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LJ did, in fact, see a small proton polarization en-
hancement using a single crystal of LMN: Ce in a rotating-
sample spin refrigerator. However, in a polycrystalline
sample, very few of the crystallites will be oriented such
that the crystal c axis ever becomes parallel to H.
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The 14.4-keV p rays from Co57 sources were scattered on different crystallographic planes
of various Si and Al crystals. By using nuclear resonance absorption it was possible to sep-
arate the elastic and inelastic components of the scattered beams. An analysis of the nuclear
resonance absorption peak on the beam diffracted by the {555)planes of Si and a double Bragg-
scattering experiment sUpport the expectation that the elastic component of the scattered beam
is due to Bragg diffraction. The angle dependence of the relative intensities of the inelastic
parts at various Bragg peaks of Si and Al crystals, corrected for the contributions of Compton
scattering, were in satisfactory agreement with the angle dependence calculated on the basis
of the lattice wave theory of thermal diffuse scattering. These calculations were simplified
by assuming that the crystals were elastically isotropic and that the reciprocal lattice volume,
over which the thermal scattering was integrated, had either a spherical or cylindrical shape.
Good agreement between theory and experiment was found for the temperature dependence of
the thermal scattering intensity at the {444) and {555jdiffraction peaks of silicon, between 80
and 600'K.

I. INTRODUCTION

The x-ray measurements of the integrated inten-
sities of Bragg reflections can be easily corrected
for the contributions of fluorescence and Compton
scatterings, because the intensities of these scat-
terings vary slowly in reciprocal space and can be
simply subtracted. The first-order thermal dif-
fuse scattering (TDS) instead peaks strongly at the
reciprocal lattice nodes, for vanishing energy and
momentum of the acoustic phonons, and can be only
partially eliminated by the usual background cor-
rection. This poses a problem when accurate values
of the diffracted intensities are required; in fact,
the relative amount of the TDS depends on the ge-

ometry of the scattering experiment and increases
with the order of reflection. An evaluation of the
TDS correction is quite difficult in practice, as
shown in a review paper by Cochran. A number
of methods have been recently developed by making
simplifying assumptions about some of the various
parameters which can affect the intensity contribu-
tion of thermal scattering to the Bragg peak. 2

However, a comparison of the results of the calcu-
lations with experimental data is missing. The
change in energy of the TDS radiation is only a few
parts per million and there is no hope to eliminate
this inelastic contribution from the elastic diffrac-
tion peaks by using the conventional techniques of
x-ray diffraction.
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The possibility of using a method of thermal neu-
tron elastic diffraction to separate the background
of thermal scattering from the Bragg peaks was
examined. This method used a triple-axis spec-
trometer of the type employed in the determination
of phonon-dispersion curves. Unfortunately, the
energy resolution of the spectrometer was of the
order of 1 meV, so that only the contributions of
the scattering by phonons of an energy greater than
1 meV were eliminated. The intensitypeakunder the

Bragg line, due to scattering by low-energy acoustic
phonons, was not removed from the Bragg inten-
sity. '

A solution of the above problem is given by the
application of the Mossbauer effect. The recoilless
emission and absorption of low-energy y rays,
combined with the high selectivity of the phenomenon
of nuclear resonance absorption, permits an energy
resolution as small as a few 10 eV. Other authors
have applied such a method to the separation of the
thermal diffuse scattering at the {200)and (400)
Bragg peaks of a LiF crystal. We have previously
described the application of the same technique to
study the (444 j and (555) reflections of silicon. '
In the present work the technique has been applied
to the investigation of the angle and temperature de-
pendence of the TDS intensity for various reflec-
tions of Si and Al.

II. EXPERIMENTAL METHOD

The experimental technique which was described
in a previous paper' is briefly summarized below.
Only the most important modifications and some
considerations on the precision of the scattered-in-
tensity measurements are discussed with some de-
tail. Experiments were done in both the Bragg
(reflection) and Laue (transmission) geometries.

