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We report here the first direct measurement of the nonexponential decay constant & in or-
dered magnetic materials. Results of our measurements of z; and k,, corresponding to the
tetrahedral (d) and the octahedral (a) lattice sites, are presented here for Fe® nuclear spin
echoes in yttrium iron garnet (YIG) at 4.2°K and below. The results can be understood on the
basis of a model of fluctuations in hyperfine field caused by long-wavelength spin fluctuations.
In this connection, we have extended the model of Klauder and Anderson to show that the non-
exponential component of the decay of spin echoes arises from fluctuations in resonance fre-
quency. The decay constant 2 can be related directly to the time-dependent correlation func-
tion ¥ () of such fluctuations. We have demonstrated this for both the Gaussian and the Lorentz-
ian processes. On applying this model to ordered magnetic materials, we have shown that
for a Heisenberg ferromagnet at low temperatures, where the long-wavelength spin fluctuations
are most predominant, %= 5T5/ 2, where 8 involves known parameters. In deriving this rela-
tion, we have used the frequency- and wave-vector-dependent longitudinal-spin correlation cal-
culated by Vaks et al. Extending this idea to a multisublattice system, we get a relation &
=q+ BT5/ 2 valid for each sublattice at sufficiently low temperatures. When our data are fitted
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with this relation, we get o =1.7 x10%, =6.5 x10? for the a site, and @ =—6.5 x10%, =7.9
x10? for the d site. (The units of @ and g are sec™ and sec™® °K~%/2, respectively.) Both k;
and %, are obtained taking the nonexponential decay to be Lorentzian, as is suggested by the

measurements.
theory and experiment.

With this model of spin fluctuations we find fairly good agreement between
The possible source of @ has been argued to be the zero-point spin

fluctuations, and our results strongly suggest this viewpoint.

I. INTRODUCTION

In spin echoes,! the nonexponential decay (NED)
is almost as common as the more conventional ex-
ponential decay which is mainly due to relaxation
effects. Since in most cases the relaxation decay
is more prominent than the NED, not much atten-
tion has been paid so far to understanding it or to
establishing its relation to other physical proper-
ties of interest. In liquids, the NED is usually very
prominent, is well understood, and has been re-
lated to the molecular self-diffusion.!~® 1In solids,
ingeneral, this isnot the case; however, the phenom-
enon is very difficult to observe, particularly be-
cause of the presence of a strong exponential re-
laxation decay and in view of the possibility of the
existence of more than one relaxation rate. Only
in very special cases, such as electron spin echoes
in strongly inhomogeneous systems6 where this de-
cay is very prominent, has some effort been made
to understand it.” Similar decay has been observed
in ordered magnetic materials by different work-
ers.®1® But, owing to the complexity in the nature
of the decay of nuclear spin echoes in such ma-
terials, and to the difficulty in its quantitative de-
termination, little progress has been made so far
in understanding its origin. This decay is general-
ly believed to be due to (i) spin-diffusion in Bloch
walls,® and (ii) thermal fluctuations of Bloch walls.’
The first is expected not to be very effective for
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nuclei of small moment and low abundance, such
as Fe®" and Ni®, as has been demonstrated by
Weger!? for magnetically ordered metallic sys-
tems. Other possible sources of the NED have
been discussed by the present author,! the impor-
tant ones in a magnetically ordered system being
(a) fluctuations in the hyperfine field, and (b) fluc-
tuations in the dipolar field.

