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The multiple-scattering equations for a particle in a finite random system of discrete identi-
cal scatterers with short-range correlation, which were the subject of a recent paper by
Gyorffy, are cast into a form in which the limit for an infinite homogeneous system is easily
obtained.

Gyorffy' has shown how pair correlation effects
can be incorporated in the coherent-potential ap-
proximation. For lattice-based systems such as
random substitutional alloys this generalization
is straightforward, but for, e. g. , liquid metals,
the nonlocal character of the coherent potential
introduces a difficulty which Gyorffy did not quite
resolve. This is seen from his final equations
(56)-(59), in which the volume 0 and the number
of scatterers N remain explicit and the terms
are not grouped in such a way that the limit 0
-~, N-~, N/A=n is easily taken. What is
needed is a limiting procedure for obtaining the
mean behavior of a wave traveling in a homoge-
neous medium from the multiple-scattering equa-
tions for a system of N scatterers. An ab initio
distinction between local and nonlocal parts of
scattering operators makes this easy. A reader
familiar with Gyorffy's paper will find the follow-
ing almost self-explanatory.

I,et the single-particle Hamiltonian, resolvent
and mean resolvent, respectively, be

eral nonlocal and in the limit of an infinite homo-
geneous system it is (apart from z) a function of

P only.
With the modified interaction H, defined by

H, =Q V, —W, (5)

TG, = H1G;

thus [Gyorffy's Eq. (10)],

G = G, + G,TG, .
Equation (4) now takes the form

(7)

From Eqs. (7, 8), one has

T = Hl + H1G cT ~ (10)

we obtain an equation for G in terms of G„namely,

G=G, +Gc&,G,

which in turn permits G to be expressed in terms
of a T matrix, defined by

N

H=HO+ Q V~,
1

C(z) = (z-H)-',

C, (z) = [z —H, —W(z) ]-' .
The coherent potential W(z) is defined by [cf.
Gyorffy's Eq. (47)]

(2)

(3)

(4)

We now deviate from Gyorffy's approach (although
it is possible to follow his method somewhat fur-
ther) and divide T into local and nonlocal parts,
corresponding in Eq. (10) to the different terms
in H, [Eq. (5)]. Thus we let

A

T= T —g

where —q is the nonlocal part, corresponding to
the terms in Eq. (10) involving W,

where ( ) means the average over all configura-
tions of the scatterers, and thus W is independent
of the coordinates of the scatterers. It is in gen-

(12)q= W+ WG,T,
while T is a sum of local pa.rts [notation analogous
to Gyorffy's (11)ff.],
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T=pq, , (is)

corresponding to the terms in Eq. (10) involving

Q;= V;+ V;G,T. (14)

In terms of the single-scattering operator t; de-
fined by

t, = v,. + v, G,t, -=t(R,), (15)

one finally has [cf. Gyorffy's (12)]

Q( ——t;+ t(G, (Q Q) —q),

(the summation g excludes j =i), and from Eqs.
(9), (11), and (12),

(q)= w,

(T) = Q (Q() = W.

(16)

(17)

(18)

Let f(R, ~ ~ R„) be the normalized distribution
function, and let the symbol ( ) be defined by [cf.
Gyorffy's (21)ff. ]

p(R)Q(R) = Q (5(R —R;)t;) + Q(5(R —R,)t;G,q))
—Q(5(R —R;)t;G,q)

=t(R)p(R)+ t(R)G, [ f dR P (5(R —R,)
ipj

& 5(R'-R,)q, )- Z(5(R-R;)q)]. (»)
The truncation proposed by Gyorffy [in his Eq. (23)]
corresponds to making in Eq. (27) the approxima-
tions

Q (5(R —R, )5(R —Rg) Qg) =p (R, R )Q(R ), (28)

Q(5(R-R, )q) =p(R) (q). (29)

This gives

Q(R)=t(R)+t(R)G, f dR g(R, R )Q(R ), (30)

which, together with Eqs. (26) and (15), defines
the problem.

The limit for an infinite homogeneous system can
now be taken. With

(E(Ri. ~ R~))= f Ef d R.

The average density is

p(R) = Q(5(R —Rg)),

(io)

(2o)

while the conditional density g(R, R ) is defined as
follows:

g(R, R ) p(R) = p(R, R ) =—g (5 (R —R t) ~(R —R~)) .

H, =e(p),

p(R) =n,

g(R, R') =g(R-R ),
w= w(p),

and the notation

f g(R-R )Q(R ) dR =g* Q,

(si)

(32)

(33)

(34)

(s5)

g (R, R ) = g(R, R ') —p(R ).
One has

(22)

f p(R) dR=&, fg(R, R') dR'=-i.
In terms of a mean local operator Q(R), defined
by

(23)

p(R)q(R) = Z (5(R-R,)q, ), (24)

we can express (T) as

(T) = Z(q;)= f dR p(R)Q(R),

so that the self-consistency condition (18) becomes

f dR p(R)q(R) = W. (26)

From Eqs. (16) and (24) one finds

(25)

(21)
The "correlation hole" is given by g(R, R ), de-
fined as

one finally obtains the following set of equations
for W(p, z):

G, = (z —& —W) ',
Q =t+ t G,g*Q,

(s6)

(3't)

(38)t= V+ V 6,t,
fqdR = W/n . (so)

The uncorrelated case~ corresponds to the neglect
of g. Equations (36) —(39) should be compared
with Gyorffy's (56)-(59). Aside from the fact that
we use configuration space while Gyorffy uses the
momentum representation, the difference is that
our result involves no separate reference to the
volume 0 and particle number N and that the equa-
tions are somewhat simpler in appearance and con-
tain the conventional correlation function g(R —R )
instead of Gyorffy's function g (P, —P ), in his Eq.
(58).
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