Figure 1 illustrates the geometry of the scatter-

CRYSTAL

FIG. 1. Scheme of the geometry of the scattering ex-
periments in the symmetrical Bragg case. S andA are
the Mossbauer source and absorber, respectively. S~,
the rectangular slit on the incident beam, has dimensions
about equal to those of the active area of the source. R
is the scintillation detector.

ing experiment in the Bragg case. Two Co" Moss-
bauer sources, of 100-mCinominal activity, were
used for the present work. One source was Co'
diffused in a 50- p, m-thick copper foil; the other
was Co' diffused in a chromium platelet. The ac-
tive area of the sources was rectangular in shape,
0.5 cm wide by 1 cm high. The absorber was a
foil of 310 stainless steel, 98% enriched in Fe",
with a thickness equal to 1 mg/cm2 of Fe". The
advantage of the source with the chromium matrix
is that source and absorber are very close to the
peak of the nuclear resonance when both of them
are at rest. The use of mechanical or electro-
mechanical transducers can thus be avoided, the
experimental technique is considerably simplified,
and there is an appreciable reduction in the count-
ing times with the absorber at resonance. This
time gain is particularly attractive because the in-
tensities of the scattered beams are very weak. In
the case of the source with the copper matrix the
absorber is at resonance with the source when
driven with a velocity of +0.035 mm/sec (the posi-
tive sign refers to motion of the absorber away
from the source). The detector was a Nal thallium-
activated scintillation crystal in the form of a disk,
about 2. 5 cm in diameter and 0.02-0.03 cm thick.
Although a single-channel pulse-height analyzer was
used to discriminate the photons of 14.4 keV, a
thin scintillation crystal was necessary in order to
reduce the background (mostly due to the y rays of
energy equal to 122 keV). The detector was shielded
with lead against cosmic radiation. The ambient
and electronic background was less than 3 counts/
min.

The separation of the y rays which are elastically
scattered by the crystal from those which suffer
inelastic scattering is done by using the following
procedure. Let I„(28) and I„(2S)be the intensities
of the y rays scattered at the angle 20 with source
and absorber out of and in resonance, respectively.
The following ratio is proportional to the fraction
of recoilless y rays which are scattered elastically
by the crystal:

I (as) —I,(as)
f.(as)

The corresponding ratio Po on the direct beam from
the source (with the crystal removed from the beam)
is proportional to the fraction of y rays which un-
dergo recoilless emission and resonant absorption,
and is a characteristic of the source-absorber com-
bination. The expressions Pz, /P& and 1 —Pae/P&
are, then, the fractions of the incident radiation
which are scattered elastically and inelastically,
respectively, by the crystal. The validity of these
statements was verified experimentally, as ex-
plained in Sec. III. The intensities I„and I,„of
the elastic and inelastic scatterings are given by the
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following formulas:

p~ I„(2e) I~-(2e)

0 0

f.(2e) f,(2e)
P t P0 R 0

E„2g p

(2)

where t and tR are the counting times with the ab-
sorber out of and in resonance. The statistical er-
ror in a number of counts N was taken equal to
y WN. It was verified that different measurements
of the same quantity did satisfy the statistical ac-
curacy rule for the number of counts. It was also
assumed that Pp is known with great precision,
since there is no time difficulty in collecting high
numbers of counts on the direct beam. Let us first
consider the contribution to the error M„by the
number of counts with the absorber out of resonance.
It is clear from the above formula that the time
t necessary to obtain the same contribution to the
error M„ is inversely proportional to Pp for various
source-absorber combinations, other factors, such
as the source activity, being equal. The contribu-
tion to M„by the number of counts with the ab-
sorber in resonance is more complex, since I~(2e)
depends on both the value of Pp and the scattering
phenomenon. We will consider only two extreme
cases. When the scattering is entirely inelastic,
tR is proportional to the inverse square of Pp as
is t . If all the scattered intensity is elastic,

Iq„= 1 — - I„20 =I 28 -I„.
0

In this type of work the replacement of the x-ray
tube with a Mossbauer source poses difficulties
with respect to the counting rate. At the Bragg peak
for high-order reflections and in regions away
from the nodes of the reciprocal lattice, the scat-
tered intensities are very low. For instance, at
the boundary of the Brillouin zone, along the line
connecting the (220) and (440) nodes of the recipro-
cal lattice, the intensity of the 14.4-keV radiation
is of the order of 3-5 counts/min (according to the
age of the source). Therefore, one should try to
optimize all the factors relevant to the measure-
ments of the scattered intensity, such as the total
and specific activities of the source, the combina-
tion of the source and the absorber, and the choice
of the detector. Some of these problems and their
potential solutions are discussed by other authors.
We will examine here the precision which can be
obtained in the determination of I y and Ig The
errors &I„and &I,„due to the statistical error
in the number of counts, which are accumulated
to obtain I and IR, are given by

ts is proportional to (1 —P,)/P, . Therefore, one
should try to use source-absorber combinations
with a value of P, as high as possible. For the
source of Co in the copper matrix, Pp was equal
to 0. 6085 x 0.0018 and decreased to about 0.5989
+0.0023 after about 8 months of use. The source
with the chromium matrix had originally a value
of Pp =0. 5740 +0.0027, but a constant increment of
0. 27/o every 10 days was observed. This slow
increase, the origin of which is not known, was
periodically checked and taken into account when
elastic and inelastic intensities scattered by the
crystal were evaluated.