In order to have a better understanding of the
NED in magnetically ordered systems, we have
undertaken a program to measure this decay con-
stant for Fe®” in yttrium iron garnet (YIG). Fe®’
is particularly suitable for such studies, mainly
because (i) Fe" is a small-moment and low-abun-
dance nucleus; (ii) iron is present as S-state Fe¥
ions having a spin-only moment and occupies both
the tetrahedral (d) and the octahedral (a) lattice
sites in a known ratio; (iii) the Fe®” resonance
frequences for the a and d sites are widely sepa-
rated, and the signals are fairly strong over a
large temperature range; and (iv) hyperfine and
dipolar fields are well known for both sites.
Furthermore, many investigations, both theoretical
and experimental, have already been made on this
material, and its magnetic properties are fairly
well known.,

In order to avoid the difficulty and the ambiguity
in the measurement of the NED mentioned earlier,
we have employed the method originally due to
Sinha and the present author.*® As will be dis-
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FIG. 1. Three-pulse-echo sequence. The rf pulses

are applied at times 0, 74, and 7, and their durations have
been assumed to be negligible in comparison to any pulse
separation. The image echo at time 2(ry — 7;) is shown to
form owing to a “virtual” pulse at time 27, and the third
pulse at T,.

cussed in what follows, this method is capable of
measuring the NED even in the presence of a strong
exponential decay expressible by one or more time
constants. Hence, it is expected to be free of un-
certainties inherent in methods used by earlier
workers. For these reasons, the method is very
suitable for such studies, and to our knowledge this
is the first such report on directly measuring the
NED in a solid, especially in a magnetically or-
dered solid.

In the case of liquids, it is well known that the
NED arises from the fluctuations of the resonance
frequency caused by the Brownian motion of mole-
cules carrying the resonating nuclei in an inhomo-
geneous external magnetic field.!® These fluctua-
tions are Gaussian in character. Klauder and An-
derson’ have generalized this model to include other
types of fluctuations, such as those giving rise to
T, and T, in solids. Their elegant mathematical
treatment also includes the Lorentzian type of dif-
fusion. We have extended their model to show that
any fluctuation in resonance frequency can give
rise to an extra decay of the spin-echo signals!
apart from their usual exponential relaxation de-
cay. This decay is, in general, nonexponential
in character and is typical of spin echoes owing to
the peculiar nature of the experiment. We note
that the cw line shape is determined by the station-
ary distribution of the frequency fluctuations,
while the free-precession signal is determined by
the stationary distribution as well as the transition
probability of the frequency fluctuations. This may
appear in contradiction to the usual belief that the
free-precession signal is the Fourier transform
of the cw signal.'? It can be shown that this equiv-
alence of the free-precession signal and the cw
signal through the Fourier transform is not exactly
valid because of the different experimental condi-
tions of the two methods. A more detailed account
will be reported in a future publication. We show
here how this decay constant can be related direct-
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ly to the correlation function of the fluctuations in
the resonance frequency and how this model can be
applied to understanding the origin of the NED in
ordered magnetic materials. Since we use many
results from the paper of Klauder and Anderson’
in showing the relation between the decay constant
and the correlation function, we give a brief sketch
of their calculation of the spin-echo signals. We
also include in our discussion a very simple model
to illustrate the effect of fluctuations in resonance
frequency. All these are included in Sec. III. A
more detailed account of the origin of the NED has
been given by the author elsewhere!! and will be
reported in a forthcoming publication. The experi-
mental method is described in Sec. II. In Sec. IV
we present the results of our measurements on
FE*" in YIG at 4.2 °K and below for both the a and
d sites. This section also includes discussion of
our results. Finally, we conclude in Sec. V.

II. EXPERIMENTAL METHOD

As we have noted earlier, we have employed the
method used by Sinha and the present author®® to
measure the molecular self-diffusion coefficient
in liquids. In this method three radio-frequency
(rf) pulses are applied in succession at times 0,

Ty, Tp as shown in Fig. 1. The amplitude of the
“image echo” occurring at time =2 (1, - 1) after
the first pulse is observed as a function of 7, while
T3 — T, is held constant. As a result of this experi-
mental condition, the exponential part depending

on 7, — T, remains constant while the nonexponential
part (k-dependent term) shows time dependence, as
can be seen from the expressions for the image-
echo amplitudes given below. We quote below the
expressions for the primary- and image-echo am-
plitudes for both the Gaussian and Lorentzian pro-
cesses. For a Gaussian process,** " we have

