb field, generalized, of course,
to include the ionic-core states. The result of us-
ing Eqs. (11) and (12) in Eq. (9) is'

i@'8)')l)- zo, .( )
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using Eq. (17) to obtain the B coefficients in terms
of the A. coefficients and a set of integration con-
stants C:

B(«;AE)=
&

Z(c "e« ~v„.t~"'P'&A, ,(E)
gl

+6(E —$)C, (E), (18)

where 5' indicates the Cauchy principal part is to be
taken when integrating over the singularity.

Substituting Eq. (18) in Eq. (16) we obtain a lin-
ear relation between the A and C coefficients:

~s&6 (~)'& 5 dg &@"''pl~-.le"er s') &,
— (e'er's'l~-. l@"'p )I'

&A~'(E)+&(C""pl V-. lC "er"E&C'..(E) =E Aa (E) (19)r'

where we note that the matrix in curly brackets
represents a second-order interaction between the
discrete states due to their interaction with the con-
tinuum channels. In particular, this interaction
shifts the energies of the discrete levels. Follow-
ing Fano we define

F .(E)—=5 dh" (o"'~p v„,ic "er"h"&
r~

, (c "er"h'i v„,i+""p'& . (2o)

We wish now to diagonalize the matrix E~~~a,

+F8~.(E) according to the equation

ESTAB~(E) +Z Fqq. (E) A8.~(E) = E„(E)A~(E), (21)
gt

where the E„(E) are the eigenvalues and where we

have explicitly noted that these eigenvalues vary
with the total energy E. We shall denote the eigen-
states of Eq. (21) by ~4"'y&.

This calculation has two important results. One

is that in the new representation for the discrete
states, Eq. (19) gives an explicit solution for the
A coefficients in terms of the C's, namely,

A~~(E) = Z(4 y
~
V„,

~

4 er E&Cr. ~(E).

The other is that the resonance behavior of the ex-
act final-state wave function will be seen later on
to arise from the energy denominator in Eq. (22).
In particular, the energy E at which the denomina-
tor vanishes, i.e. ,

E —E (E) (23)

approximates the energy of the yth peak in the ob-
served photoabsorption spectrum. Note that since
E„(E)depends on E, Eq. (23) must be solved itera-
tively or else graphically.

We have thus shown explicitly how to obtain ex-
pressions for A„~(E) and B(«; AE) in terms of new

coefficients Cr ~(E) for energies E in the autoion-
ization region. In Sec. IV we shall show that the

Cr A(E) coefficients diagonalize yet another reaction
matrix which takes into account the interaction be-
tween the continuum channels due to their mutual

I

interaction with the discrete levels.
In the rest of this section we consider those dis-

crete levels of. the configuration 4 ' which lie be-
lozv the onset of &ome or all continuum channels.
(Note that we are considering the Rydberg series
preceding each continuum threshold as merely an
appendage of the continuum, as discussed in Sec.
rL ) Those discrete levels below all continuum
thresholds do not autoionize, but their energy posi-
tion is nevertheless shifted through interaction with
the continuum channels. In short, we wish to ob-
tain here the total final-state wave function I AE& for
discrete energies E=E, . This wave function has
still the form (15), but we must solve for the A and
I3 coefficients in a slightly different way. In the ex-
pression for the B coefficients [Eq. (18)] the second
term does not now appear since E, &$. Hence we
have

B(«;«,)= E &
Z(~"e«~ v...~c "p'&A,„(E,) .1

6 g'
(18')

Substituting Eq. (18') in Eq. (16) we obtain an eigen-
value equation for the A coefficients (we henceforth
drop the symbol A since it is superfluous):

EqAq(E5)+V~8, Fqa, (E~)Aq, (E~) =E,A8(E~) (21')

Note that Eq. (21') differs from Eq. (21) in thathere
F& (E,) depends on the eigenvalue E„and hence
Eq. (21') must be solved iteratively, unlike Eq.
(21). [That is, we must diagonalize the matrix
Ez&8&. +F8~.(E,), as before, but now at the same time
we must require that one of the eigenvalues equal