The above figures of Pp are average values over
the active area of the source and the region of the
absorber bathed by the direct beam. Since it was
found with a previous Co~~ source in a copper ma-
trix that Pp did vary for different regions of the
source, it could be argued that local variations of
Pp due to inhomogeneities of the source and of the
absorber might affect the value of I„and, con-
sequently, that of I,„. It can be shown that this ob-
jection is not valid provided that the elastic scat-
tering power does not vary inside the region of the
crystal bathed by the incident beam. Such a re-
quirement was to a good approximation verified in
all cases taken into consideration.

Three intensity measurements were done for each
angular position of the crystal. One measurement
was done without absorber, a second one with the
absorber inserted in the scattered beam (and driven
at resonant velocity in the case of the source in the
copper matrix), and a third with an Al filter suffi-
ciently thick to absorb all the 14.4-keV radiation.
The last measurement, corrected for the attenuation
of the hard radiation by the filter, was used to sub-
tract the background from the other two intensities.
The measurement with the absorber in the beam
was also corrected for the photoelectric absorption
by the absorber. This correction was determined
by measuring the intensity of the direct beam trans-
mitted through the absorber driven at infinite
velocity, and was smaller than 15% of the intensity
of the beam, with the absorbers used in the present
work. All three measurements mentioned above
were normalized by correcting them for the radio-
active decay of the source. Finally, the cosmic
and electronic background was periodically checked
and deducted from each measurement.

Four different silicon crystals were used. Two
of them (I and II) were lamellas cut from P-type
(boron-doped) crystals of electrical resistivity
equal to 20 and 6. 5&10 Qcm, respectively, and
with dislocation densities between 10' and 10 lines
per cm~; the growth axis of the crystals was (110)
and the surfaces of the lamellas were cut perpen-
dicularly to this axis. The lamella which was used
for the measurements in the Laue-transmission
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geometry was about 0.052 cm thick and was cut
from the same crystal as lamella No. II. Another
lamella III had surfaces of the (111) type and was
cut from an iV-type (phosphorous-doped) crystal,
grown with the axis parallel to a (111)direction,
of electrical resistivity equal to 12 Acm, and with
less than IO' dislocation lines per cm2. The fourth
crystal, which was used for the determination of
the nuclear resonance absorption peak on the scat-
tered beam and for the double Bragg scattering
(see Sec. Ill), was grown with the axis parallel to
a (111)direction, but its type and dislocation con-
tent were not known. All the silicon samples were
chemically polished in CP-4 reagent. The alumi-
num crystals were lamellas with faces parallel to
the (100), (110), and (111)planes, respectively.
These lamellas were chemically polished after
cutting by spark machining from bigger crystals of
a purity better than 99.99%.

The crystal lamellas were large enough to in-
tercept all the incident beam at the scattering angles

used in the experiment. In many cases the scat-
tered intensities were measured as a function of the
angle between the incident beam and the crystal,
which was rotated around the goniometer axis (see
Figs. 2 and 3); the source and the counter were
set at the scattering angle 28~, equal to twice the
Bragg angle for the reflection of interest, H-=h,

Whenever the inelastic intensity only was
needed, the measurements were done at the maxi-
mum of the Bragg peak, rather than for many set-
tings of the crystal angle.

For silicon, intensities were also measured in
the temperature range 80-600 K, for the two re-
flections (444) and (555). For this reason the
crystal lamella was in a vacuum mounted on a metal
frame, which was attached to a copper finger. This
finger was either cooled by a coiled tubing where
liquid nitrogen (or cold nitrogen vapors) was cir-
culated, or heated by a small. electric furnace. The
temperature was held constant within + 3 'K during
each measurement.