E(27,) = exp(~ 27,/ T,) exp(- 3 kﬂs) ’ (1a)
E(Z(Tg —Ty))ce exp{- 2[ry + (Tz - 271)]/ Tz}
X exp{—- % k[T? + (Tg - 271)3] } . (1)

For a Lorentzian process,” we have
E(27)) < exp(= 27/ Ty) exp(- k73) (1c)
E(2(1y = 7)) exp{—2[1, + (15— 27))] / To}
xexp{—k[r3+(r,-27)%]}. (1d)

In each of the above expressions, the first part
shows the exponential decay for a single relaxation
time and the second part the NED. The parts of
the echo amplitudes determined by the nutational
angles introduced by different rf pulses have been
omitted since they are not of interest here. We
have included the expressions for the primary echo,
occurring at 27,, to point out that the image echo
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FIG. 2. Typical plot of the amplitude of the image echo
E vs x (=01 — 7%, §=75—7;) onasemilogarithmic scale.
The straight line shows the least-squares fit to the equa-
tion E=E,e%. Here b=2k or 26 in the Lorentzian or
Gaussian model, respectively (see the text for details).

can be thought of as due to a “virtual” pulse at
t=27, and the third pulse at 7,. The expressions
have been written in a manner so as to bring out
this point. Comparing the different expressions
given in Egs. (1), it becomes quite apparent that
this way of looking at the image echo is valid
even in the presence of nonexponential decays.
Hence, it is expected that other types of nonexpo-
nential decays (besides the 2~ and #*-dependent
ones which have been considered here) will be
similarly reflected in the image echo, and this
method will then be very suitable for such measure-
ments. The amplitude of the image echo is maxi-
mum for a 90°-180°-180° pulse sequence when two
of the echo signals occurring after the third pulse
vanish. (For more details see Refs. 4 and 5.)
The measurements were carried out with a
Bruker spin-echo spectrometer (model B-KR 308)
using a box-car integrator (PAR model cw-1) for
the improvement of the signal-to-noise ratio. Tem-
peratures below 4.2 °K were obtained pumping on
liquid helium and the pressures were held constant
with the help of a diaphragm-type manostat (fabri-
cated at the Siemens Workshop, Munich) to maintain
temperatures stable to better than 1% over the
whole range studied. A constant check was main-
tained by a carbon resistance thermometer (Allen
Bradley type 100 2, & W) placed near the sample:
The experimental data were fitted with an equation
of the form E =Eye™, where x=07,~7;2and 6 =71,
-7, by the method of least squares with a desk
computer (HP model 9100 A). One typical set of
data is shown in Fig. 2. The quantity b, thus de-
termined, was found to be independent of 9 within
experimental error, suggesting that NED was
Lorentzian since in this case b=2k, while for a
Gaussian NED b=2kf. This can easily be seen on
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recasting the expressions given by Egs. (1b) and
(1d) in terms of the variables x and 6. Hence, it
is a simple matter to distinguish experimentally
between the Gaussian and Lorentzian nonexponential
decays. The NED constant %2 for both the a and d
sites was determined using the above relation,
namely b=2k, for temperatures 4.2 °K and below.
The errors in 2 were on the average 15-20% as
shown in Fig. 4. Errors in the individual 2 mea-
surements, similar to the one shown in Fig. 2,
were mostly in the range 5-15%. Error bars at
the different temperatures show the root-mean-
square deviation of a number of measurements of
k (at least 5 and in most cases more).

