- 29, 948 (1963). ¹¹G. A. Candela and R. E. Mundy, J. Chem. Phys. <u>46</u>, 47 (1967).
- ¹²R. Orbach, Proc. Roy. Soc. (London) <u>A264</u>, 485 (1961).
- ¹³D. L. Huber, Phys. Rev. <u>131</u>, 190 (1963).
- ¹⁴M. B. Walker and F. I. B. Williams, Can. J. Phys. <u>46</u>, 1347 (1968); <u>48</u>, 355 (1970).
- ¹⁵J. M. Baker and N. C. Ford, Jr., Phys. Rev. <u>136</u>, A1692 (1964).
- ¹⁶W. J. Brya and P. E. Wagner, Phys. Rev. <u>147</u>, 239 (1966).
- 17 C. B. P. Finn, thesis (Oxford University, 1961) (un-published), quoted in Ref. 12.
- ¹⁸R. C. Sapp, B. G. Aldridge, and A. Singh, Bull. Am. Phys. Soc. 14, 195 (1969).
- ¹⁹J. T. Hoffman and R. C. Sapp, J. Appl. Phys. <u>39</u>, 837 (1968).
- ²⁰J. B. Gruber and R. A. Satten, J. Chem. Phys. <u>39</u>, 1455 (1963).
- ²¹J. H. van Vleck, Phys. Rev. <u>59</u>, 724 (1941).
- $^{22}\mathrm{R.}$ H. Ruby, H. Benoit, and C. D. Jeffries, Phys.
- Rev. <u>127</u>, 51 (1962).
 ²³B. W. Faughnan and M. W. P. Strandberg, J. Phys.
 Chem. Solids <u>19</u>, 155 (1961).
- ²⁴A. M. Stoneham, Proc. Phys. Soc. (London) <u>86</u>, 1163 (1965).
- ²⁵A. Kiel and W. B. Mims, Phys. Rev. <u>161</u>, 386 (1967).
 ²⁶D. W. Preston, Ph.D. thesis (University of Kansas,
- 1970) (unpublished).
- ²⁷J. M. Daniels, Proc. Phys. Soc. (London) <u>A66</u>, 673 (1953).
- ²⁸J. T. Hoffman, Ph.D. thesis (University of Kansas, 1970) (unpublished).
- ²⁹Prepared by A. D. Mackay Co., 198 Broadway, New York, N. Y. 10038.
- ³⁰F. G. Brickwedde, H. van Dijk, M. Durieux, J. R. Clement, and J. K. Logan, J. Res. Natl. Bur. Std. <u>64</u>,

- 1 (1960).
- $^{31}\mathrm{H.}$ B. G. Casimir and F. K. du Pré, Physica 5, 507 (1938).
 - ³²H. Meyer, Phil. Mag. <u>2</u>, 673 (1953).
- ³³L. D. Roberts, C. C. Sartain, and B. Borie, Rev. Mod. Phys. 25, 170 (1950).
- ³⁴I. Svare and G. Seidel, Phys. Rev. <u>134</u>, A172 (1964).
 ³⁵J. A. A. Ketelaar, Physica <u>4</u>, 619 (1937).
- ³⁶D. R. Fitzwater and R. E. Rundle, Z. Krist. <u>112</u>,
- 362 (1959).
- ³⁷M. T. Hutchings, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic, New York, 1964),
- Vol. 16, p. 227.
- ³⁸K. W. H. Stevens, Proc. Phys. Soc. (London) <u>A65</u>, 209 (1952).
- ³⁹R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) <u>A215</u>, 437 (1952); <u>A219</u>, 387 (1953).
 - ⁴⁰S. Hüfner, Z. Physik <u>169</u>, 417 (1962).
 - ⁴¹G. Burns, Phys. Rev. <u>128</u>, 2121 (1962).
 - ⁴²G. Burns, J. Chem. Phys. 42, 377 (1965).
- ⁴³A. J. Freeman and R. E. Watson, Phys. Rev. <u>127</u>,
- 2058 (1962).
- 44 C. Y. Huang, Phys. Rev. <u>139</u>, A241 (1965). 45 A. Singh, Ph.D. thesis (University of Kansas, 1971) (unpublished).
 - ⁴⁶R. J. Birgeneau, Can. J. Phys. <u>45</u>, 3761 (1967).
 - ⁴⁷H. A. Buckmaster, Can. J. Phys. <u>40</u>, 1670 (1962).
- ⁴⁸R. J. Birgeneau, J. Phys. Chem. Solids <u>28</u>, 2429
- (1967). 49 We are much indebted to Professor H. J. Stapleton for

providing us with a FORTRAN IV source deck for this program. It was used to check the results of some of our calculations.