200
C3

FIG. 2. Scattered intensities vs
the glancing angle between incident
beam and the surface of a silicon
crystal, (220) reflection, Bragg ge-
ometry, Filled circles and open
triangles are experimental points
and correspond to the curves of I„
and I& (Mossbauer absorber out of
and in resonance, respectively).
Open squares vyith the error bars
@&ere obtained from the two above
sets of experimental data and corre-
spond to the curve (dashed) of the
inelastic intensity. The straight
line under the curves is the hard
gamma and cosmic background.
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Integrated intensities of the elastic diffraction
peaks were obtained by subtracting the area under
the inelastic curve from that under the total inten-
sity I, in plots such as those shown in Figs. 2 and
3. In many cases, however, the integration was
done directly during the experiment. The crystal
was rotated at a speed of about 1'/h through the
whole angular range of the Bragg reflection by using
a synchronous motor, and the total number of
14.4-keV photons scattered by the crystal was
counted in the two cases, that is, with the absorber
in and out of resonance with respect to the source.
Absolute values of the elastic integrated intensities
were obtained by measuring the intensity of the in-
cident beam attenuated by calibrated Al filters.

The linear absorption coefficient p, of the 14.4-
&eV (& = 0. 8602 A) radiation in silicon was found to
be p, = 25. 8 +0.8 cm-' by measuring the attenuation
of the incident beam in three single-crystal lamellas.

This value is in good agreement with that (p. = 25
cm ) derived from the calculated cross sections
for the photoelectric effect.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figures 2 and 3 illustrate the results obtained
for the {220}and {444}reflections by silicon, re-
spectively. The dashed curves, which have a peak
at the Bragg angle, were derived from the top curve
of I„and the middle curve of I„by applying formula
(1) for the I,„. The base line corresponds to the
background of hard gamma and cosmic radiations.
In Fig. 3 the straight dashed line corresponds to
the intensity of Compton scattering, which was cal-

7culated by using an expression previously reported
and the values of the incoherent scattering function
given by Freeman. Figure 2 illustrates the degree
of precision in the inelastic intensity curve for a
low-index reflection of a nearly perfect silicon

140

100

80
P4

0

FIG 3 Explanation is as
«r Fig 2 except that the
curves refer to the (444) re-
flection. The straight bro-
ken line is the intensity of the
Compton scattering calculat-
ed as explained in the text.

80
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FIG. 4. Nuclear resonance

absorption line with a Co5'

source in a copper matrix and
a stainless-steel absorber en-
riched in Fe . Filled circles
and open triangles are experi-
mental points corresponding
to absorption measurements
on the incident beam and on
the beam scattered by the(555)
planes of a Si crystal, respec-
tively. The two sets of points
were normalized as explained
in the text.
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crystal. As shown by formulas (1) and (2), the
relative precision of the inelastic intensity value
is poor when most of the intensity is elastic. Al-
though one can accumulate a great number of counts
in order to determine I„and I„with great precision,
confidence in the value of I,„remains small, un-
less all the possible systematic errors are elim-
inated. The same conclusion applies to the value
of the elastic intensity I„when most of the scattered
intensity is inelastic.

The expression of the elastic and inelastic inten-
sities given by the formulas (1) is based on the as-
sumptions that (a) the nuclear resonance absorption
peaks of the incident and scattered beams coincide
on the energy scale, and (b) the resonance absorp-
tion lines of the incident and scattered beams have
the same shape and width. These two points were
checked by determining the resonance absorption
line for the scattered beam at the peak of the (555 j
reflection by a silicon crystal. The results are
reported in Fig. 4, together with points correspond-
ing to an absorption experiment on the direct beam.
The data on the scattered beam were normalized as
follows: The value of I„(28) -I„(28)/I„(28), where
I„(28) is the intensity transmitted at the relative
velocity v of the absorber, was multiplied by Pe/Ps,
in order to have two sets of points directly com-
parable. All the points superimpose on a single
absorption curve. This fact proves that there is
no energy shift or broadening for the recoilless
radiation scattered by the crystal.

In the following all the elastic intensity corres-
ponds to the diffracted (Bragg) intensity because
elastic intensity was found only at the angle of the
crystal reflections (see Figs. 2 and 3). A direct
proof that the Bragg intensity is elastic was ob-
tained by a double Bragg-scattering experiment,
the geometry of which is illustrated in Fig. 5. A
groove was cut into a single crystal of silicon in

such a way that the surfaces of the groove were
parallel to (111)planes. The intensity of the
beam, after a double (444) reflection on the walls
of the groove, was measured with and without the
stainless -steel absorber inserted in the beam. This
intensity was considerably lower than the elastic
intensity after a single reflection because the crys-
tal was not perfect. The double scattering acts as
a filter for the intensity due to phonon scattering,
and the twice-reflected beam is made only of con-
tributions by Bragg diffraction. In fact, the inten-
sity of the beam which is diffracted the first time
by the crystal is of the same order of magnitude as
the intensity of the incident beam, within the few
seconds of arc corresponding to the Bragg reflec-
tion, whereas the intensity of the beam scattered
by the phonons is, instead, six or seven orders of
magnitude smaller than the incident beam. After
the second scattering, the intensity of the phonon
scattering is negligible with respect to that of
Bragg diffraction. The result of this experiment
was in agreement with the expectation because it
was found that P28=0. 6125+0.0211 for the doubly
scattered beam, which is in very good agreement
with the value of Pa=0. 6085 +0.0018. This proves
that all the diffracted intensity was elastic.