III. THEORETICAL BACKGROUND

A. Simple Model for NED Spin Echoes

We present here a very simple model to illustrate
how the frequency fluctuations can give rise to an
additional decay of the spin echoes, apart from the
usual relaxation decay. Our basic model is the
same as the one used by Hahn! in his pioneering
paper, which has been discussed so much in the
literature that we refrain from giving the details
here. In Fig. 3 from (A) to (E), we show the for-
mation of the echo signal due to a 90°-180° pulse
sequence applied at times 0 and 7. The different
isochromatic groups of moment AM(p) (even the
moments of these groups may be considered mo-
ments of individual spins) recluster exactly on the
y axis at time 27 as shown in (E) of Fig. 3(b), p
being the index for an individual group or an individ-
ual spin. It may be pointed out here that such a de-
scription of reclustering to form the echo signal is
more convenient in considering an ensemble of
individual spins rather than of isochromatic groups,
since with the passage of time an initially isochro-
matic group becomes a nonisochromatic group,
although from the rigorous mathematical stand-
point both these descriptions should be identical,
at least for stationary processes.

The main point we wish to stress here is that
the phases ¢,(p) and ¢,(p) accumulated by an in-
dividual isochromatic group p of the initial distri-
bution in the two time intervals 1 and 2, respec-
tively, will not, in general, cancel each other as
required for the reclustering at time 27 on the y
axis. The cancellation is only possible if the reso-
nance frequency of the group or the individual spin
under consideration remains constant during the
two intervals mentioned above, i.e., if ¢,(p)
=@,(p). If for some reason, ¢,(p)# @,(p) then the
different isochromatic groups or spins will not re-
cluster at time 27. In fact, this happens in the
case of fluctuations in frequency about some mean
value for each frequency, where ¢,(p) will not,
in general, be equal to ¢,(p). If the frequency
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FIG. 3. Vector model showing the effects of fluctuations
in resonance frequency on the amplitude of the two-pulse
echo. (a) Time sequence of the two-pulse echo for a pair
of 90°-180° pulses; pulse durations are assumed to be
negligible in comparison to 7. The sequence of diagrams
from (A) to (E) in (b), corresponding to points marked
similarly in (a), shows the formation of the echo when the
phases accumulated by any individual pth isochromatic
group AM (), @1) and ¢,(p) during the intervals 1 and
2, respectively, are equal, (F) shows that the different
AM (p) are distributed about the y axis when ¢;(p) = @ (p)
owing to random fluctuations in resonance frequency.

fluctuations are of a random nature, then the ¢’s
are also of the same nature. The different iso-
chromatic groups in this case, instead of coming
on the y axis at time 27, will be distributed about
it as shown by (F) in Fig. 3(b). There is still a
resultant along the y axis, but of reduced magni-
tude; the reduction will depend upon the nature

and magnitude of phase fluctuations. Thus, fluc-
tuations in resonance frequencies of different
isochromatic groups introduce an extra decay term
to the echo signals. In general, such a decay is
nonexponential in character and can be demonstrated
rigorously for simplified diffusion models.

B. Diffusion Models of Nonexponential Decay of Spin Echoes

In calculating the spin-echo signals, one needs
to evaluate the quantity (e!™), where ¢ is the time
of occurrence of the signal, 7 is the precession
frequency of an individual spin in the rotating
frame (n=w - w, where w, is the resonance fre-
quency of that spin in the laboratory frame and w
is the center of the laboratory resonance line as
well as the exciting frequency), and (-.- ) indicates
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the ensemble average over the spin system. The
expression e!" follows from the Bloch equations

or from a more general argument noted by Klauder
and Anderson. In the presence of fluctuations of
the resonance frequency, 7 is no longer a constant
in time but a random variable in time. This fact
must be taken into account inthe averaging pro-
cedure. The most convenient way to take this into
account is to divide the evolution time ¢ of the spin
system into a large number of smaller time inter-
vals Af. If one knows the initial frequency distri-
bution P(n,) andthe transition or conditional prob-
ability P[n; Atln,] (where, in general, we write

1, for the precession frequency of an individual spin
in the nth time interval Af), then one can take the

‘ensemble average quite simply in the Markoffian

approximation. Of course, in this process one has
to consider the effects of rf pulses, each of which
introduces a phase reversal. The NED is not, in
general, sensitive to the initial distribution which
is mainly responsible for the shape of echo signals.
We give below a short sketch of this calculation
and for details we refer again to the paper of
Klauder and Anderson.