 $^{50}\mathrm{E.}$ Borchi, S. de Gennaro, and M. Mancini, Nuovo Cimento <u>61B</u>, 241 (1969).

⁵¹M. M. Curtis, D. J. Newman, and G. E. Stedman, J. Chem. Phys. 50, 1077 (1969).

⁵²J. Levy, Phys. Rev. B <u>1</u>, 4261 (1970).

PHYSICAL REVIEW B

VOLUME 5, NUMBER 5

1 MARCH 1972

Hyperfine Interactions of Fe²⁺ in Ilmenite

R. W. Grant, R. M. Housley, and S. Geller*

North American Rockwell Science Center, Thousand Oaks, California 91360 (Received 16 November 1971)

(Received 16 November 1971)

Hyperfine interactions at the Fe²⁺ sites in ilmenite have been determined by Mössbauer spectroscopy. At 5 °K the internal magnetic field is (-43 ± 3) kOe and the quadrupole-coupling constant $\frac{1}{2}e^2 qQ$ is $(+1.44 \pm 0.01)$ mm/sec. Theoretical interpretation of the internal magnetic field in terms of dipolar-, orbital-, and core-polarization contributions is shown to depend critically upon the lattice contribution to $\frac{1}{2}e^2 qQ$, which is still unknown.

I. INTRODUCTION

The hyperfine structure of Fe^{+2} in ilmenite (FeTiO₃) was studied by low-temperature Mössbauer spectroscopy several years ago.¹ A relatively small internal magnetic field H_{int} was observed in the antiferromagnetic state and only partial resolution of the hyperfine spectrum was obtained. Theoretical calculations suggested that the sign of $H_{\rm int}$ was negative and that the core-polarization contribution to $H_{\rm int}$ was low.²

In conjunction with an investigation of the $Fe_{2-x}Ti_xO_3$ system³ with compositions similar to lunar ilmenite specimens, we have synthesized stoichio-

metric FeTiO₃. The liquid-helium-temperature Mössbauer spectrum of this material had narrow linewidths and hence showed a well-resolved hyperfine structure. An analysis of this spectrum and data on a single-crystal mineral sample is presented.

II. EXPERIMENTAL

Synthetic ilmenite was prepared by solid-state reaction of appropriate amounts of high-purity Fe, Fe₂O₃, and TiO₂; the iron powder was prepared from Johnson, Matthey and Co. iron sponge by reduction in H₂ for 1 h at 1175 °C followed by rapid cooling. The starting material was finely ground, compressed, and fired at 850 °C (2 h) and 1200 °C (2 h) in high vacuum ($\approx 10^{-8}$ mm of Hg). Powderdiffraction x-ray photography was used to establish that the material was single phase. The lattice constants measured for this material based on a hexagonal unit cell are a = 5.085 Å and c = 14.087 Å.

Mössbauer measurements were made with an automated mechanical constant-velocity spectrometer operating in the transmission mode; the spectrometer is described briefly elsewhere.⁴ The source used was Co^{57} in Cu at room temperature (≈ 22 °C).

The single-crystal mineral specimen of ilmenite (from Quebec) contained a considerable amount of exsolved hematite α -Fe₂O₃ and also about 10% Fe³⁺

in solution. Nonetheless the Fe^{2*} spectrum was sufficiently sharp and well resolved from the Fe^{3*} absorption lines to be clearly interpretable. The sample was oriented by back-reflection Laue xray-diffraction photography and mechanically polished \perp to the *c* axis to ≈ 1.8 -mil thickness.

