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m. If they had set the scattering by the two general
sites n and m to zero,

Tg' =(r„+r„(G)r„+r„(g)r„(G)+ ~ ~ ~ ) = P,

formula (12) above would have been obtained. This
could, perhaps, be done by modifying their tech-
nique only slightly. The generalization of Freed
and Cohen4 also is improper because they also did
not set the average scattering by a pair of defects
in the medium to zero. In this case they do not
even get the proper limit at low concentrations.
The generalizations to larger n clusters than two
now also seems to be that clearly the average t
matrix for scattering each particular g cluster
must be set to zero as suggested also in Ref. 2.

The way to perform the formal calculation of
scattering by pairs and larger clusters of defects
now seems clear, at least within this model con-
taining only diagonal randomness. It would be very

useful to see numerical calculations to check the
properties of these formulas with regard to the
physically expected qualitative features.

Finally, the effect of the disorder at high concen-
tration is becoming quite well understood now, with-
in the model of only diagonal randomness. This
model can, however, only be of limited use in real
systems, ' so that more sophisticated physical
models, including off-diagonal disorder, should be
considered within the spirit of the configuration-
averaging techniques now developed for the diagonal
model. Some attempts have recently been made
along these lines' which are useful in certain cir-
cumstancess.
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It is found that the contributions of both nonlocality in the pseudopotential and exchange cor-
relation in the screening reduce the cutoff radius of the strong screened Coulomb repulsion be-
tween ions in metals, thus revealing extra oscillations at short range in the effective interionic
interaction. This analysis of the situation resolves some previous puzzles, and lends support
to arguments about structural stability based on rearrangements of near neighbors.

Though the interatomic spacing in simple metallic
systems is determined primarily by the volume-de-
pendent contributions to the total energy, ' it is the
small structure-dependent contributions which gov-
ern many of the physically interesting properties of
metals and their alloys, including phonon frequen-
cies, elastic constants, and the relative energies of
different crystal structures. ' The structure-de-
pendent part of the energy, U„can be expressed as
a sum over reciprocal lattice vectors g involving
the "energy-wave-number characteristic" C'&, (g),
or alternatively, as a sum of effective screened in-
terionic potentials 4'(x) in real space. While numer-
ical calculations have almost invariably been done

in terms of reciprocal space because the convergence
is better, they have often been interpreted with
semiquantitative arguments involving the real-space
picture of the interaction potential 4(r). The latter
was found in early work to have a sharp minimum in
the region of the nearest-neighbor position. Nat-
urally, this was an appealing result because it sug-
gested correlations between crystal structure and
the position of the minimum. Several such inter-
pretations and arguments in terms of C(v) may be
found in the recent review article by Heine and
Weaire.

Structural arguments based on real-space inter-
atomic potentials are attractive because of their



COMMENT ON E F FE CTIVE ION- ION INTERACTIONS. . .

2.0—

6

~ 1.0
e

0.8

Z ~
0.6 6

I

ALUMINUM

OCAL MODEl POTENTIAL- 0.4

—0.2

0 I I I 0
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

q/kF

FIG. 1. Functions 1 —C'&, (q) (full line) and 4 (q) (broken
line) for aluminum, computed using a local optimized
model potential. Note that the sharp cusp in C»(q) at
q = 1.6 k& is smoothed when nonlocality is introduced.

elegant simplicity and physical appeal. Further they
seem to have been reasonably successful in ex-
plaining distorted structures and the structures of
solid solutions. ' ' However, there has been con-
cern about their validity because various authors
employing slightly different approximations have ob-
tained rather different 4)(x) in the region of interest.
In fact, sometimes the first few minima, around the
nearest-neighbor positions, are completely miss-
ing. However, while the 4)(x) are sensitive to the
approximations which are made in constructing the
model or pseudopotential, the total structural ener-
gy itself does not change very much.

The purpose of this paper is to examine sys-
tematically the changes produced in 4)(x) by two im-
provements in a simple local-pseudopotential picture
of a metal: (a) the introduction of a nonlocal poten-
tial and (b) the inclusion of many-electron effects in
the screening. This analysis has enabled us to re-
solve some of the earlier uncertainty about the inter-
pretation of 4 (x) at short range.

We begin by reviewing a few points very briefly.
Recall first that the structure-dependent part of the
total energy of a metal can be written in terms of
the energy-wave-number characteristic C'b, (q) as

v, = U, +~,' s(q) I'c„(q),
where U& is the Ewald energy of point ions in a
uniform negatively charged background, and S(q)
= N '

g, e ""'is the usual structure factor for the
crystal. Aside from a constant term independent
of structure, Eq. (1) can be expressed as a sum
over pairwise, screened, effective ionic interac-
tions

C'(~)= [2(Z*)'/~] J, Il —4'b. (q)]jo(q~)dq .