A. Integrated Intensities of Diffraction Peaks

Experimental data on the integrated elastic in-
tensities in the Bragg case were obtained as ex-
plained in Sec. II. In order to correct for slight
asymmetries of the reflecting planes with respect
to the surface of the crystal, all the measurements
were repeated twice for two positions of the crys-
tal in the beam. In the second position the crystal
was rotated 180' around an axis perpendicular to
the surface. The reported values of the elastic in-
tensities are the averages of the data derived from
the two sets of measurements. The results are
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TABLE II. Experimental and calculated values of the
Bragg intensities for various reflections of aluminum
crys tais.

I'IG. 5. Geometry of the double scattering experiment
on a Si crystal. The experiment was done with the crys-
tal set at the peak of the {444) reflection. S, A, and it
are the Mossbauer source, absorber and detector, re-
spectively. C& and C& are parts of the same crystal.

222
400
333
600
444

Experimental

13.7+0.20
7. 19+0. 15
2. 46 +0. 05
0. 934+0. 027
0. 596 + 0. 032

0.728
0. 5145
0.2332
0. 1328
0. 08078

13.41
7. 853
2. 349
1.079
0. 5077

Bragg intensity
(10')

C alculated
Perfect Mosaic

TABI,E I. Experimental and calculated values of the
Bragg intensities for various reflections of silicon crys-
tals. Symbols of the samples refer to the roman numer-
als given in Sec. II.

Bragg intensity
(10')

hkl
200

Crystal
symbol

Si I
Si II
Si IIa

Experimental

2. 32 +0.25
2. 09 + 0.20

16.4 +0. 09

Calculated
Perfect Mosaic

l. 624 39.77

Si III 0.494 +0. 017 0. 3901 4. 383

440 Si I
Si II

0.798+0. 019
0.599 + 0. 018

0. 4642 6. 621

444

660

555

Si III

Si I

Si III

0.300 + 0. 016 0.2723 3.041

0. 247+ 0. 147 0. 1372 1.262

0. 120 + 0. 013 0. 08685 0.5809

given in Table I for the silicon crystals and in
Table II for the aluminum crystals. The errors
are calculated by applying the law of error propa, -
gation to the statistical error pertaining to each
measure. The calculated intensities of the perfect
and mosaic crystals are also reported in the tables
for the sake of comparison. The formula for the
perfect crystal was that given by Hirsch and
Ramachandran. ' The values of the atomic scatter-
ing factors and of the dispersion corrections used
for the calculations were those by Cromer and
Waber and by Cromer. ' The Debye temperatures
were pH = 543 ' K for Si ' and P~ = 395 ' K for Al. "
In the case of the silicon samples the experimental
intensities are somewhat higher, but much closer
to the values of the perfect crystal than to those of
the mosaic crystal. Sample No. IIawas an exception
because measurements were intentionally done with
the surface as cut by the diamond saw, with no
chemical polishing. In the case of Al, instead, the

experimental intensities are very close to those of
the mosaic crystal.

B. Intensity of Phonon Scattering at Bragg Angle

In the present work the relative values of the in-
elastic intensities at the maximum of the Bragg
peaks are considered. Their behavior with the or-
der of reflection and with temperature (in the case
of silicon) is compared with that derived from the
lattice wave theory of lattice vibrations. Absolute
values of the phonon scattering will be discussed
in a future paper. The experimental inelastic in-
tensities were corrected for the effect of slight
asymmetries of the crystallographic planes with
respect to the surface of the crystal, as explained
above. An example of the effect of the asymmetry
is illustrated in Fig. 6, where the inelastic inten-
sity corresponding to the t444 j reflection is re-
ported as a function of the aximuthal angle. The
full line in the figure corresponds to the behavior
calculated for an angle of 2' between the surface
and the $111)planes. A back-reflection Lane
photograph showed that this angle was, indeed, less
than 3'.