III. RESULTS AND DISCUSSION

Ilmenite crystallizes in the trigonal space group $R\overline{3}$.⁵ The structure is derived from the α -Fe₂O₃ structure by replacing layers of Fe³⁺ which are perpendicular to the *c* axis by alternating layers of Fe²⁺ and Ti⁴⁺. All Fe²⁺ sites are crystallographically equivalent and have point symmetry 3. Neutron-diffraction, ⁶ magnetic, ⁷ and specific-heat measurements⁸ establish that the material orders antiferromagnetically below about 57 °K with spin directions $\|c$. The Fe²⁺ moments are ferromagnetically coupled within layers $\perp c$ and antiferromagnetically coupled between adjacent layers. The magnetic space group can be derived from this information and is $R_R\overline{3}$.

The Mössbauer spectrum of synthetic polycrystalline ilmenite at 5 °K is shown in Fig. 1. A leastsquares computer fit to six unconstrained Lorentz line shapes is shown through the data. The point symmetry of the Fe^{2*} site requires the nuclear electric field gradient to be axially symmetric with the principal axis z of the largest diagonalized ele-

FIG. 2. Dependence of core-polarization contribution to the internal magnetic field H_F in FeCO₃ and FeTiO₃ (calculated as described in text) on lattice contributions to the nuclear electric field gradient.

ment V_{zz} parallel to c. Thus H_{int} and z are \parallel and simple analytical expressions⁹ can be obtained for the transition energies in terms of $|H_{int}|$, $e^2 q Q$, and δ , where *e* is the proton charge, $q = V_{zz}/e$, Q is the nuclear quadrupole moment, and δ is the isomer shift. The typical six-line hyperfine pattern observed for nonmagnetized randomly oriented powders of magnetically ordered Fe⁵⁷ containing materials has relative absorption intensities 3: 2: 1: 1: 2: 3 in order of ascending energy. The small H_{int} and large $e^2 q Q$ observed in ilmenite at 5 °K shifts the $|-\frac{3}{2}\rangle - |-\frac{1}{2}\rangle$ transition to higher energy than the $|+\frac{1}{2}\rangle \rightarrow |+\frac{1}{2}\rangle$ transition and leads to relative intensities 2:1:1:2:3:3 in order of ascending energy. The experimental values of H_{int} , $\frac{1}{2}e^2 q Q$, and δ observed in the 5 °K spectrum of ilmenite are given in Table I.

To determine the sign of H_{int} , an external magnetic field H_{ext} of 55 kOe was applied to the singlecrystal mineral specimen of ilmenite. The absorber was at 87 °K (in the paramagnetic state) and $\vec{H}_{ext} \parallel c$. The internal field observed at the Fe²⁺ nuclei was (41±3) kOe, which experimentally established the negative sign of H_{int} predicted by theoretical arguments.² At 87 °K and $H_{\rm ext}$ = 55 kOe, the magnetization is far from saturated which accounts for the small reduction in $H_{\rm int}$.

Okiji and Kanamori² have calculated the orbital H_{orb} and dipolar H_{dip} contributions to H_{int} for the Fe²⁺ sites in the trigonal crystals FeTiO₃ and FeCO₃ (ferrous carbonate crystallizes in space group $R \ \bar{3}c$ and the Fe²⁺ site has $\bar{3}$ point symmetry). They express both H_{orb} and H_{dip} in terms of the valence contribution to the nuclear electric field gradient and calculate the core-polarization term H_F in conjunction with the experimental values of H_{int} . Based on previously reported FeTiO₃ results $(|H_{int}| = 70 \text{ kOe and } \frac{1}{2}e^2qQ = +1.14 \text{ mm/sec})^1$ they obtained $H_F = -455 \text{ kOe}$. This rather low value of

TABLE I. Hyperfine parameters of ${\rm Fe}^{2\star}$ in ${\rm FeTiO}_3$ at 5 °K.

H _{int} (kOe)	-43 ± 3
$\frac{1}{2}e^2qQ$ (mm/sec)	$+1.44 \pm 0.01$
$\delta (mm/sec)^2$	$+1.22 \pm 0.01$

^aRelative to α -Fe at room temperature.