We have introduced an effective valence Z* to ac-
count for the possibility of a depletion hole contri-

e".(q)=(~~ IU"'(~)I' (- 1

e(q)
(4)

To illustrate the results obtained, we have plotted
in Fig. 1 the functions [1—4f,( q)] and 4(q) com-
puted from the local form of the optimized model
potential'

V""(q) = —(47(Z/Oq )ja (qR~)

with the model radius R& as well as Z and 0 ap-
propriate for aluminum. [Note Z*= Z for an en-
ergy-independent potential. ] The corresponding
(f)(x), shown as curve 1 in Fig. 2, is typical for
all nontransition metals. C(v) rises very steeply
at small x (x& 8 a. u. in the present case): This is
the outer edge of the screened Coulomb repulsion

0.5—

O
z

CO

O
CQ

T.
30~

LLI

24~
LL

—18
K

12 E)

— 6 ~

-05—
ALUMINUM

1 --- LOCAL, HARTREE

2 -—- NON LOCAL, HART REE
3 -- NONLOGAL, EXCHANGE"

CORREl ATION

r [IN a.u]

FIG. 2. Interionic potential for aluminum obtained
using (1) local-Hartree (2) nonlocal-Hartree and (3) non-
local-model-potential theory screened with the STLS
dielectric function including exchange and correlation
(Ref. 14). Neighbor positions for fcc aluminum are in-
dicated.

bution. The function Cb, (q) is the energy-wave-
number characteristic normalized such that
4b", (0) = l. Equation (2) can easily be rewritten
as the Fourier transform of an effective interac-
tion potential in momentum space

4 (q) = [4m(Z*) /Qq ] [1 —4)"„(q)],

with 0 the atomic volume.
We start with the pseudopotential theory in its

most simplified form, i. e. , in a local approxima-
tion without exchange. Then Cb, (q), and hence
C'(q), is a simple function of the bare (that is un-
screened) ion pseudopotential v "(q) and the Har-
tree dielectric function e(q):
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between the ions, which is very strong on the en-
ergy scale of 10 a. u. of our figure. Then at
larger r come oscillations determined primarily
by where 4„,(q) drops first to zero. This zero is
related to the first node in the pseudopotential form
factor at wave-number &0. When nonlocality is in-
cluded in the calculation, the zero in 4~, (q) disap-
pears but a pronounced minimum remains, and the
oscillations at intermediate x can be attributed to
this minimum. Finally, at still larger x, come
the Friedej. oscillations, which arise entirely from
the logarithmic singularity in e(q) at q= 2k~.

We now relax the first of our approximations and
treat properly the nonlocal nature of the ionic pseu-
dopotential while retaining the Hartree approxima-
tion for scr ening. The algebra involved in the
cal"ulation of 4,",(q) becomes rather complex and
the simple expression (4) is no longer valid. How-

ever, numerical results are available for several
metals, and we can make use of them in (2) to corn.
pute the effective interionic potential. We shall re-
gard the difference between the nonlocal and local
calculations as a "correction for nonlocality, "
64,",(q), plotted in Fig. 3. We note that it is quite
small around the first few reciprocal-lattice vec-
tors g of the fcc structure, or indeed any other
closely packed structure such as hcp or bcc. It
therefore does not influence strongly the relative
energies of these structures. On the other hand,
phonon spectra involve sampling and differencing
4'b, (q) over the whole range of q, and in calculations
for Na, Al, and Mg it was found that the correct
treatment of nonlocality contributed on the order of
10% to the phonon frequencies and improved consid-
erably the agreement with experiment. ' '" This is

the approximate magnitude of correction we would

expect from comparing the scales of Figs. 1 and 3.
However the effect of nonlocality on 4(x) in Fig.

2 appears at first sight much more drastic: It has
produced an extra minimum. What we wish to show
is that such a description of the situation is too su-
perficial. We have already noted that the oscillations
of 4'(x) derive from the way 4„(q) drops to zero (or
in the nonlocal calculation has a sharp minimum) at
qp 1. 6 kg (Fig. 1). These oscillations extend cluite
far in toward ~= 0 on the scale of Fig. 2, but are
overlaid by the enormously larger screened Coulomb
repulsion. At ~= 5 a. u. we have qo~= —,'r so there
may be another oscillation even to the left of the re-
gion plotted in Fig. 2. These all appear on the to-
tal 4(x) as tiny ripples and we can see this for the
outermost oscillation on curve 1 of Fig. 2. At x
= 8. 5-9 a. u. , 4'(x) has strong positive curvature
like a kink, and at x= 10 a. u. almost zero curvature.
We can therefore regard 4(r) in this region as a
smoothly decreasing function with a ripple on it.