The contribution of Compton scattering, which
was calculated by using the Freeman incoherent
functions for Si ' and Al, was subtracted from the
total inelastic intensity unless otherwise specified.
This correction amounted to a few percent at most
in all the cases described in this paper.

Errors in the intensity of phonon scattering which
are reported in the figures were calculated as ex-
plained above, in the case of the elastic intensities.

The formulas employed to ca1culate the intensity
of phonon scattering are those of the lattice wave
theory of thermal vibrations; they can be found in
the books by James' and by Warren. ' The most
important formulas are briefly summarized below.
The intensity of one-phonon scattering (first-order
TDS) is the only one of interest for all the cases
examined in the present work. On the assumption
that the kinematical theory of diffraction applies
to the phonon scattering, the first-order TDS for
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FIG. 6. Inelastic intensity vs the
azimuthal angle (rotation around the
surface normal) in the Bragg geome-
try, for the (444) reflection of Si. The
solid line was calculated for an angle
of 2' between lattice planes and sur-
face of the crystal.
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Bravais lattices is given in electron units per
atom by the following formula:

(&rne).„=If'al 'e (8)

where f He is the atomic scattering factor of the
crystal with the atoms at rest, for the reflection
H-=h, k, l; e H is the square of the Debye-~Valler
factor, with 2M„=J„.G;, the sum being
extended to the entire Brillouin zone, that is to all
the modes of the crystal; ~

&
is the angular fre-

quency of the mode; n is the index of the branch;
and the index j is for the three polarization direc-
tions (one longitudinal and two transverse). 2M,„
= (g„,G„.) is a partial sum extended to all the4)~ y tt)~~

modes for which the end points of the wave vectors
fall inside the volume 7„. This volume corresponds
to the volume of the reciprocal lattice over which
the TDS intensity is integrated; 7„ is determined
by the geometry of the scattering experiment as
explained below. The explicit expression of 2M,„
ls

Bg A slngH

C

~q ~ B~ g +p cos S, eq g d7X~
CO~, g

H

where h, m, and N, are the reduced Planck's con-
stant, the atomic mass, and the number of primi-
tive unit cells per unit volume, respectively; X

and H„are the wavelength of the radiation and the

Bragg angle for the reflection H-=k, k, I; q &
is the

wave vector of the phonon, l tl; I
= &o, /v;, v;

being the velocity of the wave; tv(tl„~) is a~weight

function for the distribution of the intensity in the

incident bea, m, which is not uniform in the various
directions defined by the size of the source and the
slit on the incident beam; cos(S, e, . ) is the cosine
of the angle between the scattering vectors S,

l S I
= 2sinHH, and the unit vector e . in the polari-C~j

zation direction of the phonon q &.

The contributions of the acoustical and optical
phonons to 2M,

H
= 2M,H+ 2M',"were evaluated sep-

arately~ as follows:

8vak T sin 6„) 1
H IN

I) + cos S, e,&
d7'

42
H

8v k sing„2 ( (tt„a) ~-,')
H ~N COR

& Z tv(Q)cos (Si eq ) dT, (5)
j

+H

Formula (4), which applies to both aluminum and
silicon, was obtained with the following approxima-
tions: (a) Dispersion effects are absent in the
acoustical branches. This fact was checked
against the dispersion curves obtained by neutron
inelastic scattering experiments. ' (b) we have
It&o& «kT, then Q„.) + —,

' =k T/Ii&uz This fact is va. lid
for all acoustical frequencies for which the end
point of the wave vector falls inside the volume
r„; (c) The solid was assumed to be elastically
isotropic, that is v; =v;. For the main crystallo-
graphic directions the velocities of the longitudinal
and of the transverse waves are fairly constant.
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FIG. 7. Thermal diffuse scatter-
ing intensity vs sin0/A, for various re-
flections of different Si crystals.
Filled circles and open squares,
which were obtained with the reflec-
tion and transmission geometries,
respectively, are experimental data
with the statistical error bars. Solid
and dashed curves were calculated
by using the spherical and cylindri-
cal approximations, respectively, for
the shape of the volume v.~ where the
TDS intensity was integrated. See
the text for further information on
the fitting of the calculated curves
with the experimental points.
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In addition, the two transverse waves have roughly
the same velocity even when symmetry rules do
not require it. However, variations of the TDS
intensity with the azimuthal angle were experi-
mentally investigated for silicon in the Bragg ge-
ometry. A change in the crystal azimuth corre-
sponds to a rotation of the volume v„around the
scattering vector S in reciprocal space. Figure
6 shows that the observed variations of the inten-
sity can be explained by the asymmetry of the
crystallographic planes. When no asymmetry was
present, the inelastic intensity did not vary with
the azimuth. Since the TDS intensity is not affected
by the orientation of the 7„volume in reciprocal
space, the approximation made by taking a value
of v," averaged over all the directions of the q
vector is acceptable. The values of the velocities
which were used for the evaluation of (4) were
those of the polycrystalline solid. That is,
n, = 8. 945&& 10' cm/sec and v, = 5.341x 10' for the
longitudinal and transverse modes, respectively,
in the case of silicon; v, = 6. 61 @10' cm/sec and
v, =3.1V&&10' cm/sec in the case of aluminum.
Formula (5), which applies to silicon only, was
derived with the assumption that the optical waves
have a constant angular frequency co~, an approxi-
mation which is justified by the strong dispersion
effects of the opticalbranch at q=0. The fre-
quency v~ = 15.3&& 10' Hz, which was used for the
numerical calculation of (5), was taken from the
neutron scattering data. '