In order to take account of fluctuations in the
resonance frequency we have to evaluate the
following expression:

F(O)= expli [ n(t)at']), @)

where the time integration is the expression of the
accumulated phase of a single spin.
To mcorporate the effects of rf pulses, one can

rewrite fon(t )dt' as J§ s@')n(t’)dt’, where
s(t)=1 0<t' <7,
sit)==-1, 7y<t'<T, (3)
s(t)=1, 1<t

Here 0, 7y, and 7, are the times at which three
rf pulses are applied.
Let = (N+1)Af. Then Eq. (2) can be reduced to

F(f) = <exp (z Até s,,n,,) > P(ny) dng - - (4)

The above expression means that the ensemble
average of Eq. (2) is equivalent to the averaging
over the frequency “histories” of a particular
group of spins (namely, those of frequency M at
£=0) and then subsequently averaging over 7.
Then, making use of the conditional probability
concept, we can write

F(t) =f---fexp<iAt§snn,>

N
X PNty « o ey Myt 0] P(no)Ho an, . (5)

Under the Markoffian assumption, we have
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A tion probability for a Gaussian process as given
P vee 5t = a5 AL . 6 .
(s o ms o] ,,I=In Pl Al © by Eq. (7), it is evident that if one can express

From a general argument valid for a Markoffian
process Klauder and Anderson obtained the Fourier
transform of the transition probability,

(2m) [~ explivtn —mg) - t7(»)]dy ,
(7)

where the following conditions must be satisfied:

f*(=y)=f(y) since P is real,

Pl t|ne]=

f(0)=0  since P is normalized, (8)
Ref(y)=0

They have also shown that f(y)="£%y? and f(y)
=k|yl describe, respectively, Gaussian and Lorentz-
ian processes. In general, it is almost impossible
at the present state of our knowledge to theoretical -
ly predict the physical processes that would give
rise to the Gaussian or Lorentzian processes ex-
cept in very special cases. The frequency distri-
bution of a spin interacting with a small number of
other spins by dipolar interaction!® would be Lorentz-
ian, while if the number of interacting spins is
large, then this frequency distribution is expected
to be Gaussian.!* Experimentally it is a compara-
tively simple matter to distinguish between the two
processes, as we have noted in Sec. 1II.

Using Eqgs. (5)-(7) and the condition for the oc-
currence of echo signals, i.e., fO’s(t')dt'=0, it
is fairly straightforward to calculate amplitudes
of different echo signals. The results of such
calculations have already been given in Eqs. (1)
for the primary and image echo for both the Gaus-
sian and Lorentzian processes.

since P is nonnegative .

_ C. Relation between NED Constant k and Correlation Function
of Frequency Fluctuations

We know from probability theory®® that, for any
two random variables, the conditional probability .
is given by

[2,”1[)0(1 - pZ)]-I/Z
x exp[~ (n - pno)?/20,(1 = p?)],  (9)

where = (n®) = (n2) for stationary processes. i,
is the mean-square fluctuation of the random vari-
able. ¥(¢)=pPy= (n(#)n(0)) is the correlation func-
tion of fluctuations in 7 and defines the time-depen-
dent term p known as the correlation coefficient.
The subscript zero indicates values at £=0. In
terms of the Fourier transform, Eq. (9) can be
written as

Pn; t|no) =

o1 = p*)]dy .
(10)
Comparing this expression with that of the transi-

Pln; t|ne] = (2m) f_: expliy(n - png) -

3%o(1 - p?) as equal to kt for a short time ¢, then
the NED constant % of Eqs. (1) is obtained. Under
this condition of short time #, Eq. (10) reduces

to Eq. (7), since p ~1. Differentiating with re-
spect to time, we have

k=- 2 (11)

We have not yet been able to show rigorously that
such a relation also holds good for a Lorentzian
process. But comparing the expressions of transi-
tion probabilities for the two processes as given
by Eq. (7), we assume a similar relation is also
true for a Lorentzian process when %zpo(l —pz) can
be expressed similarly as a linear function of time
for a short time {. Obviously, a constant factor
must be incorporated to satisfy the dimensionality.
Klauder and Anderson” came to a similar conclusion
implicitly in considering a simple model of dipolar
field fluctuations.