Now the main part of 64 „(q) lies in the range
q/k ~= 0—1.6. Since it is positive, its effect is to
broaden the central hump of 4',",(q), and hence re-
duce the screening length of the Coulomb interaction
which, as we remarked earlier, is described by this
range of q. The strongly repulsive part of 4(x) in

Fig. 2 is therefore pulled in to lower r, thus expos-
ing the oscillation in the range x = 8-11 a. u. which
we previously only saw as a ripple on the outer edge
of the repulsive interaction.

That the large changes in 4'(r) arise from the peak
in &4'~, (q) around q/kz= 0. 8 becomes clear if we
write

~4'(&)= I —2(&*) /&) J, &4'".(q)io(q~)&q,

and observe that the value of the integral is large
only when r is in the range 0 - r ~ 4&, that is, when
the first node in jo(qr) occurs for q/k~ &0. 25. It is
precisely in this range of r where we observe the
greatest changes in 4(r) due to the improvements in
4',",(q). Although we have no particular physical ar-
guments to offer, it seems from several calcula-
tions that the sign of the contribution is always such
as to reduce the range of the strong repulsive inter-
action and therefore to expose one more oscillation
of 4'(~).

Exchange and correlation can be added very easily
to a local calculation by replacing e(q) in (4) by the
"proton" dielectric constant c~(q) (refer to Sec. 10
of Ref. 3 and to Ref. 12). The formulation is a little
more involved in the nonlocal theory, but it has been
shown that the correction term b4'„(q) can be ex-
pressed as a simple function of the "electron" di-
electric function e, (q) and the form factor so(q) com-
puted in Hartree approximation. ' In our present
example the contribution 64',",(q) from exchange and

correlation is shown in Fig. 3, based on the calcu-
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ing the volume of the cell constant, the calculation
of the energy from (1) involves the first and partic
ularly the second differential coefficient of 4'~, (q).
We see these are not strongly affected by the correc-
tions 44'„(q) in Fig. 3, certainly not by the main
hump at q/kz = 0. 8, because all the reciprocal-lat-
tice vectors lie beyond it. Similarly, calculating
the energy of the shear in terms of the real-space
interaction C'(r) would involve differentiating it at
the atomic positions. ' A large contribution comes
from the oscillations, irrespective of whether they
are exposed as in curve 3 of Fig. 2 or whether they
are a ripple on a strong repulsion as in curve 1.
The change in the repulsive part brought about by the
low-q hump in Ac'„(q) (Fig. 3) is a smooth function
which does not affect the result, in agreement with
the description in reciprocal space.

A different type of situation involves much larger
atomic rearrangements, e. g. , a comparison of fcc
with the diamond structure. The latter has recipro-
cal-lattice vectors at q/k~-1. Therefore, the main
hump of &C'»(q) (»g. 3) does contribute to the total
energy. Correspondingly in real space the two
structures have a 25% difference in nearest-neigh-
bor distances d (at the same volume) and, conse-
quently, it is crucial where the sharp rise in 4 (r)
comes relative to them. For the case of aluminum
which we have been considering, we might argue on

the basis of curve 3 in Fig. 2 that the fcc structure
with d=5. 4 a. u. is likely to be much more stable
than the diamond structure with d = 4. 2 a. u. De-
tailed calculations confirm this qualitative reason-
ing.

The results we have presented tend to increase
confidence in structural arguments based on the
real-space interaction 4 (r), which in any case are
only a physical interpretation of difficult calcula-
tions which are usually done in reciprocal space,
for reasons of convergence. We have found that
both nonlocality and exchange-correlation reduce
the range of the screened Coulomb repulsion, and

it appears, from the calculations we have presented,
that there is indeed a minimum in 4'(x) around the
nearest-neighbor position. This lends some support
to earlier structural arguments based on qualitative
interpretation of interionic interactions in which
such a minimum has usually been assumed. How-

ever, further calculations taking careful account of
exchange-correlation and nonlocality are clearly
needed to confirm in general the results we have
presented here. ' ' It is known that inclusion of
these improvements in the theory leads to markedly
better agreement with experiment for the phonon
spectra of several metals, ' '" and apparently they
are equally important for a discussion of the real-
space interaction 4(t)'
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