]
The energies E, which satisfy Eq. (21') are the

experimentally observable energies for absorption
to those levels of the configuration 4"'~ which lie
below the continuum channel onsets. The Aa(E, )
coefficients which solve Eq. (21') are determined
up to normalization and may be used with Eq. (18')
to define the final-state eigenfunction in Eq. (15);
this eigenfunction will be used in later sections to
compute oscillator strengths. The final-state
eigenfunction ~E~& must have discrete normaliza-
tion, which implies that the A. coefficients are nor-
malized according to the relation
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&z, lz, &=)=&'a,.'(z) s, ,+2 as(s"s'Iy. ..ls'ars& s, &s'arsly. ..ls"'s)IsSz, ),
o'a 6

Iz, &=& Iz"'6& &. «Iz"«s& z s (z"raly. ..lz"'s&Isa&z ).
8 r J 6

Finally, when the total energy F is above some
continuum thresholds but below others, the
B(I'8; AZ) coefficients are obtained either from Eq.
(18), if I" is an open channel, or from Eq. (18'), if
I' is a closed channel. Substitution of these equa-
tions in Eq. (16) gives a, result identical to Eq.
(19), except that the terms

&e"'p
I v„.

I
c "or z& c, ,(z)

are summed only over those I" channels which are
open. Otherwise, just as for the case of all chan-

nels open, the resonance energies are obtained
from Eqs. (20)-(23). The Cr s(Z) coefficients are
determined in Sec. IV.

IV. DETERMINATION OF FINAL-STATE EIGENVECTOR

In Sec. III we determined the final-state eigen-
function for discrete energies. For energies in the
autoionization region (i. e. , above the lowest con-
tinuum channel onset) we obtained the final-state
eigenfunction in terms of the yet to be defined coef-
ficients Cr «(Z), i. e. ,

oyen »1 ~ g+l

rZ «Iz"rs&, ', (z"rsly. ..lz'"» z--;z &s"'rly...ls"arz&I z, .&z&. &ss)
pe y

E(z) = v'+ v' (p/(z- I)'s)I7(z), (28)

where, of course, V'=—H —B'. Formal analogy of
Eq. (2V) with Eq. (9) identifies the Cr s, (Z) as having
the form

Here we have substituted Eqs. (22) and (18) [or Eq.
(18') for the I" channels which are closed j in Eq.
(16) and transformed to the new representation for
the discrete states. Note that the sum over I' is
only over those channels mhich are open at energy
E, whereas the sum over I" is over a/l continuum
channels.

To obtain the coefficients Cr s, (Z) we note initially
that Eq. (26) has the following form in abstract
operator notation:

oyen

lzz&=Z ls'arz&+z z, ()l z' zr
s&I

az& z)z
(27)

Here P' assumes the value Z„(Z) for discrete states
14""y& Rnd the value 8 for continuum states
l4 "er'&g&. X(Z) is another reaction matrix, which

will be shown later to satisfy the usual integral
equation [cf. Eq. (10)j

where the matrix JK(Z))r r ~ is seen by comparison
of Eqs. (26) and (27) to be given by

(R(z)), , =Z (c "erzIv„, Ic""y&

(c"'y
I
v...Ic "el"'z&. (sl)

y

Note that Eq. (31) gives [E(Z) fr „~ explicitly.
VVe do not have to solve an integral equation as was
done in Sec. II. This results from the representa-
tion we use in solving Eq. (28), as shown in more
detail in the rest of this section. Beforehand, we
note that Eqs. (29)-(31) determ1ne the Cr s, (Z) coef-
ficients, so that now the final-state standing-wave
eigenvector [Eq. (26)] is completely defined. Also
llote tllRt we 111Ry wl'1te Eq. (26) i11 R form wlllcll
emphasizes its resonance structure. That is, fol-
lowing Fano we define an "augmented" discrete
state, denoted by I C "'y+), which includes a con-
trlbutlon from the continuum states, l. e. ,

I
c'"'y+& Ic""y&+-=2 I dh

I
c "cia&

Cr z(Z) = Ur, s (Z) cosa'&, (29)

where Vr )1(Z) is an orthogonal matrix and s&q~ is
a phase shift. These are determined from the
eigenvalue equation analogous to Eq. (11), i. e. ,

+[17(z)), , V, , ,(z) = —&
' (ten~~, )V„,(z),

(so)

x - ~ - &e "erh
I
v .I

e"'y& . (32)