 H_F compared with the expected free-ion value^{2,10} was attributed by Okiji and Kanamori,² and more recently by Hazony,¹¹ to the covalent nature of Fe²⁺ in FeTiO₃. Our present low-temperature FeTiO₃ results (Table I) differ considerably from previous ones; in addition, improved liquid-helium-temperature data for $FeCO_3$ are now available $[H_{int} = (+185)]$ ± 3) kOe, $\frac{1}{2}e^2qQ = (+2.05 \pm 0.03)$ mm/sec].¹²⁻¹⁴ Thus we have recalculated the internal-field contributions in both $FeTiO_3$ and $FeCO_3$ making the same assumptions as were made by Okiji and Kanamori. The recalculated values for $FeTiO_3$ are $H_{orb} = +420$, $H_{dip} = +59$, and $H_F = -522$ kOe; for FeCO₃, H_{orb} =+579, $H_{dip}=+85$, and $H_F=-479$ kOe.

In general, the quadrupole-coupling constant in ionic Fe²⁺ compounds will have both lattice and valence contributions. Usually neglect of lattice contributions to q is a major source of error in relating H_F , as calculated above, to the degree of covalency. Because of the axial symmetry present at the Fe^{2+} sites in both $FeTiO_3$ and $FeCO_3$, the valence and lattice contributions to q may be ex-

* Present address: Department of Electrical Engineering, University of Colorado, Boulder, Colo. 80302.

- ¹G. Shirane, D. E. Cox, W. J. Takei, and S. L. Ruby, J. Phys. Soc. Japan 17, 1598 (1962); G. Shirane and S.
- L. Ruby, ibid. Suppl. B1 17, 133 (1962).
- ²A. Okiji and J. Kanamori, J. Phys. Soc. Japan <u>19</u>, 908 (1964).
- ³R. W. Grant, R. M. Housley, and S. Geller (unpublished).
- ⁴R. W. Grant, R. M. Housley, and U. Gonser, Phys. Rev. 178, 523 (1969).
- ⁵T. F. N. Barth and E. Posnjak, Z. Krist. 88, 265 (1934).
- ⁶G. Shirane, S. J. Pickart, R. Nathans, and Y. Ishikawa, J. Phys. Chem. Solids 10, 35 (1959).

pressed simply as $q = q_{val} + q_{1at}$. The extreme sensitivity H_F to q_{1at} is shown in Fig. 2 where we have evaluated H_F by the method of Okiji and Kanamori but have considered the possible presence of a small q_{1at} term. In ionic Fe³⁺ compounds where only q_{1at} is present, $\frac{1}{2}e^2qQ$ values > 1 mm/sec are observed. In α -Fe₂O₃, which is structurally similar to FeTiO₃, the quadrupole splitting is $\frac{1}{2}e^2qQ$ = (+ 0. 440 ± 0. 012) mm/sec.¹⁵ If a q_{1at} term of this magnitude were present in FeTiO₃, the derived value of H_F would change by 150 kOe (Fig. 2). Thus, until lattice contributions to q can be determined with confidence, correlations of covalency and calculated H_F values must be rather uncertain.

ACKNOWLEDGMENTS

The technical assistance of G. P. Espinosa, P. B. Crandall, H. Nadler, and K. G. Rasmussen is appreciated. The synthetic samples studied in this work were prepared under NASA Contract Nos. NAS9-10208 and NAS9-11539.

- ⁷H. Bizette and B. Tsai, Compt. Rend. <u>242</u>, 2124 (1956).
 - ⁸C. H. Shomate, J. Am. Chem. Soc. 68, 964 (1946).
- ⁹See, e.g., K. Ono and A. Ito, J. Phys. Soc. Japan <u>19</u>, 899 (1964).
- ¹⁰R. E. Watson and A. J. Freeman, Phys. Rev. <u>123</u>, 2027 (1961).

¹¹Y. Hazony, Phys. Rev. B 3, 711 (1971).

- ¹²U. Gonser, R. M. Housley, and R. W. Grant, Phys. Letters 29A, 36 (1969).
- ¹³D. W. Forester and N. C. Koon, J. Appl. Phys. <u>40</u>, 1316 (1969).

¹⁴H. N. Ok, Phys. Rev. 185, 472 (1969).

¹⁵J. O. Artman, A. H. Muir, Jr., and H. Wiedersich, Phys. Rev. 173, 337 (1968).