Under our assumption, the transition probability
for a Lorentzian process can be written in analogy
with the corresponding expression for a Gaussian
process given by Eq. (10) as

Pln; t|ne)=@m) [ : expliy(n — pno)

—sCh(1-p)|y|lay, (12

where C is an unknown constant. The same argu-
ment which reduces Eq. (10) to Eq. (7) also re-
duces Eq. (12) to Eq. (7). Then a relation similar
to Eq. (11) is obtained for % with an extra constant
C.

Expressions for the transition probabilities given
by Egs. (10) and (12) are superior to the corre-
sponding expressions given by Klauder and Ander-
son, since they give the expected (stationary) dis-
tributions for stationary processes for f—«. In
this limit, p=0 and Eqs. (10) and (12) reduce, re-
spectively, to stationary distributions of the
Gaussian and Lorentzian types as given below:

Pn) = 2me) Y 2exp(-1%/2%,) (Gaussian) (13a)
% C—C%)ZQW (Lorentzian) .
(13b)

D. Application to Ordered Magnetic Materials

It is well known that in an ordered magnetic
material, with no external magnetic field and
neglecting the anisotropy field, the nuclear reso-
nance frequency is given by!®

wo=A(S, )7, (14)

where A is the hyperfine coupling constant and
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(S,) is the thermal average of the z component of
the atomic spin S. we consider here the simplest
case where the atomic spin S and the nuclear spin

I are coupled by the interaction of the form AI - S.
Extension to more general cases is straightforward.
Considering only the spin fluctuations, one can
define the instantaneous nuclear resonance fre-
quency 7(¢) as

n@)=(A/m)[s, ) - (S,)] . (15)

Here, we have neglected any fluctuation in A,
partly because of the simplicity of the theoretical
treatment, and partly because of the reasonable
agreement of this model with our experiment. Fur-
ther, areasonably good agreement of the tempera-
ture dependence of the experimental hyperfine field
in ordered magnetic materials with the spin-wave
model suggests A to be almost independent of
temperature.'’

According to our previous discussion, the NED
constant is related to the time-dependent correla-
tion function ¥(¢). In the present case it is given
by

P(@) = (A/7 ([S, () = (S)][S,(0) = (S)])y . (18)

The expression inside the angular brackets is the
time-dependent longitudinal spin correlation and
has been calculated by Vaks ef al.'® for a Heisen-
berg ferromagnet. From their Eq. (37), one can
easily derive the time-dependent part of §(¢) for

a Heisenberg ferromagnet at low temperatures
(T< T,, where T, is the Curie temperature) giving
the NED constant % as

k=35 C(A/ T Dk oy (ks/TDY 2 kgt B)T°/2 . (17)

In deriving the above expression use has been
made of Eq. (11) in relating ¥(¢) to 2, which is
valid for both Gaussian and Lorentzian processes
and which gives identical expressions for the two
processes except for an unknown constant in the
Lorentzian process. () is obtained under the
following assumptions: (a) The wave vector « is
very small, (b) there is no restriction on w,° and
(c) ¥;=T,, i.e., there is space autocorrelation.
For low temperatures and for short times 7 these
assumptions are expected to be valid. We have
used the magnon dispersion relation €, = Dk% Kky,,
is the maximum wave vector; C is a constant and
is exactly equal to unity for a Gaussian process,
but is still an unknown constant for a Lorentzian
process, though it is expected not to be very
different from unity; %5 is the Boltzmann constant;
and ¢ (2) is the ¢ function of index 3.