Using this augmented discrete state and the expres-
sion for the Cr s, (Z) coefficients [Eq. (29)], the Ath
standing-wave elgellfllIlc't1011 [Eq. (26)] assumes 'tile

following form:
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open
'

~nn)= 5 e"ern) Z e"'r+)
n

(e"'r~ r...~e'rrn)I o„,,(z)rosre, ,
y y

(33)

Since these two operators span our space in the ap-
proximation that we only consider the configurations
4 ' and C e, they have the closure property
I'D+I'~ = 1. They also have the following standard
relations:

P~l C"'y)= lC
'

y) (alternatively PDP~=Po)

(S6a)

Pc
l

C "eI"E)=
l

C. "eI"E) (alternatively PcPc = Pc),
(s6b)

P c erz) =P
l

c"'y) =0

(alternatively PDPc = PcP/) = 0) . (36c)

Using these projection operators we see that the
properties (34a) and (34b) imply that the submatrices
PDJ(H+F(E)'IPo and PcHPc are diagonal in our rep-
resentation of states. Therefore, in partitioning
the Hamiltonian such that H=H'+ V', we choose

H'= Pn(H +F (E) IPn+ PcHPc . (37a)

Since V'—= H —H' we obtain

V'=Pc V„,PD+ PnV„, Pc —Pn F(E)P/), (37b)
I

in which the resonance denominator [E —E„(E)]is
prominent. We shall use this form of the final-
state eigenfunction in Sec. V to obtain partial and
total cross sections for photoabsorption.

In order to see how H' is defined, let us review
the properties of the discrete and continuum repre-
sentations we obtained in Secs. II and III. These
are [cf. Eqs. (5), (14), and (21)]

&c"'y lH+F(z)
l

c"'y) =z,(z)6„„(34a)
c'"erh) = h 6„„&(8'-h ), (34b)

&C"'ylHlC/"erS) =&4"'yl V„, C'er8), (S4c)

where V„„=H —H -„. The properties (34a)—(34c)
may be described most simply if we use projection
operators to distinguish our final basis states. We
define the operators PD and Pc (for the discrete and
continuum states, respectively) as follows:

(36a)

(s6b)

I

where we have used Eq. (34c), which may be ex-
pressed as I'~ HP~ = PD V„,I'~.

Having defined H' and V' we may obtain K(z) by
taking projections of Eq. (28) and using Eqs. (36)
and (37). This straightforward calculation gives the
following explicit relations for K(z):

Pn K(z)Pc = PDV„„Pc, (Ssa)

PcK(E)Pc = Pc V„,PO, PnV„, Pc, (38b)

PnK(z)Pn = 0, (38c)

PcK(E)Pn= PcVne, P() . (38d)

Note that the matrix (K(z)}, given by Eq. (31), is a.

submatrix of (38b). Also, Eqs. (38a) and (38b) en-
able us to make direct comparison between Eqs.
(26) and (27).

V. BOUNDARY CONDITIONS AND CROSS SECTIONS

In Sec. IV we determined a complete set of stand-
ing-wave eigenfunctions for the eigenchannels A.
These eigenfunctions do not satisfy the boundary
condition for a photoionization process, namely,
that there is an outgoing electron in a particular
observable channel, characterized by the state of
the ionic core and its coupling with the outgoing
electron. [Recall that the observable states of the

ionic core plus outgoing electron were obtained
from the diagonalization leading to the states

~

C"p, , Ef, o) in Eq. (7). ] We must obtain the desired
final-state eigenfunction as a linear combination of
our complete set of standing-wave states, i. e. ,

open

(so)

Here 1)j)~) "' denotes the desired incoming-wave
solution for the (l/, , o) state of the ionic core plus
outgoing electron. The set of coefficients g~

""'

are determined by application of the so-called "in-
coming-wave boundary condition" for the channel
(l/, o), which requires that asymptotically the am-
plitudes for all outgoing waves in channels other
than (l/, , v) vanish.