As mentioned above, the size and shape of the

reciprocal lattice volume 7'„ is determined by the
scattering geometry. It can be written to a good
approximation, as

4n& hn2 b, ~~
TH 3 sin2gg, (6)

where &n& is the horizontal divergence of the in-
cident beam and ~~2, &~, are the horizontal and
vertical divergences, respectively, of the scattered
beam accepted by the counter. For silicon two ap-
proximations on the shape of volume 7„were made
in order to calculate the integrals in formulas (4)
and (5). In one case the volume v„was replaced by
a sphere with a, radius R = (37„/4v)'~' centered on
the reciprocal lattice node II. In the other case 7'„
was replaced by a straight cylinder with the height
equal to &n, sin20H /A. and radius equal to (nn~ &o!,/
n)'~ (1/X). Only the spherical approximation was
used for aluminum. In all cases the weight function
w(q;) was approximated with the linear function
1-q cosg/q, where q is the polar angle (see the
Appendix). From acheck of shape of the incident
beams and of the diffraction peaks it was found that
this approximation was satisfactory. Details on
the calculations of integrals in formulas (4) and (5)
can be found in the Appendix. For all the Si reflec-
tions the value of 2M"' was less than 5% of 2M

Figure 7 illustrates the dependence of the TDS
relative intensities of silicon vs sin6/A for a num-
ber of lattice reflections, in both the Bragg and
Laue geometries. The data in the Laue geometry
were first divided by 2p, /te "', where f = to/cosoH,
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FIG. 8. Thermal diffuse scattering intensity vs sin8jA,
for various reflections of three Al crystals. The filled
circles are experimental points with the statistical error
bars, The solid line was calculated by assuming that the
volume where the TDS intensity was integrated was a
sphere.

to being the thickness of the crystal, and then they
were multiplied by a factor which was the average
of the r atios between the TDS intensities in the

Bragg and l.aue cases, for the (333}, (440}, and

(444} reflections. In addition, the intensities of the

odd reflections were multiplied by 2 in order to
have figures comparable to the calculated ones.
The solid and dashed lines were calculated by using
formula (3) with the values of 2M,„obtained from
(4) and (5). The expression in (3) was multiplied by
(I + cos 28„)/sin28„ to take into account the angular
dependence of the intensity due to the polarization
of the scattered beam and to the size of the volume
element in reciprocal space. The upper and lower
curves in Fig. 7 were calculated by using the
spherical and cylindrical approximations, respec-
tively, for the volume 70. The two calculated
curves were fitted to the experimental data by
forcing the curves to go through the experimental
point of the (555}reflection. Although there is
some scatter among the experimental points of the
low-index reflections (for which the inelastic in-
tensity is a small fraction of the total intensity),
the experimental behavior is in better agreement
with the curve calculated by using the cylindrical
approximation. Figure 8 illustrates the dependence
of the TDS intensities on sin8„/X for aluminum in
the Bragg geometry. The sobd curve, which was
obtained by using the spherical approximation for
7„, was fitted on the experimental points correspond-
ing to the high-order reflections. The agreement
is quite satisfactory, probably because the data
at small values of sin8„/X are not available and the
errors on the intensities of the (222}and (400}re-
flections are large.