On a straightforward extension of this model to
two- or more-sublattice systems, one expects that
an individual sublattice would behave like a single-
sublattice Heisenberg ferromagnet. This expec-
tation, of course, comes mainly from the different
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FIG. 4. Plot of the nonexponential decay constant & vs
T5/2 for Fe" nuclear spin echoes in YIG. The subscripts
a and d stand for the corresponding lattice sites. The
straight lines show the least-squares fit to Eq. (18). The
top scale shows the temperature itself.

experimental and theoretical studies on sublattice
magnetization.?® In such studies it has also been
observed that each individual sublattice would show
up some deviation from its actual spin value S at
absolute zero owing to zero-point motion.22! An
additional contribution to % for individual sublattices
due to zero-point spin fluctuations is then expected.
With this consideration, for an individual sublattice
in a multisublattice system, where each sublattice
can be approximated by a Heisenberg ferromagnet,
k is expected to follow a relation like

k=a+BT%2 (18)

Here, the first term is due to any temperature-~
independent process, such as zero-point spin
fluctuations, and the second term is due to the
temperature-dependent process of the long-wave-
length spin fluctuations. From Eq. (17), 8 is
given by

B=55 C(A/R)2DK 1o 2 (kp/TD)* 2 Rt (3) . (19)

IV. RESULTS AND DISCUSSION

Experimental variation of the parameter 6 in the
image-echo experiment implicitly showed the
Lorentzian process to be the active process in de-
termining the NED in the present case. We then
fitted our data for %k with an equation of the form
given by Eq. (18) using the method of least squares.
This is shown in Fig. 4. From such a fit, we ob-
tain @=1.7x10*% B=6.5x10? for the a site, and
a=-6.5%10% B=17.9x10? for the d site, where the
units of o and g are sec? and sec? °K°*/?, re-
spectively.

For Fe®" in YIG, AS/h~%0 MHz, D=~10"2®

ergcm? and K, ~10" cm™!. Using these values
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in the expression for 8 given by Eq. (19), we get
B =~10% which is in excellent agreement with the
experimental results in view of the approximations
we made. In the absence of any calculation of the
time-dependent longitudinal spin correlation for
zero-point spin fluctuations, it has not been possi-
ble to estimate the magnitude of o for such a pro-
cess. But it seems reasonable to expect the ratio
of the o’s for the two sites to be equal to the
square of the ratio of spin deviations at the zero-
point for such a process. Our result for this ra-
tio is of magnitude 2.6, to be compared with 2.0
when we consider the exact ratio of hyperfine fields
at the two sites. This agrees well with the theo-
retically predicted value of 2.25 of Walker.”* Fur-
ther, the opposite signs of the &’s for the two sites
can be qualitatively understood when we consider
that the Walker theory predicts the sum of the spin
deviations for YIG at the zero point to be zero.
The spin deviations are of opposite signs. Hence,
we might expect the correlation functions of zero-
point spin fluctuations for the two sites also to be
of opposite signs. Reasonable agreement between
experiment and theory for both a and B suggests
that Eq. (18) gives a fair description of the NED
in YIG for the temperature range of our study.
However, as has been discussed below, a smaller
and much weaker temperature-dependent contribu-
tion in % cannot be excluded from our measure-
ments. Further observations extending the mea-
surements to a much lower and wider temperature
range than those reported here are needed to
clarify this point of a weaker temperature-depen-
dent contribution in %2 and will be made in a future
publication. A physically disturbing feature of our
‘results is that %, becomes negative below about 2
°K. Owing to the limitations of our spectrometer,
it has not been possible for us to extend the mea-
surements below 3 °K for the d site. Our results
suggest that some other contribution in %2 of weaker
temperature dependence than the one due to the
process we have considered here becomes more
effective in this temperature range. The most
probable source of such a weaker temperature-de-
pendent term is the fluctuations in A; we have
neglected them in our theory, and this may not be
completely justified. The weaker temperature
dependence of A in YIG cannot be ruled out from
temperature dependence of the hyperfine field,
as has been pointed out by Litster and Benedeck.?
In the absence of an exact theory of fluctuations in
A or its temperature dependence in ordered mag-
netic materials, it is not possible to estimate the
contribution of fluctuations in A in 2. However,
from the above considerations, the apparent nega-
tive values of %, for about 2 °K and below do not
seem unreasonable.