The asymptotic form of i
Ps)'"" ' is obtained by

using the known asymptotic form of the continuum
basis states (C "eI"E) [given by Eq. (13)] in Eq. (26)
for the state I AE). We thus" obtain

onenonen 2 (/p
lan)

'" -5~ Z Z 0„, —sin[k„(z)r ——,'vi+5„(E)+7/qr+v(()n] U„,.r(E) Ur n(Z) g~(n" ' as x-~,
(40)

where we have used Eqs. (29) and (30) and the de-
finitions of Sec. II. We see explicitly that the inter-
action between continuum channels due to their mu-

I

tual coupling with the discrete states produces the
phase shift my&. To apply the incoming-wave
boundary condition we use the identity sinx
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= (e'" —e'")/2i and require that the coefficients of the

outgoing waves &i. e. , e'") vanish for all channels
other than (p, o). We thus obtain the following equa-
tions:

open open

5 P t (««(«&r+e&&ft (z) ~ ((««««-l

A

= 5„.„5... , (41)
which have the solution

open
((««««& Q 8 ««4g ft (z)e '(((«&r ft (z) (42)

I'

Having thus obtained the exact incoming-wave eigen-
functions of the total Hamiltonian we are ready to
compute cross sections.

The dipole amplitude for transition from an initial
state, which we denote by &(]&0'„ to the observable
channel (i(, o) is given by

((«Ir« I(.&'"" '=& & I(( Ir« I«"«~& & &(«Ir «;I+"'«& ~ ~ ~, (~"«I «...Io'«&&}
y )

x Ur ~(Z) (cos((y&I)X&('"" ' . (43)

Note that the dipole matrix element &(1&015;;r;14 'y+)
is probably only slightly affected by the continuum
contribution implied by "+" [cf. Eq. (32)]. This is
because, as discussed&& the Introduction, in the rare
earths the dipole matrix element for the transition
4d-4f is very much greater than for the transitions
4d- &f. Furthermore, we clearly see that the tran-

I

sition matrix element has resonances at Z = Z, (Z).
[Note also that we have used the length formula for
the transition operators, as required when solving
for the exact eigens tates of a, nonlocal Hamiltonian. "]

For completeness, we give the dipole amplitude
for transition to alevel of the configuration 4 ' lying
belongs the onset of any continuum channel. That is,

'(«Ir ";I&"(& r «&( I& «;I«'««'8&
&&

&~"«& I«...l~""v&}&,(~,&,0 t, g g

where lZ, ) is obtained from Eq. (25) and the AB(Z()
are obtained from Eqs. (21') and (24). We see that
the 14 "'P) states have a small continuum contribu-
tion and are superposed with coefficients A(((Z,).
The oscillator strength for this transition is given
by

(45)

where Z, is the energy of the ground state &(1&0!.

Returning to the autoionization region, the partial
cross section for transition to the channel ((((, o) is
given by

8
(&«, s-& v e (z z ) y Ip r Iy

)((««««-&

i

(«)
where the dipole matrix element is obtained from

Eq. (43). The total cross section for transition to
all oPen channels at energy E is given by

(z-z, ) 2 &q, IZ r, IAz&

(47)
where we have made use of the relation

t(p. , fy- ) —~a, x' ~

JL yV

For simplicity we now identify the eigenvectors of
the matrix (If(Z)]by [cf. Eq. (30)]

I
e, (z))=Q,

I
c "8r z& v„,(z) .

Using these new continuum states and Eq. (33) for
the standing-wave eigenvector for It(,Z), Eq. (47)
may be written as

ma open 3

(z - zo) ~ &&Ol
& r

I
4'.«»+~ &&oI& r(I4"'~+& z «&4'""~

I p-. l
4'(z»0

(49)

Using Eq. (31) we wl'1te Eq. (30) 111 tile llew co11-
tinuum representation as

y y

= —(( '
tan((cp&( ~ (50)

I

Following Fano we define

&4,(z)Iv...I4 'y& (c 'yI v„„i~,(z)&

-=—(( ' tan((y&1, (51)
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where y~ is the phase shift that would be obtained
if there were only a single discrete resonance.
Multiplying and dividing the second term inside the

I

modulus in Eq. (49) by (@2(E)!V„„l4 'y) we obtain
the following parametrized form for the total cross
section:

7T e oyen

o roT= — (E —E,) 5~ (g, ~Q r; ~4~(E))2cos22p~ 1-5q~tanvy~ ~2
3 mc A i y

(52)

where we have defined

((,I);r; I 4 "y+)
w(t]olg; r&14g(E)) (4~(E) I v„,}4 '

y)