The dependence of the TDS intensity on tempera-
ture was tested for the two reflections (444} and
(555}of the Si crystal No. III, in the temperature
range 80-600 'K. The symmetric Bragg geometry
was used in both cases. The relative values of the

10

0

FIG. 9. Thermal diffuse scatter-
ing intensity vs absolute temperature
for the $444) reflection of e Si crys-
tal. Open circles are the experimen-
tal points. The solid line is the tem-
perature dependence of the TD8 in-
tensity calculated as explained in the
text.
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FIG. 10. Explanation is as for
Fig. 9, except that the open circles
and the solid curve refer to the (555}
reflection.
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experimental intensities are reported in Figs. 9
and 10, together with the data calculated by using
the temperature dependence (approximately propor-
tional to Te ") of the intensity scattered by the
modes of the crystal. The agreement between ex-
perimental atid calculated data is very good for' both
ref le ctions.

IV. SUMMARY

The intensities of the 14.4-keV (it= 0. 8802 A)

y rays, from two Co sources, scattered by various
Si and Al crystals, were measured for different
orientations of the crystals and of the detector with
respect to the incident beam. The elastic and in-
elastic parts of the scattered intensities were sep-
arated one from the other by using nuclear resonance
absorption. The most significant results are the
following: (a) A comparison between the nuclear
resonance absorption curves of the scattered beam
at the peak of the Si (555) reflection and of the direct
beam shows that there is no energy shift or broad-
ening of the absorption peak for the scattered beam.
A double Bragg-scattering experiment with Si crys-
tal indicates that all the diffracted intensity is elas-
tic. (b) The angle dependence of the experimental
intensities of TDS at the Bragg peaks was inves-
tigated for various reflections of Si and Al crys-
tals, and a comparison was done on a relative scale
with the data calculated by using the lattice wave
theory of TDS intensities. For the calculations it
is assumed that the solid is elastically isotropic
and that the reciprocal lattice volume v'H, over
which the diffuse scattering is integrated, has either
a spherical or cylindrical shape. The experimental
behavior for Si is in agreement with the curve cal-

culated by using the cylindrical approximation for
'10, while for Al the spherical approximation of TH

is sufficient. (c) The temperature dependence of
the TDS intensities corresponding to the peaks of
the f444} and 1555 j reflections of a Si crystal was
investigated in the temperature range 80-600 K.
The agreement with the calculated dependence of
the TDS intensity is very good on a relative scale.

APPENDIX

The reciprocal lattice volume 7'„, where the ex-
pression of the TDS intensity is integrated, is a
parallelepiped with slightly curved faces. Figure
11 illustrates a section of this volume with the scat-
tering plane.

FIG. 11. Scattering geometry in the reciprocal space.
The figure is the section with the scattering plane. 0 and
H are the origin and the node H =—h, k, l of the reciprocal
lattice, respectively. ABCD is the section of the volume
7~ where the TDS intensity was integrated.
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sing coscp for longitudinal
vibrations

cos(S, e,) = —cosy cosy) fv for transverse
vibrations .—sing

The integrals in formulas (4) and (5) can now be
written as

q cosy
1 — cos (S, e,) sinqdqdqdqt,

qm

1 q cos7l
1 — " cos (S, e,)q sinqdqdqdqt .

H

After substitution of the proper expression for
cos(S, e,) the above integrals are solved analytically
with the following results:

In the spherical approximation the volume ~H is
replaced with a sphere of equal volume, centered
on the reciprocal lattice node H. Spherical polar
coordinates are used, with the polar axis perpen-
dicular to the scattering vector S in the scattering
plane.

It follows that

w(q) = 1 —q cosy/q

where q /2z is the radius of the sphere, and

( w(q;) cos'(S, e„)d7 q 13 22

H

3

w(q, ) cos'(S, e, )d7'=
46 zj 48m

H

w(q) =1 —z/zm

!
p

p2+ zzp/zoos
cos(S, e,) =

(Os ~ rs)trsoostv I for transverse
vibrations .

The integral in (4) is written

1 —— cos (S, e&) z z dpdzdtp s4m~ z P +8
H

for longitudinal
vibrations

and similarly for the integral of (5). The analytical
solution of these integrals is as follows:

where v, and v, are the velocities of longitudinal and
transverse vibrations, respectively.

In the cylindrical approximation, the volume 70
is replaced with a straight cylinder, the base of
which has an area equal to ~p', where p = (1/A. )
&& (Ao.

zoic,

/m)' and the height 2z is equal to
(Ac.~ sin20„)/A. (see formula 6 for the symbols).
%e have then

w(q, ) cos (S, e~q) «
2 2

v, J qy
H

p arctan ™~+~-
4m

I pm v) vt

ml y+&~ + Pm l g m

w(q~) cos (S, e, )d& ='W z 2~z
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