We would like to point out here that none of the

other sources of fluctuations in the resonance fre-
quency noted earlier offer a satisfactory explanation
of our results. From thermal fluctuations of
Bloch walls, we expect k; ~k, at all temperatures,
the magnitudes depending on the properties of the
walls. Obviously, this is not the case. The spin
diffusion as a possible source can be ruled out
also on the argument of the small moment and low
abundance of Fe®’. Further, we expect  to be
proportional to 1/ I% for the Lorentzian process.
In order to check this point we also measured T,
at different temperatures for both sites and found
no such relation to hold true, confirming the con-
clusions reached earlier by Weger.!? Preliminary
dataof our T, and T, measurements suggest that
these results also can be understood on the model
of spin fluctuations. This will be reported in a
separate publication.?® Dipolar field fluctuations
as a possible source of %2 can be ruled out easily
in this case, since we expect k,> &, at all tem-
peratures owing to the presence of a large dipolar
field at the a site but none at the d site.?*

V. CONCLUSIONS

We have shown here that the NED constant % can
be related to the time-dependent correlation func-
tion of fluctuations in the resonance frequency ¥(¢)
for both Gaussian and Lorentzian processes. Fora
Gaussian process, % can be exactly related to ¥(¢).
An additional assumption and an unknown constant
are involved in % for a Lorentzian process. We
have applied this model of fluctuations in resonance
frequency as the origin of k2 to ordered magnetic
materials and have shown that the spin fluctuation
is the most important contribution to % at low
temperatures. We have also found that for a multi-
sublattice system the NED constant of an individual
sublattice follows a relation k=a +87°/2, Such a
relation is borne out by our experimental observa-
tions on Fe®” in YIG. The spin fluctuations can be
approximated to a Lorentzian process in this case.
The coefficient of the temperature-dependent term
in % could be related to long-wavelength spin fluctu-
ations. Our experimental results strongly suggest
that the origin of the temperature-independent term
is the zero-point spin fluctuations. The extrapola-
tion of our data of the d-site to temperatures lower
than about 2 °K also suggests a weaker tempera-
ture-dependent contribution, more effective on k&,
due to its smaller value, from fluctuations in A
which we have neglected in our theory. As we
have noted earlier, aweak temperature dependence
of A, and hence a weak temperature dependence
of the time-dependent correlation of fluctuations
in A, cannot be excluded from the studies reported
so far.

Further, we would like to point out that there are
other possible sources of fluctuation in the hyper-
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fine field which we have not considered here. The
important ones may be magnon-magnon, magnon-
phonon, and electron-phonon interactions. None
of these is expected to be very effective for YIG
in the temperature range of our experiment. A
more comprehensive discussion of these different
processes will be included in a future publication.
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Several mechanisms which describe the interaction between spins and phonons in a dense
paramagnetic insulator are theoretically explored in order to estimate their resonant contribu-
tion to the ultrasonic attenuation at high temperatures. In particular, one mechanism provides
a quasiresonant contribution to the attenuation which is roughly proportional to the square root
of the difference of the frequency and certain multiples of the Larmor frequency. Other mecha-
nisms may lead to the same type of line shape.

I. INTRODUCTION field or any anisotropic spin-dependent forces. For

the most part, only temperatures much greater than

In this paper we shall theoretically examine the
question of acoustic paramagnetic resonance (APR)
in dense magnetic insulators. The basic model
used for the spin system is a Heisenberg paramag-
net with an isotropic exchange energy much greater
than the Zeeman energy due to an applied magnetic

the magnetic transition temperature of the spins are
considered. For our purposes the “resonant” con-
tribution to the acoustic attenuation will be taken to
mean that contribution which depends on an exter-

‘nally applied magnetic field.

Electron paramagnetic resonance (EPR) experi-