Note that Eq. (52) represents an incoherent sum
over the partial cross sections for transition to the

states 14'~(E)) and that each partial cross section
has exactly the form of Fano's parametrized cross-
section formula for the case of many discrete states
interacting with a single continuum channel. Since
Eq. (52) involves an incoherent sum over the A

states, the total cross section does not go to zero
each time a resonance is crossed (i. e. , each time
the Ath partial cross section has a zero as tanmcp~

goes from —~ to + ~). Note further that q2 is large
since the dipole transitions 4d-4f are much
stronger than 4d- af

One may also easily see from Eq. (52) that the
total cross section does not diverge when tangly&
does diverge. This is because cos gp~
=(1+tan 2cp~) = [1+(5',„tanager") ] ' and hence, the
total cross section near a resonance is given by

2.:=:„(E)= -, , [E,(E) -E.]

x + (go~S~ r, le~(E)) (q~) . (54)

Substituting Eq. (53) for qz in Eq. (54), we find that
the cross section at a resonance has the magnitude

4 vae
oe'=z„(E) =

3 [E,(E) E2]—
(Po!X, r, I

e""y+ )
'

(55)
a(% (E)1 v„, lc 'y)

Note that if we define a partial width for decay of the
resonance y to the continuum channel A as

r„-=2~(c "'y
~
v„..~

4, (E)&',

and define the total width for the decay of the reso-
nance y as I'„—= $2r„~, then we see that the magni-
tude of the cross section at the resonance y is in-
versely proportional to its total width, i.e. ,

roT (E)
4 1T 8 If [E (E) E ] (golf r 14 y+)
3 mc

(57)
Note that the calculated resonance peaks do not,

in general, occur at the resonance energy. This
may be seen for an isolated resonance in Fig. 1 of

I

Ref. 6. However, since our q values are fairly
large, we do not expect the calculated peaks to be
too far from the calculated resonance energies.

VI. SUMMARY AND PRESCRIPTION FOR
NUMERICAL CALCULATIONS

In this section we outline the step-by-step proce-
dure necessary to calculate photoabsorption cross
sections for the rare earths and, probably, for the
transition metals and other elements for which the
effect of the potential barrier is crucial. We as-
sume a complete set of independent-particle-model
wave functions. From these, linear combinations
of Slater determinants are to be formed in some
coupling scheme (usually L-S coupling) for the con-
figurations 4"'~ and 4 "&f. The resultant sta.tes are
denoted by 14""n) and i 4 "X, af, p), respectively,
where the Greek letters identify both the states and
the coupling scheme. Our prescription is as fol-
lows:

(i) Diagonalize (4 "'o.' IH14 'o), as in Eq. (5).
Denote the eigenvectors by 14 '8) and their ener-
gies by Ez. Use the methods of theoretical spectro-
scopy discussed in detail by Sugar. '

(ii) Diagonalize (4 A.', e.'f, p'! H';4 "X, ef, p). This
is accomplished in two steps. First, diagonalize

(C "~,ef, p ~H...+V,:.~4 ~, &f, p)

and denote the eigenvectors by |4 "p,, ef, o), as indi-
cated in Eqs. (6) and (7). Second, solve Eq. (10)
for the matrix elements

(C "p,', e'f, o'
~

fc(a )
~

C "p, ef, o),
and then diagonalize (K($)j. ..,. .. according to Eq.
(11). One is now able to construct the eigenvectors
of the matrix

(4 "x', e'f, p'
~

H
~

4 "A., tf, p)

according to Eq. (9). We denote these eigenvectors
by ie"er8).

(iii) Obtain the resonance energies. The discrete
energies E2 obtained in (i) are shifted by a second-
order discrete-continuum-discrete interaction rep-
resented by the matrix F22. (E), which must be con-
structed according to Eq. (20). Diagonalize the
matrix E2622. +F22, (E) as indicated in Eq. (21), and
denote the eigenvectors by ic 'y) and the eigen-
values by E„(E). Note that these eigenstates and
eigenvalues depend on the energy F- of the final-
state wave function [Eq. (15)]. Solve Eq. (23) to ob-
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tain the experimentally observable resonance ener-
gies. Alternatively, platy=E, (E) vs E; the inter-
sections of this curve with y = Iz give the experi-
mentally observable resonance energies.

(iv) Determine the coefficients Cz ~(~) = Ur, ~ (~)
cos my~. First, construct (Z(E)]r z, ~ according to
Eq. (31). Second, diagonalize (K(E)jr z, ~ according
to Eq. (30).

(v) Form the augmented discrete states 14' y+)
according to Eq. (32).

(vi) Partial cross sections for the (p., o) channel
are calculated from Eqs. (43) and (46), where the
coefficients y~"" ' are obtained from Eq. (42).
Total cross sections are calculated from Eq. (49),
using the continuum representation defined in Eq.
(48). The total cross section at a resonance energy
is calculated from Eq. (55) ~ The partial widths at
a resonance energy are calculated from Eq. (56).

With regard to step (i), calculated level separa-
tions for the configuration 4d 4f"' tend to be larger
than experiment. This problem, due to the neglect
of interaction with highly excited configurations, is
well known for other rare-earth spectra and is
usually bypassed by a fitting procedure. A theo-
retical justification for the fitting procedure re-
mains to be given. Configuration interaction calcu-
lations for level separations are being attempted,
but convergence of the calculated level separations
to experiment is very slow, since many configura-
tions must be included. Concerning configuration
interaction, it should be noted that the same Slater
integrals that split the 4d 4f"' terms by about 20 eV
appear in the interaction of the 4d' 4f ground con-
figuration with multiply excited configurations such
as 4d 4f '. It is known that similar multiply ex-
cited configurations (e.g. , 4d'oft'f) are important
in calculating the 4d-shell photoionization cross
section in xenon. ' However, while interaction of
the configurations 4d' 4f" and 4d 4f ' with highly
excited configurations may be accommodated within
the framework of this paper, we have not dealt with
these problems.

In conclusion, it should be pointed out that the
theory presented here should be applicable to other
similar experimental data for which the potential
barrier plays a crucial role. We particularly have
in mind the 3P-shell photoabsorption spectra in the
transition metals, for which such data exist. In
this case the potential barrier is not as well de-
fined. Nevertheless, the 3d orbit overlaps the 3P
orbit, whereas higher d orbits do not. The bulk of

I

the absorption strength is thus concentrated in

3p - 3d transitions. Other examples exist for which
the cross-section formulas derived here should ap-
ply. The partial cross-section formulas would be
useful in interpreting the results of future photo-
electron spectroscopy experiments. They would
also serve as inputs for future photoelectron angular
distribution calculations. Also to be noted is that
electron scattering experiments using rare-earth
or transition-metal targets should give rise to
spectra that are similar to those for photoabsorption
when the electron's energy is sufficient to excite the
4d or 3p shell.
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APPENDIX: SUM RULE FOR DIPOLE TRANSITIONS

OF TYPE l.'z' P~ f"z"l~"f c f
We present here a sum rule for transitions from

a closed shell to a partially filled shell ~ Our re-
sults may be described simply by application to the
case of 4d-shell photoabsorption in the trivalent
rare earths. We obtain the sum of line strengths 24

for transitions from a Particular level of an initial
configure. tion 4d' 4f" to all levels of a final config-
uration 4d 4f '. The summed line strength is
shown to be independent of the initial level of the
4d' 4f" configuration and proportional to the number
of vacancies in the 4f" shell (i. e. , 14 N). The ex--

clusion principle is thus adduced as the reason for
the observed decrease of 4d photoabsorption
strength in the rare earths with increasing atomic
number. The calculation of the sum rule follows.

We consider transitions from a closed shell to a
partially filled shell, i. e. , (n;l;) "' (n/l/)
—(n;I, )

'&' (n/l/)"", where l, (l/) is the single-parti-
cle angular momentum in the initial (final) subshell.
The state of the filled subshell l4'~'2 is 'S, and the
state of lf is identified by the quantum numbers
MLS, where n denotes any additional quantum num-
ber necessary to specify the state uniquely. Sim-
ilarly, the subshell l&'~' is in a doublet l& state, and
the state of l&

' is identified by the quantum numbers
PI.S. All other subshells are assumed closed and
hence are ignored. We may write the matrix ele-
ment of the qth component of the dipole operator
as"

(I; ' (00) I/(nLS) LSD lZ/r/C, ' '(A/) ll "'(I s)l/'(BLED) L'S''JM')

= (n«
I

~ ln/I/) «'l l

C"'l
l &/) («;+»z/' (N+ I)z/' (~/»S

I & I/ 'HLS)

[Lz]z/2 L]I/2 [S]z/2
[z]z/s [I ]z/2 [y]"' L, L L ss
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x (- l)r'+$,i+s ~ f~j'" [z 1"' I'
} lAiI,M' q -M &S L' L

In Eq. (Al), (n, l, Ix In/l/) is the radial matrix ele-
ment; (l; I I

C'"
', I l/) is the reduced matrix element

of the spherical harmonic C,"'; (4l;+ 2)'/$(N+1)'/$
is the product of "weight factors" arising from the
(4l;+ 2) equivalent "interacting" electrons in the
initial state and the (N+ 1) equivalent "interacting"
electrons in the final state2'; the next factor is the
coefficient of fractional parentage necessary to de-
couple a single electron from the subshell l& ", the
6-j coefficient

L'LL

[J]1/ $ [Jg ]1/ 2

S L' L

is, to within a phase, the line strength factor; the
factors such as [J]' '-=[2J'+1]' arise primarily be-
cause of the use of the more symmetric Sj symbols
rather than Clebsch-Gordan coefficients '; and,
finally, the phase convention used is that of Ref. 25.

We now wish to sum the line strength over all
final-state quantum numbers. For compactness,
we specify the configurations by the following sym-
bols:

is proportional to the amplitude for recoupling the
angular momenta of the system; the 5 function 5zz.
arises because the dipole operator is spin indepen-
dent; the 3j symbol

I';(nI S) =—l &' (00) l/" (nLS)LS,

I'/(PLS, L'S') = l "'(l;—,') I/'(PLS)L'&'

The line strength is then defined as

(A2)

is proportional to the amplitude for vector addition
of the photon and the total initial angular momen-
tum J; the factor

S(r,J;r,J')-=Z (I',.JM~Z r,C,'"(n, ) r,J M')
N, q, N'

(AS)

and the sum of S(I',J; I'/J') over all final-state quan-
turn numbers may be reduced to

Q S(r, (nLS) J; r (PLS L'S')J')= ' ' "' ' ' ' ' 5 [L] [S] (N+1) (l"nLS~)l 'PLF)$ (A4)+ yQ y

In obtaining Eq. (A4) we used Eqs. (A3) and (A1) as
well as standard results for summations over 3j
symbols and 6j coefficients. The sum over the
daughter terms in Eq. (A4) is obtained from the
relation"

Z [L ] [S] (N + 1) (l/ n LS
~ j l/

'
PLS )

gL S

x(iN' pLS (~ l,"n LS)

= 6„„,[L] [S] (4l + 2 —N) . (A5)

Hence, the desired sum rule is

(n;l; Ixlnflf) (l;I IC'"
I Ilf)

$/ $ J ~ $I jt ' 3(2l/+ I)S 1 (J; I'/J' =

x(4l/+ 2 —N) . (A6)

The sum rule in Eq. (A6) is independent of the
initial-state quantum numbers L and S and is pro-
portional to the number of vacancies 4lf+ 2 —N in

the initial partially filled shell. One may also veri-
fy that using intermediate coupling for the initial and
final states in Eq. (A1) leads to the same result as
(A6), with only straightforward modifications of the
above procedure. Note that in comparisons of ab-
sorption strength for configurations differing in the
number of vacancies in the I& subshell the radial
matrix elements (n;l; l sin/l/) will, in general, dif-
fer. Hence, the relation between total absorption
strength and the available number of vacancies is
not necessarily linear.

Extension of the above sum rule to the general
case of l; l& - E; l&' transitions is difficult. While
the calculation of the dipole matrix element by the
methods of Ref. 25 presents no problem, the sum-
mation over final-state quantum numbers is quite
complicated because, seemingly, one cannot avoid
sums over angular momenta appearing both in nj
symbols and in coefficients of fractional parentage.
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